2014年高考数学-解析几何-
- 格式:doc
- 大小:507.00 KB
- 文档页数:4
2014年全国高考理科数学试题选编十.平面解析几何试题一.选择题和填空题1.全国课标Ⅰ.4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ). AB .3 CD .3m2.全国课标Ⅰ.10.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若4FP FQ =,则|QF |=( ). A .72 B .3 C .52D .2 3.(4课标全国Ⅱ.10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ).ABC .6332D .944.(大纲全国.6)已知椭圆C :2222=1x y a b+(a >b >0)的左、右焦点为F 1,F 2,离心率为3,过F 2的直线l 交C 于A ,B 两点.若△AF 1B的周长为C 的方程为( ).A .22=132x y +B .22=13x y + C .22=1128x y + D .22=1124x y + 5.(大纲全国.9)已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |, 则cos ∠AF 2F 1=( ).A .14 B .13 CD6.(天津.5)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ).A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 7.(福建9)设P ,Q 分别为圆x 2+(y -6)2=2和 椭圆22+110xy =上的点,则P ,Q 两点间的 最大距离是( ).A.BC.D.8.(湖北9)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π=3F PF ∠,则椭圆和双曲线的离心率的倒数之和的最大值为( ). A.3 B.3C .3D .2 9.(广东4)若实数k 满足0<k <9,则曲线22=1259x y k --与曲线22=1259x y k --的( ). A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等10.(江西9)在平面直角坐标系中,A ,B 分别是 x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ). A .4π5 B .3π4 C.(6π- D .5π411. (辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ). A .12 B .23 C .34 D .4312.(山东10)已知a >b >0,椭圆C 1的方程为22221x y a b +=,双曲线C 2的方程为22221x y a b-=,C 1与C 2的离心率之积为2,则C 2的渐近线方程为( ).A.0x = B0y ±= C .x ±2y =0 D .2x ±y =013.(四川10)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则△ABO与△AFO 面积之和的最小值是( ).A .2B .3 C.8D14. (重庆8)设F 1,F 2分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,双曲线上存在一点 P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则 该双曲线的离心率为( ). A .43 B .53 C .94D .3 15.(大纲全国.15)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.(陕西.12)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为__.解析:因为(1,0)关于y=x的对称点为(0,1),所以圆C是以(0,1)为圆心,以1为半径的圆,其方程为x2+(y-1)2=1.17.(全国课标Ⅱ.16)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是__________.18.(湖北12)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=________.19.(重庆13)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=__________.20.(北京.11)设双曲线C经过点(2,2),且与2214yx-=具有相同渐近线,则C的方程为__________;渐近线方程为__________.21.(安徽.14)设F1,F2分别是椭圆E:222=1yxb+(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为__________.22.(江西15)过点M(1,1)作斜率为12-的直线与椭圆C:22221x ya b+=(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于__________.23.(辽宁15)已知椭圆C:22194x y+=,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=__________.24.(湖南15)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则ba=__________.25.(四川14)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|P A|·|PB|的最大值是__________.26.(浙江16)设直线x-3y+m=0(m≠0)与双曲线22221x ya b-=(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|P A|=|PB|,则该双曲线的离心率是__________.二.解答题1.(课标全国Ⅰ.20满分12分)已知点A(0,-2),椭圆E:22221x ya b+=(a>b>0)F是椭圆E的右焦点,直线AF,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.2. (课标全国Ⅱ.20满分12分)设F1,F2分别是椭圆C:22221x ya b+=(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.3. (大纲全国21满分12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且54Q F P Q=.