【人教版】2014届高三数学(理)第一轮夯实基础《随机抽样》
- 格式:ppt
- 大小:1.12 MB
- 文档页数:35
[第54讲随机抽样](时间:45分钟分值:100分)基础热身1.[2013·济宁模拟] 下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验2.[2013·平顶山二调] 某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取的学生是( ) A.42名 B.38名C.40名 D.120名3.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A.26,16,8 B.25,17,8C.25,16,9 D.24,17,94):高一30人,结果合唱社被抽出12人,则这三个社团人数共有________.能力提升5.[2013·昆明调研] 下列说法中,正确说法的个数是( )①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的摸奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2 C.3 D.46.[2013·威海一模] 一个总体分为A,B,C三层,其个体数之比为5∶3∶2,若用分层抽样的方式抽取容量为200的样本,则应从B中抽取的个体数为( ) A.40 B.60 C.80 D.1007.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A .12,24,15,9B .9,12,12,7C .8,15,12,5D .8,16,10,68.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A .13B .19C .20D .519.一支田径队共有运动员98人,其中女运动员42人,用分层抽样的方法抽取一个样本,每名运动员被抽到的概率都是27,则男运动员应抽取( ) A .12人 B .14人C .16人D .18人10.[2013·惠州一模] 某校对全校男女学生共1 600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________人.11.[2013·辽宁育才中学月考] 要从160名学生中抽取容量为20的样本,将160名学生编号:001,002,…,160,按编号顺序平均分成20组,若第16组应抽出的号码是125,则第2组应抽出的号码是________.12.[2013·湖北长阳一中月考] 某企业三月中旬生产A ,B ,C 三种产品共3 000件,A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 产品的数量是________.13.某班级共有学生40人,一次数学模拟考试,共12道选择题,每题5分,共计60得60分的试卷的张数是________.14.(10分)[2013·南通调研] 某单位有2 000名职工,老年、中年、青年分布在管理、20(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对广州亚运会筹备情况的了解,则应怎样抽样?15.(13分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.难点突破16.(12分)某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体.求样本容量n .课时作业(五十四)【基础热身】1.D [解析] A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的,是系统抽样;C 不是简单随机抽样,因为总体的个体有明显的层次,属分层抽样;抽签法是简单随机抽样,故选D.2.C [解析] 该学院的C 专业的学生人数是1 200-380-420=400,则该学院的C 专业应抽取的学生人数为1201 200×400=40,故选C. 3.B [解析] 分段间隔为k =60050=12,则抽取的号码分别是003,015,027,039,…构成以3为首项,12为公差的等差数列,可分别求出001~300中有25人,301~495中有17人,故选B.4.150 [解析] 设这三个社团人数共有x 人,由分层抽样即按比例抽样,得1245+15=30x,解得x =150.【能力提升】5.C [解析] ①②③显然正确,系统抽样无论有无剔除都是等概率抽样,则④不正确,故选C.6.B [解析] 设应从B 中抽取的个体数为x ,则x 200=35+3+2,解得x =60,故选B. 7.D [解析] 抽取比例为40800=120.故各层中依次抽取的人数分别是16020=8,32020=16,20020=10,12020=6. 8.C [解析] 根据系统抽样,抽样的分段间隔为524=13,故抽取的样本的编号依次为7,7+13,7+13×2,7+13×3,故选C.9.C [解析] 设男运动员应抽取x 人,则x 98-42=27,解得x =16,故选C. 10.760 [解析] 设男生x 人,女生y 人,则x +y =1 600,x -y =10×1 600200,y =760. 11.13 [解析] 分段间隔为k =16020=8,设第2组应抽出的号码是a ,则a +8×14=125,解得a =13.12.800 [解析] 设C 产品的样本容量为x ,则A 产品的样本容量为10+x ,由B 知抽取的比例为110,故x +10+x +130=300,故x =80,所以C 产品的数量为800. 13.2 [解析] 得60分的人数40×10%=4,设抽取x 张选择题得60分的试卷,则4020=4x,解得x =2,故应抽取2张选择题得60分的试卷. 14.解:(1)调查身体状况,按老年、中年、青年人数的比例用分层抽样抽取,老年应抽取的人数为40×2002 000=4,中年应抽取的人数为40×6002 000=12,青年应抽取的人数为40×1 2002 000=24. (2)讨论单位发展与薪金调整,按管理、技术开发、营销、生产人数的比例用分层抽样抽取,管理应抽取的人数为25×1602 000=2,技术开发应抽取的人数为25×3202 000=4,营销应抽取的人数为25×4802 000=6,生产应抽取的人数为25×1 0402 000=13. 用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.(3)调查对广州亚运会筹备情况的了解,用系统抽样:对全部2 000人随机编号,号码从0 001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.15.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%,解得b =50%,c =10%. 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人). 【难点突破】16.解:总体容量为6+12+18=36(人).当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取工程师n 36×6=n 6(人),抽取技术员n 36×12=n 3(人),抽取技工n 36×18=n 2(人).所以n 应是6的倍数,36的约数,即n =6,12,18,36. 当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1.因为35n +1必须是整数,所以n 只能取6,即样本容量n =6.。
第二节随机抽样抽样方法(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本.(3)了解分层抽样和系统抽样方法.知识点抽样方法类别各自特点相互联系适用范围共同点简单随机抽样从总体中逐个抽取最基本的抽样方法总体中的个体数较少抽样过程中每个个体被抽到的可能性相等系统抽样将总体平均分成几部分,按事先确定的规则分别在各部分中抽取在起始部分抽样时,采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成易误提醒(1)简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.(2)系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.(3)分层抽样中,易忽视每层抽取的个体的比例是相同的,即都等于样本容量n总体个数N.[自测练习]1.为了了解参加知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.3C.4 D.5解析:因为1 252=50×25+2,所以应随机剔除2个个体,应选A.答案:A2.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取男生人数为( )A .27B .30C .33D .36解析:本题考查分层抽样等基础知识.因为男生与女生的比例为180∶120=3∶2,所以应该抽取男生人数为50×33+2=30. 答案:B3.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋数:d =3 000150=20,由题意知这些号码是以11为首项,20为公差的等差数列.a 61=11+60×20=1 211. 答案:1 211考点一 简单的随机抽样|1.下列抽取样本的方式是简单随机抽样的有( ) ①从无限多个个体中抽取50个个体作为样本;②箱子里有100支铅笔,今从中选取10支进行检验,在抽样操作时,从中任意拿出一支检测后再放回箱子里;③从50个个体中一次性抽取5个个体作为样本. A .0个 B .1个 C .2个D .3个解析:①不满足样本的总体数较少的特点;②不满足不放回抽取的特点;③不满足逐个抽取的特点.答案:A2.(2015·唐山二模)用简单随机抽样的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为( )A.1100B.199C.120D.150解析:一个总体含有100个个体,某个个体被抽到的概率为1100,用简单随机抽样方式从该总体中抽取容量为5的样本,则某个个体被抽到的概率为1100×5=120.答案:C一个抽样试验能否用抽签法,关键看两点一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.考点二 系统抽样|(2015·黑龙江哈尔滨六中模拟)哈六中2015届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14[解析] 使用系统抽样方法,从840人中抽取42人,即从20人抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.故选B.[答案] B解决系统抽样问题的两个关键步骤(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.1.(2015·陕西师大附中模拟)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为________.解析:设n 抽到的号码为a n ,则a n =9+30(n -1)=30n -21,由750<30n -21≤960, 得25.7<n ≤32.7,所以n 的取值为26,27,28,29,30,31,32,共7个, 因此做问卷C 的人数为7. 