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.4. (陕西20满分13分)如图,曲线C由上半椭圆C1:22221y xa b+=(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.5. (北京19满分14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y =2上,且OA ⊥OB ,试判断直线AB 与 圆x 2+y 2=2的位置关系,并证明你的结论.6. (天津18满分13分)设椭圆2222=1x y a b+(a >b >0)的左、右焦点分别为F,F 2,右顶点为A ,上 顶点为B .已知12AB F .(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切,求直线l 的斜率.7. (安徽19满分13分)如图,已知两条抛物线 E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0), 过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求12S S 的值. 8. (福建19满分13分)已知双曲线E :22221x y a b-= (a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.9. (湖北21满分14分)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程.(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.10. (湖南21满分13分)如图,O 为坐标原点,椭圆C 1:22221x y a b-=(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:22221x ya b-=的左、右焦点分别为F 3,F 4,离心率为e 2.已知122e e =,且241F F =.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值. 11. (浙江21满分15分)如图,设椭圆C :2222=1x ya b+(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直, 证明:点P 到直线l 1的距离的最大值为a -b . 12. (广东20满分14分)已知椭圆C :2222=1x y a b+(a >b >0)的一个焦点为(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.13. (江西20满分13分)如图,已知双曲线C :2221x y a-=(a >0)的右焦点为F ,点A ,B分别在C 的两条渐近线上,AF ⊥x 轴, AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l 1:0021x xy y a -=与直线AF 相交于点M , 与直线32x =相交于点N ,证明:当点P 在C 上移动时,||||MF NF 恒为定值,并求此定值.14. (辽宁20满分12分)圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:22221x y a b-=过点P(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.15. (山东21满分14分)已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形. (1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标; ②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.16. (四川20满分13分)已知椭圆C :22221x y a b+=(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3 上任意一点,过F 作TF 的垂线交椭圆C 于 点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当||||TF PQ 最小时,求点T 的坐标. 17. (重庆21满分12分)如图,设椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1,F 2,点D在椭圆上,DF 1⊥F 1F 2,121||||F F DF =△DF 1F 2.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.十.平面解析几何试题解析一.选择题和填空题1.全国课标Ⅰ.4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ). AB .3 CD .3m解析:由题意,可得双曲线C为22=1 33x ym-,则双曲线的半焦距c.不妨取右焦点),其渐近线方程为y x=,即0x=.所以由点到直线的距离公式得d==故选A.2.全国课标Ⅰ.10.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若4FP FQ=,则|QF|=().A.72B.3 C.52D.2解析:如图,由抛物线的定义知焦点到准线的距离p=|FM|=4.过Q作QH⊥l于H,则|QH|=|QF|.由题意,得△PHQ∽△PMF,则有||||3||||4HQ PQMF PF==,∴|HQ|=3.∴|QF|=3.3.(4课标全国Ⅱ.10)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为().ABC.6332D.94解析:由已知得3,04F⎛⎫⎪⎝⎭,故直线AB的方程为3tan 304y x⎛⎫=︒-⎪⎝⎭,即y x=.设A(x1,y1),B(x2,y2),联立23,y xy x⎧=⎪⎨⎪=⎩①②将①代入②并整理得21733216x x-+=,∴12212x x+=,∴线段|AB|=x1+x2+p=21322+=12.又原点(0,0)到直线AB的距离为38d==.∴1139||122284OABS AB d∆==⨯⨯=.4.