答案:7考点三 分层抽样|(1)(2015·高考福建卷)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.[解析] 设应抽取的男生人数为x ,则x 900-400=45900,解得x =25.[答案] 25(2)(2015·郑州二检)最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:赞成改革 不赞成改革无所谓 教师 120 y 40 学生xz130 ①现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?②在①中所抽取的“不赞成改革”的人中,随机选出3人进行座谈,求至少有1名教师被选出的概率.[解] ①由题意知x500=0.3,所以x =150,所以y +z =60,因为z =2y ,所以y =20,z =40,则应抽取教师人数为50500×20=2,应抽取学生人数为50500×40=4.②所抽取的“不赞成改革”的2名教师记为a ,b,4名学生记为1,2,3,4,随机选出3人的不同选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),(1,2,3),(1,2,4),(1,3,4),(2,3,4),共20种,至少有1名教师的选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),共16种,故至少有1名教师被选出的概率P =1620=45.进行分层抽样的相关计算时,常用到的关系式(1)样本容量n总体的个数N =该层抽取的个体数该层的个体数. (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.2.(2016·抚顺模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7解析:四类食品的每一种被抽到的概率为 2040+10+30+20=15,∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.答案:C26.系统抽样中的易错点【典例】 某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.[解析] 总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n ,分层抽样的抽样比是n 36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n 6,篮球运动员人数为12×n 36=n 3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n =6,12,18.当样本容量为n +1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n 为6.[答案] 6[易错点评] 解题易忽视系统抽样的抽样距必须是整数导致失误.[防范措施] 系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.[跟踪练习] 某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是( )A .5B .7C .11D .13解析:间隔数k =80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.答案:BA 组 考点能力演练1.(2016·兰州质检)从一个容量为N 的总体中抽取一个容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1、p 2、p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p 1=p 2=p 3,故选D.答案:D2.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取,故选D.答案:D3.(2016·石家庄模拟)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )A .1,2,3,4,5,6B .6,16,26,36,46,56C .1,2,4,8,16,32D .3,9,13,27,36,54解析:系统抽样是等间隔抽样,只有B 选项符合. 答案:B4.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126解析:依题意得33+5+7×n =18,解得n =90,即样本容量为90.答案:B5.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800B .1 000根据分层抽样的性质,160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.解析:本题属于分层抽样,设该学校的教师人数为x ,所以1603 200=160-150x ,所以x =200.答案:2007.(2016·武夷模拟)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.解析:设第1组抽取的号码为b ,则第n 组抽取的号码为8(n -1)+b ,∴8×(16-1)+b =126,∴b =6,故第1组抽取的号码为6.答案:68.(2016·潍坊模拟)某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________.解析:根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.答案:369.一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生小张只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.设抽取x 张选择题得60分的试卷,则2040=x4,则x =2,故应抽取2张选择题得60分的试卷.(2)设小张的试卷为a 1,另三名得60分的同学的试卷为a 2,a 3,a 4,所有抽取60分试卷的方法为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 2,a 3),(a 2,a 4),(a 3,a 4)共6种,其中小张的试卷被抽到的抽法共有3种,故小张的试卷被抽到的概率为P =36=12.10.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如图所示的部分频率分布直方图.观察图中的信息,回答下列问题.(1)求分数在[120,130)内的频率;(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.解:(1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3. (2)估计平均分为x =95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121. (3)由题意,得[110,120)分数段的人数为60×0.15=9(人),[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,分别记为m ,n ;在[120,130)分数段内抽取4人,分别记为a ,b ,c ,d .设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,则基本事件有(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共15种,其中事件A 包含9种.∴P (A )=915=35.即至多有1人在分数段[120,130)内的概率为35.B 组 高考题型专练1.(2015·高考北京卷)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300A.90C.180 D.300解析:设样本中的老年教师人数为x,则3201 600=x900,解得x=180,选C.答案:C2.(2015·高考四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法解析:因为要了解三个年级之间的学生视力是否存在显著差异,所以采用分层抽样的方法最合理.答案:C3.(2014·高考天津卷)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知科生中抽取________名学生.解析:设应从一年级本科生中抽取x名学生,则答案:604.(2014·高考湖北卷)甲、乙两套设备生产的同类型产品共方法从中抽取一个容量为80的样本进行质量检测.乙设备生产的产品总数为________件.解析:分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件.答案:1 800。
课时作业(五十三)[第53讲随机抽样](时间:45分钟分值:100分)基础热身1.[2012·济宁模拟] 下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验2.[2012·平顶山二调] 某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取的学生是() A.42名B.38名C.40名D.120名3.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,94.[2012·佛山质检):30人,结果合唱社被抽出12人,则这三个社团人数共有________.能力提升5.[2012·昆明调研] 下列说法中,正确说法的个数是()①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的摸奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2 C.3 D.46.[2012·威海一模] 一个总体分为A,B,C三层,其个体数之比为5∶3∶2,若用分层抽样的方式抽取容量为200的样本,则应从B中抽取的个体数为()A .40B .60C .80D .1007.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A .12,24,15,9B .9,12,12,7C .8,15,12,5D .8,16,10,68.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A .13B .19C .20D .519.一支田径队共有运动员98人,其中女运动员42人,用分层抽样的方法抽取一个样本,每名运动员被抽到的概率都是27,则男运动员应抽取( ) A .12人 B .14人C .16人D .18人10.[2012·惠州一模] 某校对全校男女学生共1 600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________人.11.[2012·辽宁育才中学月考] 要从160名学生中抽取容量为20的样本,将160名学生编号:001,002,…,160,按编号顺序平均分成20组,若第16组应抽出的号码是125,则第2组应抽出的号码是________.12.[2012·湖北长阳一中月考] 某企业三月中旬生产A ,B ,C 三种产品共3 000件,根统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 产品的数量是________.13.某班级共有学生40人,一次数学模拟考试,共12道选择题,每题5分,共计60得60分的试卷的张数是________.14.(10分)[2012·南通调研] 某单位有2 000名职工,老年、中年、青年分布在管理、(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对广州亚运会筹备情况的了解,则应怎样抽样?15.(13分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.难点突破16.(12分)某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体.求样本容量n .课时作业(五十三)【基础热身】1.D [解析] A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的,是系统抽样;C 不是简单随机抽样,因为总体的个体有明显的层次,属分层抽样;抽签法是简单随机抽样,故选D.2.C [解析] 该学院的C 专业的学生人数是1 200-380-420=400,则该学院的C 专业应抽取的学生人数为1201 200×400=40,故选C. 3.B [解析] 分段间隔为k =60050=12,则抽取的号码分别是003,015,027,039,…构成以3为首项,12为公差的等差数列,可分别求出001~300中有25人,301~495中有17人,故选B.4.150 [解析] 设这三个社团人数共有x 人,由分层抽样即按比例抽样,得1245+15=30x,解得x =150.【能力提升】5.C [解析] ①②③显然正确,系统抽样无论有无剔除都是等概率抽样,则④不正确,故选C.6.B [解析] 设应从B 中抽取的个体数为x ,则x 200=35+3+2,解得x =60,故选B. 7.D [解析] 抽取比例为40800=120.故各层中依次抽取的人数分别是16020=8,32020=16,20020=10,12020=6. 8.C [解析] 根据系统抽样,抽样的分段间隔为524=13,故抽取的样本的编号依次为7,7+13,7+13×2,7+13×3,故选C.9.C [解析] 设男运动员应抽取x 人,则x 98-42=27,解得x =16,故选C. 10.760 [解析] 设男生x 人,女生y 人,则x +y =1 600,x -y =10×1 600200,y =760. 11.13 [解析] 分段间隔为k =16020=8,设第2组应抽出的号码是a ,则a +8×14=125,解得a =13.12.800 [解析] 设C 产品的样本容量为x ,则A 产品的样本容量为10+x ,由B 知抽取的比例为110,故x +10+x +130=300,故x =80,所以C 产品的数量为800. 13.2 [解析] 得60分的人数40×10%=4,设抽取x 张选择题得60分的试卷,则4020=4x,解得x =2,故应抽取2张选择题得60分的试卷. 14.解:(1)调查身体状况,按老年、中年、青年人数的比例用分层抽样抽取,老年应抽取的人数为40×2002 000=4,中年应抽取的人数为40×6002 000=12,青年应抽取的人数为40×1 2002 000=24. (2)讨论单位发展与薪金调整,按管理、技术开发、营销、生产人数的比例用分层抽样抽取,管理应抽取的人数为25×1602 000=2,技术开发应抽取的人数为25×3202 000=4,营销应抽取的人数为25×4802 000=6,生产应抽取的人数为25×1 0402 000=13. 用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.(3)调查对广州亚运会筹备情况的了解,用系统抽样:对全部2 000人随机编号,号码从0 001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.15.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%,解得b =50%,c =10%. 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人). 【难点突破】16.解:总体容量为6+12+18=36(人).当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取工程师n 36×6=n 6(人),抽取技术员n 36×12=n 3(人),抽取技工n 36×18=n 2(人).所以n 应是6的倍数,36的约数,即n =6,12,18,36. 当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1.因为35n +1必须是整数,所以n 只能取6,即样本容量n =6.。
2014年高考一轮复习热点难点精讲精析:10.1随机抽样(一)简单随机抽样 Zxxk※相关链接※1.简单随机抽样的特点:(1)抽取的个体数较少;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.注:抽签法适于总体中个体数较少的情况,随机数表法适用于总体中个体数较多的情况.2.一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.3.利用随机数表法抽取样本的步骤 ZXXK](1)编号:将每个个体编号,各号数的位数相同.(2)选起始号码:任取某行、某组的某数为起始号码.(3)确定读数方向:一般从左到右读取.※例题解析※〖例〗某大学为了支持2010年亚运会,从报名的24名大三的学生中选6人组成志愿小组,请用抽签法和随机数表法设计抽样方案.思想解析:(1)总体的个体数较少,利用抽签法或随机数表法可容易获取样本;(2)抽签法的操作要点:编号、制签、搅匀、抽取;(3)随机数表法的操作要点:编号、选起始数、读数、获取样本.解答:抽签法第一步:将24名志愿者编号,编号为1,2,3,……,24; 学+科+网Z+X+X+K]第二步:将24个号码分别写在24张外形完全相同的纸条上,并揉成团,制成号签;第三步:将24个号签放入一个不透明的盒子中,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员. Z#xx#k随机数表法第一步:将24名学生编号,编号为01,02,03,……24;第二步:在随机数表中任选一数开始,按某一确定方向读数;第三步:凡不在01~24中的数或已读过的数,都跳过去不作记录,依次记录下得数;第四步:找出号码与记录的数相同的学生组成志愿小组.(二)系统抽样※相关链接※系统抽样的特点(1)适用于元素个数很多且均衡的总体;(2)各个个体被抽到的机会均等; Zxxk Zxxk(3)总体分组后,在起始部分采用的是简单随机抽样;(4)如果总体容量N能被样本容量n整除,则抽样间隔为,如果总体容量N不能被样本容量n整除,可随机地从总体中剔除余数,然后再按系统抽样的方法抽样.注:系统抽样的四个步骤可简记为“编号——分段——确定起始的个体号——抽取样本”.※例题解析※〖例〗某校高中三年级的295名学生已经编号为1,2,3,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.思路解析:按比例分组每组编号用简单随机抽样确定每一组的学生编号间隔相同抽取组成样本.解答:按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号.按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第2组是编号为6~1的5名学生,依次下去,第59组是编号为291~295的5名学生.采用简单随机抽样的方法,从第1组5名学生中抽出一名学生,不妨设编号为,那么抽取的学生编号为得到59个个体作为样本,如当时的样本编号为3,8,13,……,288,293.(三)分层抽样 ZXXK]〖例〗某政府机关有在编有员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取. 学&科&网Z&X&X&K]思路解析:(1)机构改革关系到名种人不同的利益;(2)不同层次的人员情况有明显差异,故采用分层抽样.解答:用分层抽样方法抽取.具体实施抽取如下: ZXXK](1)∵20:100=1:5,∴10/5=2,70/5=14,20/5=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,,……,69编号,然后用随机数表法抽取14人。
【创新设计】2014高考数学一轮复习 第十章 随机抽样训练 理新人教A 版第一节 随机抽样[备考方向要明了]考 什 么怎 么 考1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样.对随机抽样(尤其是分层抽样)的考查,几乎年年都出现在高考试题中,题型以选择题和填空题为主,难度较低,如2012年某某T9,某某T2等.[归纳·知识整合]1.简单随机抽样(1)抽取方式:不放回抽取; (2)每个个体被抽到的概率相等; (3)常用方法:抽签法和随机数法. [探究] 1.简单随机抽样有什么特点?提示:(1)被抽取样本的总体个数N 是有限的;(2)样本是从总体中逐个抽取的;(3)是一种不放回抽样;(4)是等可能的抽取.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段.当Nn (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本.[探究] 2.系统抽样有什么特点?提示:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用X 围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. [探究] 3.分层抽样有什么特点?提示:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.[自测·牛刀小试]1.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,在分层抽样、系统抽样、简单随机抽样三种抽样中,不放回抽样有( )A .0个B .1个C .2个D .3个解析:选D 三种抽样都是不放回抽样.2.(2013·某某模拟)某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( )A .50B .60C .70D .80解析:选C 由分层抽样的方法得33+4+7×n =15,解得n =70.3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.1027解析:选B 由题意知9n -1=13,解得n =28.故P =1028=514.4.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽到的概率为0.2,则该单位青年职员的人数为________.解析:总人数为2000.2=1 000,该单位青年职员的人数为1 000×1025=400.答案:4005.(2012·某某高考)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.解析:分层抽样的特点是按照各层占总体的比抽取样本,设抽取的女运动员有x 人,则x 8=4256,解得x =6. 答案:6简单随机抽样[例1] 为了支援我国西部教育事业,决定从2011级学生报名的30名志愿者中,选取10人组成志愿小组,请用抽签法和随机数表法设计抽样方案.