(大纲全国.6)已知椭圆C:2222=1x ya b+(a>b>0)的左、右焦点为F1,F2,离心率为3,过F2的直线l交C于A,B两点.若△AF1B的周长为C的方程为().A.22=132x y+B.22=13xy+C.22=1128x y+D.22=1124x y+解析:∵2222=1x ya b+(a>b>0),∴ca=又∵过F2的直线l交椭圆于A,B两点,△AF1B的周长为∴4a=,∴a=∴b=22=132x y+,选A.5.(大纲全国.9)已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=().A.14B.13C.4D.3解析:∵双曲线的离心率为2,∴2ca=,∴a∶b∶c=1 2.又∵121222AF AF aF A F A⎧-=⎪⎨=⎪⎩,,∴|AF 1|=4a ,|AF 2|=2a , ∴|F 1F 2|=2c =4a ,41422161642cos 222212212212212=⨯⨯-+=-+=∠∴a a a a a F F AF AF F F AF F AF 6.(天津.5)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ).A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 解析:由于双曲线焦点在x 轴上,且其中一个焦点在直线y =2x +10上,所以c =5.又因为一条渐近线与l 平行,因此2ba=,可解得a 2=5,b 2=20,故双曲线方程为221520x y -=,故选A .7.(福建9)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆22+110x y =上的点,则P ,Q 两点间的 最大距离是( ).A.BC.D.解析:设Q (x ,y ),则该点到圆心的距离22210(1)691246d y y y y =-+(-)=--+226x y =+(-)=y ∈[-1,1],∴当122293y -=-=-⨯(-)时,max d =∴圆上点P 和椭圆上点Q的距离的最大值为max d r +==故选D.8.(湖北9)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π=3F PF ∠,则椭圆和双曲线的离心率的倒数之和的最大值为( ).ABC .3D .2 解析:设椭圆长半轴为a 1,双曲线实半轴长为a 2,|F 1F 2|=2c .由余弦定理4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|πcos3. 而|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2可得222123=4a a c +.令a 1=2c cos θ,2 a θ,即122cos a a c c θθ+=+=2cos θθ⎛⎫+ ⎪⎝⎭1sin 2θθ⎫+⎪⎪⎝⎭π3θ⎛⎫+ ⎪⎝⎭.,故选A. 9.(广东4)若实数k 满足0<k <9,则曲线22=1259x y k --与曲线22=1259x y k --的( ). A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等解析:因为0<k <9,所以方程22=1259x y k--与22=1259x y k --均表示焦点在x 轴上的双曲线.双曲线22=1x y k --中,其实轴长为10,虚轴长为=22=1259x y k --中,其实轴长为,虚轴长为6,焦距为=.因此两曲线的焦距相等,故选A.10.(江西9)在平面直角坐标系中,A ,B 分别是 x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ). A .4π5 B .3π4 C .(6π- D .5π4解析:由题意可知圆C 的圆心(设其为M )为线段AB的中点,且圆C过原点(0,0),∵圆C与直线2x+y-4=0相切,∴圆C的圆心M到原点(0,0)的距离等于M点到直线2x+y-4=0的距离.由抛物线的定义可知,圆C的圆心M的轨迹是以(0,0)为焦点,2x+y-4=0为准线的抛物线.如图所示.要使圆C面积最小,则需找出圆C半径的最小值.由抛物线和准线的关系可知抛物线的顶点到准线的距离最短,即为(0,0)到直线2x+y-4=0的距离的一半.因此,圆C半径的最小值为min125r==.故圆C面积的最小值为22min4πππ55r⎛=⨯=⎝⎭.11. (辽宁)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为().A.12B.23C.34D.43解析:由题意可知准线方程x=2p-=-2,∴p=4,∴抛物线方程为y2=8x.由已知易得过点A与抛物线y2=8x相切的直线斜率存在,设为k,且k>0,则可得切线方程为y-3=k(x+2).联立方程23=2,=8,y k xy x-(+)⎧⎨⎩消去x得ky2-8y+24+16k=0.(*)由相切得Δ=64-4k(24+16k)=0,解得12k=或k=-2(舍去),代入(*)解得y=8,把y=8代入y2=8x,得x=8,即切点B的坐标为(8,8),又焦点F为(2,0),故直线BF的斜率为43.12.(山东10)已知a>b>0,椭圆C1的方程为22221x ya b+=,双曲线C2的方程为22221x ya b-=,C1与C2C2的渐近线方程为().A.0x=By±=C.x±2y=0 D.2x±y=0解析:由题意,知椭圆C1的离心率1e=,双曲线C2的离心率为2e=因为12e e⋅=,=即2222434a b a ba(-)(+)=,整理可得a=.又双曲线C的渐近线方程为bx±ay=0,所以0bx=,即0x=.13.(四川10)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,2OA OB⋅=(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是().A.2 B.3 C.8D解析:设AB所在直线方程为x=my+t.由2,,x my ty x=+⎧⎨=⎩消去x,得y2-my-t=0.设211(,)A y y,222(,)B y y(不妨令y1>0,y2<0),故2212y y m+=,y1y2=-t.而2212122OA OB y y y y⋅=+=.解得y1y2=-2或y1y2=1(舍去).所以-t=-2,即t=2.所以直线AB过定点M(2,0).而S△ABO=S△AMO+S△BMO=12|OM||y1-y2|=y1-y2,1111111||2248AFOS OF y y y∆=⨯=⨯=,故S△ABO+S△AFO=y1-y2+118y=198y-y2.