[自主解答] 抽签法:第一步:将30名志愿者编号,编号为1,2,3, (30)第二步:将30个分别写在30X 外观完全相同的纸条上,并揉成团,制成号签. 第三步:将30个号签放入一个不透明的盒子中,充分搅匀. 第四步:从盒子中逐个抽取10个号签,并记录上面的编号. 第五步:所得对应的志愿者,就是志愿小组的成员. 随机数法:第一步:将30名志愿者编号,编号为01,02,03,…,30. 第二步:在随机数表中任选一数开始,按某一确定方向读数.第三步:凡不在01~30中的数或已读过的数,都跳过去不作记录,依次记录下10个得数.第四步:找出与记录的数相同的志愿者组成志愿小组.把本例中“30名志愿者”改为“1800名志愿者”,仍抽取10人,应如何进行抽样? 解:因为总体数较大,若选用抽签法制签太麻烦,故应选用随机数法.第一步:先将1 800名志愿者编号,可以编为0001,0002,0003,…,1800. 第二步:在随机数表中任选一个数,例如选出第2行第1列的数9.第三步:从选定的数开始向右读,依次可得以0736,0751,0732,1355,1410,1256,0503,1557,1210,1421为样本的10个,这样我们就得到一个容量为10的样本.——————————————————— 应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体或出现重复的数字舍去.1.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本.问: (1)总体中的某一个体a 在第一次抽取时被抽到的概率是多少? (2)个体a 不是在第一次被抽到,而是在第二次被抽到的概率是多少? (3)在整个抽样过程中,个体a 被抽到的概率是多少?解:①用简单随机抽样,从含有N 个个体的总体中抽取一个容量为n 的样本,每次抽取一个个体时任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为nN;②抽签有先后,但概率都是相同的.故(1)16;(2)16;(3)13.系统抽样[例2] (2012·某某高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15[自主解答] 第n 个抽到的编号为9+(n -1)×30=30n -21,由题意得451≤30n -21≤750,解得151115≤n ≤25710.又n ∈Z ,故满足条件的共有10个. [答案] C ——————————————————— 解决系统抽样应注意的几个问题(1)适合元素个数较多且均衡的总体; (2)各个个体被抽到的机会均等; (3)样本的第一个个体用简单随机抽样.2.为规X 学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A .13B .19C .20D .51解析:选C 由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,从而可知选C.分层抽样[例3] 某学校共有教职工900人,分成三个批次进行教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.第一批次 第二批次 第三批次女教职工 196 xy 男教职工204156z(1)求x 的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?[自主解答] (1)由x900=0.16,解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则m 200=54900,解得m =12.故应在第三批次中抽取12名教职工. ———————————————————分层抽样的步骤第一步:将总体按一定标准分层;第二步:计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量;第三步:在每一层进行抽样(可用简单随机抽样或系统抽样).3.(2012·某某高考)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取____________所学校,中学中抽取____________所学校.解析:从小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.答案:18 91组比较——三种抽样方法的比较 类别 共同点各自特点 相互联系适用X 围 简单随机抽样抽样过程中每个个体被抽取的机会相等 从总体中逐个抽取总体中的个体数较少 系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样 总体中的个体数较多 分层抽样将总体分成几层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成易误警示——抽样方法中的解题误区[典例] (2012·某某高考)某学校高一、高二、高三年级的学生人数之比是3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[解析] 由题意得高二年级的学生人数占该学校高中人数的310,利用分层抽样的有关知识得应从高二年级抽取50×310=15名学生. [答案] 15 [易误辨析]1.因不能正确确认抽样的比例从而导致失误. 2.在求解过程中计算失误.3.解答随机抽样问题时,还有以下几点容易造成失误: (1)分不清系统抽样中各段入样的个体编号成等差数列; (2)分层抽样中各层所占的比例不准确;(3)系统抽样时总体容量不能被样本容量整除时,不知随机从总体中剔除余数;分层抽样时所取各层个体数不是整数时,不会微调个体数目.[变式训练]1.从2 006名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2 006人中剔除6人,剩下的2 000人再按照系统抽样的方法进行,则每人入选的概率( )A .不全相等B .均不相等C .都相等,且为251 003D .都相等,且为140解析:选C 抽样过程中每个个体被抽取的机会均等,概率相等,剔除后的抽取过程与从2006人中抽取50人,每人入选的概率相同,其概率为502 006=251 003. 2.中央电视台在因特网上就观众对2013年春节晚会这一节目的喜爱程度进行调查,参加调查的总人数为12 000,其中持各种态度的人数如表所示:其中持“喜爱”态度的观众应抽取________人.解析:由于样本容量与总体容量的比为6012 000=1200, 故应抽取“喜爱”态度的观众人数为 4 600×1200=23(人).答案:23一、选择题(本大题共6小题,每小题5分,共30分) 1.下列抽取样本的方式是简单随机抽样的有( ) ①从无限多个个体中抽取50个个体作为样本;②箱子里有100支铅笔,今从中选取10支进行检验.在抽样操作时,从中任意拿出一支检测后再放回箱子里;③从50个个体中一次性抽取5个个体作为样本. A .0个 B .1个 C .2个 D .3个解析:选A ①不满足样本的总体数较少的特点;②不满足不放回抽取的特点;③不满足逐个抽取的特点.2.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数表法D .分层抽样法解析:选D 由于总体容量较大,且男、女生健康差异明显,因此采用分层抽样方法抽取样本.3.(2012·某某高考改编)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为( )A .80B .120C .160D .240解析:选C 设样本中男、女生分别为x ,y ,且x ∶y =4∶3,所以x =280×47=160.4.800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是( )A .40B .39C .38D .37解析:选B 按系统抽样分组,33~48这16个数属第3组,则这一组应抽到的数是7+2×16=39.5.某工厂有A ,B ,C 三种不同型号的产品,这三种产品数量之比为2∶3∶5,现用分层抽样从中抽出一个容量为n 的样本,该样本中A 种型号产品有8件,那么这次样本的容量n 是( )A .12B .16C .20D .40解析:选D 设三种产品的数量之和为2k +3k +5k =10k ,依题意有n 10k =82k,解得n =40.6.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个,则( )A .不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此D .采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同解析:选A 由抽样方法的性质知,抽样过程中每个个体被抽到的概率都相等,这个比例只与样本容量和总体有关.二、填空题(本大题共3小题,每小题5分,共15分)7.某高中共有学生2 000名,已知在全校学生中随机抽取1名,抽到高三年级男生的概率是0.1现用分层抽样的方法在全校抽取若干名学生参加社区服务,相关信息如下表:则x =________.解析:由b 2 000=0.1,可得b =200.设在全校抽取n 名学生参加社区服务,则有n2 000=10200+200.解得n =50.故x =50-15-10=25.答案:258.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为________.解析:依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的为3+12(k -1).令3+12(k -1)≤300得k ≤1034, 因此第Ⅰ营区被抽中的人数是25, 令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17. 故第Ⅲ营区被抽中的人数是50-25-17=8. 答案:25,17,89.某企业三月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________.解析:设C 产品的样本容量为x ,则A 产品的样本容量为10+x ,由B 知抽取的比例为110,故x +10+x +130=300,解得x =80.所以C 产品的数量为800.答案:800三、解答题(本大题共3小题,每小题12分,共36分)10.一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生小X 只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.小X 所在班级共有40人,此次考试选择题得分情况统计表:(1)应抽取多少X 选择题得60分的试卷?(2)若小X 选择题得60分,求他的试卷被抽到的概率.解:(1)得60分的人数40×10%=4.设抽取x X 选择题得60分的试卷,则4020=4x ,即x =2.故应抽取2X 选择题得60分的试卷.(2)设小X 的试卷为a 1,另三名得60分的同学的试卷为a 2,a 3,a 4,所有抽取60分试卷的方法为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 2,a 3),(a 2,a 4),(a 3,a 4)共6种,其中小X 的试卷被抽到的抽法共有3种,故小X 的试卷被抽到的概率为P =36=12.11.(2012·某某高考)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种,所以P (B )=315=15.12.(2012·高考)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.(注:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数)解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”. 事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.1.(2012·某某高考)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.解析:应抽取女运动员的人数为98-5698×28=12.答案:122.某学校在校学生2 000人,学校举行了跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:高一年级 高二年级 高三年级跑步人数 a b c 登山人数xyz其中a :b :c =2∶5∶3,全校参加登山的人数占总人数的4.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取( )A .15人B .30人C .40人D .45人解析:选D 由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取110×450=45人.第二节 用样本估计总体[备考方向要明了]考 什 么怎 么 考1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(平均数、标准差),并给出合理解释.4.会用样本的频率分布估计总体的分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.1.由于高考对统计考查的覆盖面广,几乎对所有的统计考点都有涉及,其中频率分布直方图、均值与方差、茎叶图是核心,题型多是选择题或填空题,难度不大,如2012年某某T5,某某T6等.2.近几年来,对概率统计的综合问题考查的力度有所加大,题目难度中低档,如2012年某某T17等.[归纳·知识整合]1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差); (2)决定组距与组数; (3)将数据分组;(4)列频率分布表; (5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,方便记录与表示. 4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离. (2)标准差:s =1n[x 1-x-2+x 2-x-2+…+x n -x-2].(3)方差:s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2](x n 是样本数据,n 是样本容量,x 是样本平均数).5.利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.(2)平均数:平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)众数:在频率分布直方图中,众数是最高的矩形的中点的横坐标. [探究] 1.在频率分布直方图中如何确定中位数?提示:在频率分布直方图中,中位数左边和右边的直方图的面积是相等的. 2.利用茎叶图求数据的中位数的步骤是什么?提示:(1)将茎叶图中数据按大小顺序排列;(2)找中间位置的数.[自测·牛刀小试]1.(2012·某某高考)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:选D 只有标准差不变,其中众数、平均数和中位数都加2.2.(2011·某某模拟)如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( )A .161B .162C .163D .164解析:选B 由给定的茎叶图可知,这10位同学身高的中位数为161+1632=162.3.某校举行2013年元旦汇演,七位评委为某班的小品打出的分数如下茎叶统计图,去掉一个最高分和一个最低分,所剩数据的方差为________.解析:由茎叶图知,去掉一个最高分和一个最低分,所剩数据为84,84,86,84,87,所以由公式得方差为1.6.答案:1.64.从一堆苹果中任取10只,称得它们的质量如下(单位:克):125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为________.解析:数据落在[114.5,124.5)内的有:120,122,116,120共4个,故所求频率为410=0.4.答案:0.45.(2012·某某模拟)将容量为n 的样本中的数据分为6组,绘制频率分布直方图,若第一组至第六组的数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和为27,则n =________.解析:由已知,得2+3+42+3+4+6+4+1·n =27,即920·n =27,解得n =60. 答案:60频率分布直方图的应用[例1] (1)在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面15 5 5 7 8 16 1 3 3 5 17127 9 8 4 4 6 4 7 93积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.25(2)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有______名.[自主解答] (1)由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1,解得x =0.2.故中间一组的频数为160×0.2=32.(2)由题知,成绩大于等于80分且小于90分的学生所占的频率为1-(0.005×2+0.025+0.045)×10=0.2,所以这200名同学中成绩大于等于80分且小于90分的学生有200×0.2=40名.[答案] (1)A (2)40 ——————————————————— 频率分布直方图反映了样本的频率分布(1)在频率分布直方图中纵坐标表示频率组距,频率=组距×频率组距.(2)频率分布表中频率的和为1,故频率分布直方图中各长方形的面积和为1.1.已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为________,样本数据落在[2,10)内的频率为________.解析:样本数据落在[6,10)内的样本频数为0.08×4×100=32,样本数据落在[2,10)内的频率为(0.02+0.08)×4=0.4.答案:32 0.4数字特征的应用[例2] (2012·某某高考)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差[自主解答] 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.[答案] C ———————————————————样本数字特征及公式推广(1)平均数和方差都是重要的数字特征,是对总体一种简明的阐述.平均数、中位数、众数描述总体的集中趋势,方差和标准差描述波动大小.(2)平均数、方差公式的推广若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则数据mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x -+a ,方差为m 2s 2.2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x。
考点四十三:随机抽样、用样本估计总体河北省某重点中学2014年高三补习理科快班知识点讲座内部资料,请勿外传 主讲人:孟老师加(*)号的知识点为了解内容,供学有余力的学生学习使用一.考纲目标各种随机抽样方法的定义、特点及适用范围;用样本的频率分布估计总体分布;用样本的数字特征估计总体的数字特征. 二.知识梳理 1.简单随机抽样 (1)简单随机抽样的概念设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样方法有两种抽签法和随机数法 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号.(2)确定分段间隔K ,对编号进行分段,当N n 是整数时,取k =Nn .(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k).(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号1+K ,再加k 得到第3个个体编号1+2K ,依次进行下去,直到获取整个样本. 3.分层抽样 (1)分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样. (2)当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. (3)分层抽样时,每个个体被抽到的机会是相等的. 4.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差. (2)决定组距与组数. (3)将数据分组 (4)列频率分布表 (5)画频率分布直方图 5.频率分布折线图和总体密度曲线(1)频率分布折线图:把频率分布直方图中各小长方形上边的中点用线段连接起来,就得到频率分布折线图.(2)设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上越来越接近于 总体的分布,它可以用一条光滑曲线y =f(x)来描绘,这条光滑曲线就叫做总体密度曲线. 6.茎叶图的优点用茎叶图表示数据有两个突出的优点:一是从统计上没有原始信息的损失,所有的 数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛时随时记录,方便记录与表示 . 7.样本的数字特征(1)众数在一组数据中,出现次数最多的数据叫做这组数据的众数(2)中位数:将一组数据按大小依次排列、把处在 最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数在频率分布直方图中,中位数左边和右边的直方图的面积应该相等 8.平均数的计算方法(1)如果有n 个数据x 1,x 2,…,x n ,那么=(x 1+x 2+…+x n )叫做这n 个数据的平均数,读作“x 拔”(2)当一组数据x 1,x 2,…,x n 的各个数值较大时,可将各数据同时减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,那么,= +a(3)加权平均数:如果在n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(f 1+f 2+…+f k =n ),那么=9.方差的计算方法(1)对于一组数据x 1,x 2,…,x n , s 2=[(x 1-)2+(x 2-)2+…+(x n -)2] 叫做这组数据的方差,而s 叫做标准差(2)方差公式: s 2=[(x 12+x 22+…+x n 2)-n 2](3)当一组数据x 1,x 2,…,x n 中的各数较大时,可以将各数据减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a 则s 2=[(x 1′2+x 2′2+…+x n ′2)-n ] 三.考点逐个突破 1.简单随机抽样例1.(1) 一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法,抽取一个容量为10的样本,每个管理人员被抽到的概率为( ) A.180 B.124 C.18D.14[答案] C[解析] 本题主要考查分层抽样的特点.据题意管理人员这一层中每个个体被抽到的概率等于从总体中抽取10个样本每个个体被抽取的概率,即其概率为1080=18.(2)某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n 的样本,已知3个区人口数之比为235,如果最多的一个区抽出的个体数是60,则这个样本的容量=( )A .96B .120C .180D .240[答案] B[解析] 设样本容量为n ,则52+3+5=60n,∴n =120.(3)某公司有普通职员150人、中级管理人员40人、高级管理人员10人,现采用分层抽样的方法从这200人中抽取40人进行问卷调查,若在已抽取的40人的问卷中随机抽取一张,则所抽取的恰好是一名高级管理人员的答卷的概率为( ) A.14 B.15 C.120 D.1100 [答案] C[解析] 由分层抽样知,在普通职员中抽30人,中级管理人员抽8人,高级管理人员中抽2人.由古典概型知,所抽取的恰好是一名高级管理人员的答卷的概率为120,选C.2.系统抽样例2. (1)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9[答案] B[解析] 根据系统抽样的特点可知抽取的号码间隔为60050=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.(2)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15[答案] C[解析] 采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l =30,第k 组的号码为(k -1)30+9,令451≤(k-1)30+9≤750,而k ∈Z ,解得16≤k≤25,则满足16≤k≤25的整数k 有10个.(3)某班有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,……,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生. [答案] 37[解析] 组距为5,(8-3)×5+12=37. 3.分层抽样例3. 某校共有学生2000名,各年级男、女生人数如表,已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B[答案] C[解析] 由条件知,二年级女生有2000×0.19=380名,∴三年级有学生2000-(373+377+380+370)=500名,由分层抽样定义知,在三年级应抽取500×642000=16名.4.三种抽样方法的比较例4. (1)问题:①三种不同的容器中分别装有同一型号的零件400个、200个、150个,现在要从这750个零件中抽取一个容量为50的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是( )A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ C.①Ⅱ,②Ⅰ D.①Ⅲ,②Ⅱ[答案] C[解析] ①容器与抽取的样本无关,且总体数比较大,故可用系统抽样来抽取样本,②总体与样本都较少,可用随机抽样法.故选C.(2) 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用简单随机抽样法:抽签取出20个样本;②采用系统抽样法:将零件编号为00,01,……,99,然后平均分20组抽取20个样本;③采用分层抽样法:从一级品,二级品,三级品中共抽取20个样本.下列说法正确的是( )A.无论采用哪种方法,这100个零件中每一个零件被抽到的概率都相等B.①②两种抽样方法,这100个零件中每一个零件被抽到的概率都相等;③并非如此C.①③两种抽样方法,这100个零件中每一个零件被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的[答案] A5.频率分布直方图例 5. 某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16、0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为( ) A.480 B.440 C.420 D.400[答案] D[解析] 设第一、第二、第三小组的频率构成的等比数列公比为q,第三、第四、第五、第六小组的频率构成的等差数列公差为d,则由题意知⎩⎪⎨⎪⎧0.16+0.16q+0.16q2+0.16q2++0.16q2++0.16q2+=1,0.16q2+3d=0.07,即⎩⎪⎨⎪⎧0.16+0.16q+0.64q2+6d=1,0.16q2+3d=0.07.消去d得,16q2+8q-35=0.∵q>0,∴q=54.∴第三组的频率P=0.16q2=0.25.设男生总数为x,则x×25%=100,∴x=400.6.样本的平均数与方差例6. 某校高中一年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如图).S1、S2分别表示甲、乙两班各自5名学生学分的标准差,则S1________S2.(填“>”、“<”或“=”)[答案] <[解析] x-甲=15(8+11+14+15+22)=14,x-乙=15(6+7+10+24+28)=15,S21=15[(8-14)2+(11-14)2+(14-14)2+(15-14)2+(22-14)2]=22,S22=15[(6-15)2+(7-15)2+(10-15)2+(24-15)2+(28-15)2]=84,∴S1=22,S2=221,∴S1<S2.7.用样本估计总体例7. 为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110cm的株数大约是( )A.3000 B.6000 C.7000 D.8000[答案] C[解析] ∵底部周长小于110cm 的频率为(0.01+0.02+0.04)×10=0.7, ∴1万株中底部小于110cm 的株数为0.7×10000=7000. [点评] 用样本的频率作为总体频率的估计值. 8.样本的数字特征例8.(1) 从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x -甲,x -乙,中位数分别为m 甲,m 乙,则( )A.x -甲<x -乙,m 甲>m 乙B.x -甲<x -乙,m 甲<m 乙C.x -甲>x -乙,m 甲>m 乙D.x -甲>x -乙,m 甲<m 乙 [答案] B[解析] 从茎叶图中知,甲:5,6,8,10,10,14,18,18,22,25,27,30,30,38,41,43;乙: 10,12,18,20,22,23,23,27,31,32,34,34,38,42,43,48.x -甲=34516,x -乙=45716,m 甲=18+222=20,m 乙=27+312=29.故选B.(2)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A 、B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差[答案] D[解析] A 的众数88,B 的众数为88+2=90.“各样本都加2”后,平均数显然不同.A 的中位数86+862=86,B 的中位数88+882=88,而由标准差公式S =1n1-x-2+2-x-2+…+n-x-2]知D 正确.。
第九篇统计与统计案例第1讲随机抽样基础巩固题组(建议用时:40分钟)一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是().A.1 000名学生是总体B.每个学生是个体C.1 000名学生的成绩是一个个体D.样本的容量是100解析 1 000名学生的成绩是总体,其容量是1 000,100名学生的成绩组成样本,其容量是100.答案 D2.(2013·新课标全国Ⅰ卷)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.答案 C3.(2014·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=().A.54 B.90C.45 D.126解析依题意有33+5+7×n=18,由此解得n=90,即样本容量为90.答案 B4.(2013·江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为().A.08 B.07C.02 D.01解析由题意知前5个个体的编号为08,02,14,07,01.答案 D5.(2014·石家庄模拟)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是().A.1,2,3,4,5,6 B.6,16,26,36,46,56C.1,2,4,8,16,32 D.3,9,13,27,36,54解析系统抽样是等间隔抽样.答案 B二、填空题6.(2014·成都模拟)某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8.若用分层抽样抽取6个城市,则甲组中应抽取的城市数为________.解析甲组中应抽取的城市数为624×4=1.答案 17.某校高级职称教师26人,中级职称教师104人,其他教师若干人.为了了解该校教师的工资收入情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师________人.解析设其他教师为x人,则5626+104+x=16x,解得x=52,∴x+26+104=182(人).答案1828.(2014·青岛模拟)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为5×7+2=37号.答案37三、解答题9.某初级中学共有学生2 000名,各年级男、女生人数如下表:0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解(1)∵x2 000=0.19.∴x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482 000×500=12名.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.解用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.能力提升题组(建议用时:25分钟)一、选择题1.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为().A.800 B.1 000C.1 200 D.1 500解析因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200双皮靴.答案 C2.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为().A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9解析由题意知间隔为60050=12,故抽到的号码为12k+3(k=0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.答案 B二、填空题3.200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1~200编号为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为______.若采用分层抽样,40岁以下年龄段应抽取________人.解析将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中抽取x人,则40200=x100,解得x=20.答案3720三、解答题4.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计(1)40岁的观众应该抽取几名?(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解(1)应抽取大于40岁的观众人数为2745×5=35×5=3(名).(2)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3).5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=610=35.。
第二节 随机抽样时间:45分钟 分值:100分基 础 必 做一、选择题1.(2014·四川卷)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本解析 由题意知,5 000名居民的阅读时间是总体,200名居民的阅读时间为一个样本;每个居民的阅读时间为个体;200为样本容量;故选A.答案 A2.(2014·湖南卷)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析 由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p 1=p 2=p 3,故选D.答案 D3.(2014·重庆卷)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析 由题意知,抽样比为703 500=150,所以n 3 500+1 500=150,即n =100.故选A.答案 A4.某地区高中分三类,A 类学校共有学生2 000人,B 类学校共有学生3 000人,C 类学校共有学生4 000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为( )A.110B.920C.12 000D.12解析 利用分层抽样,每个学生被抽到的概率是相同的,故所求的概率为9002 000+3 000+4 000=110.答案 A5.(2015·石家庄模拟)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )A .1,2,3,4,5,6B .6,16,26,36,46,56C .1,2,4,8,16,32D .3,9,13,27,36,54解析 系统抽样是等间隔抽样.样本对应号码是一个等差数列,公差与间隔数606=10. 答案 B6.800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是( )A .40B .39C .38D .37解析 按系统抽样分组,33~48这16个数属第3组,则这一组应抽到的数是7+2×16=39.答案 B 二、填空题7.某学校高一、高二、高三年级的学生人数之比是,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取__________名学生.解析 高二年级学生人数占总学生人数的310,样本容量为50,则50×310=15,所以从高二年级抽取15名学生.答案 158.商场共有某品牌的奶粉240件,全部为A ,B ,C 三个批次的产品,其中A ,B ,C 三个批次的产品数量成等差数列,现用分层抽样的方法抽取一个容量为60的样本,则应从B 批次的产品中抽取________件.解析 方法一:因为A ,B ,C 三个批次的产品数量成等差数列,所以B 批次的产品有2403=80(件),又抽取比例为60240=14,故B 批次的产品应该抽取80×14=20(件).方法二:由题意知,抽取的样本数也成等差数列,故B 批次的产品应抽取20件. 答案 209.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.解析 因为=,所以普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又因为=,所以高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).所以约有5 000+700=5 700(户).故5 700100 000×100%=5.7%.答案 5.7% 三、解答题10.某企业共有3 200名职工,其中中、青、老年职工的比例为,从所有职工中抽取一个样本容量为400的样本,应采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?解 由于中、青、老年职工有明显的差异,故采用分层抽样更合理.按照比例抽取中,青、老年职工分别为510×400=200,310×400=120,210×400=80,因此应抽取的中、青、老年职工分别为200人,120人,80人.11.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作为样本.用系统抽样法将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是多少?若用分层抽样方法,则40岁以下年龄段应抽取多少人?解 系统抽样的抽样间隔为20040=5. 由于第5组抽取号码为22,所以第8组抽取的号码为22+3×5=37.由题图知,40岁以下年龄段应抽取50%×40=20人.培 优 演 练1.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.1027解析 由题意知9n -1=13,∴n =28.∴P =1028=514. 答案 B2.在某大学数学专业的160名学生中开展一项社会调查,先将学生随机编号为01,02,03,…,160,采用系统抽样的方法抽取样本,已知抽取的学生中最小的两个编号为07,23,那么抽取的学生中最大编号应该是( )A .150B .151C .142D .143 解析 由最小的两个编号为07,23可知,抽样间距为16,因此抽取人数的比例为116,即抽取10名学生,其编号构成首项为7,公差为16的等差数列,故抽取的学生中最大编号为7+9×16=151.答案 B3.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用(错位)系统抽样的方法抽取一个容量为8的样本,即规定先在第0组随机抽取一个号码,记为i ,依次错位地得到后面各组的号码,即第k 组中抽取个位数字为i +k (当i +k <10)或i +k -10(当i +k ≥10)的号码.在i =6时,所抽到的8个号码是________.解析 由题意得,在第1组抽取的号码的个位数字是6+1=7,故应选17;在第2组抽取的号码的个位数字是6+2=8,故应选28,此次类推,应选39,40,51,62,73.答案 6,17,28,39,40,51,62,734.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x ,y 的值.解 (1)用分层抽样的方法在35~50岁中抽取一个容量为5 样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3.抽取的样本中有研究生2人,本科生3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有等可能基本事件共有10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 1,B 3),(B 2,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人学历为研究生的概率为710. (2)由题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20, ∴4880+x =2050=1020+y,解得x =40,y =5. 即x ,y 的值分别为40,5.。
第十一篇统计与概率第1讲抽样方法与总体分布的估计A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1。
(2013·西安质检)对某商店一个月内每天的顾客人数进行了统计, 得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ).A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53解析样本共30个,中位数为错误!=46;显然样本数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A。
答案A2.(2013·南昌模拟)小波一星期的总开支分布如图(a)所示,一星期的食品开支如图(b)所示,则小波一星期的鸡蛋开支占总开支的百分比为( ).A.30% B.10% C.3%D.不能确定解析由题图(b)可知小波一星期的食品开支共计300元,其中鸡蛋开支30元.又由题图(a)知,一周的食品开支占总开支的30%,则可知一周总开支为1 000元,所以鸡蛋开支占总开支的百分比为301 000×100%=3%。
答案C3.(2013·成都模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ).A .101B .808C .1 212D .2 012解析 甲社区驾驶员的抽样比例为错误!=错误!,四个社区驾驶员总人数的抽样比例为错误!=错误!,由错误!=错误!,得N =808.答案 B4.(2012·安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9。
随机抽样〖复习目标〗①理解随机抽样的必要性和重要性。
②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
〖知识梳理〗1.随机抽样:抽样时保证每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样的条件的抽样是随机抽样.2.随机抽样的方法:简单随机抽样、系统抽样、分层抽样三种抽样方法的比较类别定义共同点相互联系简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样的方法是抽签法和随机数表法都是等概率抽取,每个个人本被抽到的概率是等可能的系统抽样当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方式叫做系统抽样.在起始部分采用简单随机抽样分层抽样当总体由明显差异的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照一定的比例,从各层中独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫做分层抽样.在各层抽样时采用简单随机抽样或系统抽样〖基础自测〗1.从2004名学生中选取50名组成参观团。
若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行。
则每人入选的概率()A.不全相等B.均不相等C.都相等,且为D.都相等,且为2.现在要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行抽样调查。
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈。
3东方中学有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名。
为了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本。
较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样3.课题组进行城市空气质量调查,按地域把24个城市分为甲乙、丙三组,对应城市数分别为4,12,8。
2014届高考数学(理)一轮复习 14 随机抽样一、选择题1.某学校为调查高三年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为 ( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:结合简单随机抽样、系统抽样与分层抽样的定义可知D 项正确. 答案:D2.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13 B.514 C.14D.1027解析:由题意知9n -1=13,∴n =28,∴P =1028=514. 答案:B3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( )A .50B .60C .70D .80解析:由分层抽样的方法得33+4+7×n =15,解得n =70.答案:C4.某学校在校学生2 000人,为了迎接“2011年深圳世界大学生运动会”,学校举行了“迎大运”跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:高一年级 高二年级 高三年级跑步人数 a b c 登山人数xyz其中a :b :c =2∶5∶3,全校参加登山的人数占总人数的14.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取 ( )A .15人B .30人C .40人D .45人解析:由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取 110×450=45(人) 答案:D5.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A .13B .19C .20D .51解析:由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7、7+13、7+13×2、7+13×3,从而可知选C. 答案:C6.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 构成等差数列,则第二车间生产的产品数为( )A .800B .1 000C .1 200D .1 500解析:因为a 、b 、c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200.答案:C 二、填空题7.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:128.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,采用分层抽样的方法从中抽取1个容量为若干户的样本,若高收入家庭抽取了25户,则低收入家庭被抽取的户数为________.解析:设低收入家庭被抽取的户数为x ,由每个家庭被抽取的概率相等得25125=x95,解得x =19.答案:199.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k (2≤k ≤10,k ∈N *)组中抽取的号码个位数字与m +k 的个位数字相同,若m =6,则在第7组中抽取的号码是________.解析:因第7组抽取的号码个位数字应是3,所以抽取的号码是63. 答案:63 三、解答题10.某学校共有教职工900人,分成三个批次进行教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.第一批次 第二批次 第三批次女教职工 196 xy 男教职工204156z(1)求x 的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?解:(1)由x900=0.16,解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则m 200=54900,解得m =12.∴应在第三批次中抽取12名教职工.11.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ·40%+3xb4x =47.5%,x ·10%+3xc4x=10%,解得b =50%,c =10%,则a =40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为 200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).12.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n 36,抽取的工程师人数为n 36·6=n 6,技术员人数为n 36·12=n 3,技工人数为n 36·18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18,36.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1, 因为35n +1必须是整数, 所以n 只能取6. 即样本容量n =6。
课时作业60 随机抽样一、选择题1.在简单随机抽样中,某一个个体被抽到的可能性( ).A .与第几次抽样有关,第一次抽到的可能性最大B .与第几次抽样有关,第一次抽到的可能性最小C .与第几次抽样无关,每一次抽到的可能性相等D .与第几次抽样无关,与抽取几个样本有关2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( ).A .4B .5C .6D .73.一段高速公路有300盏太阳能标志灯,其中进口的有30盏,联合研制的有75盏,国产的有195盏.为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口标志灯的数量为( ).A .2B .3C .5D .134.(2012四川高考)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 ( ).A .101B .808C .1 212D .2 0125.某学院A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取的学生人数为( ).A .30B .40C .50D .606.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( ).A .5B .7C .11D .137.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用简单随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( ).A .不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D .采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同二、填空题8.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取__________人.9.在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的概率为__________.10.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是__________.三、解答题11.(2012天津高考)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.12.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.参考答案一、选择题1.C 解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.2.C 解析:抽取的植物油类种数:1040+10+30+20×20=2, 抽取的果蔬类食品种数:2040+10+30+20×20=4, 故抽取的植物油类与果蔬类食品种数之和是6.3.A 解析:抽取的样本容量与总体中的个体数的比值为20300=115, 所以抽取的样本中,进口的标志灯抽取的数量为30×115=2. 4.B 解析:四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,9612=N 101,解得N =808.故选B .5.B 解析:由题知C 专业有学生1 200-380-420=400(名),那么C 专业应抽取的学生数为120×4001 200=40. 6.B 解析:间隔数k =80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.7.A 解析:由抽样方法的性质知,抽样过程中每个个体被抽到的概率都相等,这个比例只与样本容量和总体有关.二、填空题8.37 20 解析:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20. 9.16 解析:每一个个体被抽到的概率都等于样本容量与总体中个体数的比值,即20120=16. 10.76 解析:由题意知,m =8,k =8,则m +k =16.也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故在第8组中抽取的号码为76.三、解答题11.(1)解:从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①解:在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②解:从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以P (B )=315=15. 12.解:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为2745×5=35×5=3(名).(3)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3),5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”.则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=610=35.。