由121299()388y y y y-=≥+-,得S△ABO+S△AFO的最小值为3,故选B.14. (重庆8)设F 1,F 2分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,双曲线上存在一点 P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则 该双曲线的离心率为( ). A .43 B .53 C .94D .3 解析:根据双曲线的定义||PF 1|-|PF 2||=2a , 可得|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4a 2.而由已知可得|PF 1|2+2|PF 1||PF 2|+|PF 2|2=9b 2, 两式作差可得-4|PF 1||PF 2|=4a 2-9b 2.又|PF 1||PF 2|=94ab ,所以有4a 2+9ab -9b 2=0, 即(4a -3b )(a +3b )=0,得4a =3b , 平方得16a 2=9b 2,即16a 2=9(c 2-a 2),即25a 2=9c 2,22259c a =,所以53e =,故选B.15.(大纲全国.15)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.解析:如图所示,设l 1与圆O :x 2+y 2=2相切于点B ,l与圆O :x 2+y2=2相切于点C,则OB =,OA =AB =∴1tan 2OB AB α===. ∴2122tan 42tan tan 211tan 314BAC ααα⨯∠====--.16.(陕西.12)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为__. 解析:因为(1,0)关于y =x 的对称点为(0,1),所以圆C 是以(0,1)为圆心,以1为半径的圆,其方程为x 2+(y -1)2=1.17.(全国课标Ⅱ.16)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是__________.解析:如图所示,设点A (0,1)关于直线OM 的对称点为P ,则点P 在圆O 上, 且MP 与圆O 相切,而点M 在直线y =1上运动,由圆上存在点N 使∠OMN =45°,则∠OMN ≤∠OMP =∠OMA , ∴∠OMA ≥45°,∴∠AOM ≤45°. 当∠AOM =45°时,x 0=±1.∴结合图象知,当∠AOM ≤45°时,-1≤x 0≤1, ∴x 0的范围为[-1,1].18.(湖北12)直线l 1:y =x +a 和l 2:y =x +b 将单 位圆C :x 2+y 2=1分成长度相等的四段弧, 则a 2+b 2=________.解析:由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,=cos 452=︒=, 所以a =b =1,故a 2+b 2=2.19.(重庆13)已知直线ax +y -2=0与圆心为C 的 圆(x -1)2+(y -a )2=4相交于A ,B 两点, 且△ABC 为等边三角形,则实数a =__________. 解析:由△ABC 为等边三角形可得,C 到AB 的即(1,a )到直线ax +y -2=0的距离d ==a 2-8a +1=0,可求得4a =20.(北京.11)设双曲线C 经过点(2,2),且与2214y x -=具有相同渐近线,则C 的方程 为__________;渐近线方程为__________.解析:双曲线2214y x -=的渐近线方程为 y =±2x .设与双曲线2214y x -=有共同渐近线的方程 为224y x λ-=, 又(2,2)在双曲线上,故2222=4λ-, 解得λ=-3.故所求双曲线方程为2234y x -=-, 即22=1312x y -. 所求双曲线的渐近线方程为y =±2x .21.(安徽.14)设F 1,F 2分别是椭圆E :222=1y x b+(0<b <1)的左、右焦点,过点F 1的直线交椭圆 E 于A ,B 两点,若|AF 1|=3|F 1B |,AF 2⊥x 轴, 则椭圆E 的方程为__________.解析:设B 在x 轴上的射影为B 0,由题意得,011212||||33c B F F F ==,得B 0坐标为5,03c ⎛⎫- ⎪⎝⎭,即B 点横坐标为53c-.设直线AB 的斜率为k ,又直线过点F 1(-c,0),∴直线AB 的方程为y =k (x +c ).由222(),1y k x c y x b =+⎧⎪⎨+=⎪⎩得(k 2+b 2)x 2+2ck 2x +k 2c 2-b 2=0,其两根为53c-和c ,由韦达定理得2222222252,35,3ck c c k b k c b c c k b ⎧--+=⎪⎪+⎨-⎪-⨯=⎪+⎩解之,得213c =, ∴b 2=1-223c =.∴椭圆方程为22312x y +=.22.(江西15)过点M (1,1)作斜率为12-的直线与椭圆C :22221x y a b+=(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率 等于__________.解析:由题意可设A (x 1,y 1),B (x 2,y 2),则可得2211222222221(0),1(0).x y a b a b x y a b a b ⎧+=>>⎪⎪⎨⎪+=>>⎪⎩①②①-②,并整理得1212221212x x y ya y yb x x +-=(+)(-).(*) ∵M 是线段AB 的中点,且过点M (1,1)的直线斜率为12-, ∴x 1+x 2=2,y 1+y 2=2,121212y y k x x -==--.∴(*)式可化为22112a b=, 即a 2=2b 2=2(a 2-c 2),整理得a 2=2c 2,即2212c a =.∴2c e a ==.23.(辽宁15)已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上, 则|AN |+|BN |=__________.解析:如图,设MN 的中点为P ,则由F 1是AM 的中点,可知|AN |=2|PF 1|.同理可得可知|BN |=2|PF 2|. ∴|AN |+|BN |=2(|PF 1|+|PF 2|).根据椭圆定义得|PF 1|+|PF 2|=2a =6, ∴|AN |+|BN |=12.24.(湖南15)如图,正方形ABCD 和正方形 DEFG 的边长分别为a ,b (a <b ),原点O 为 AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=__________.解析:由题意,知,2a C a ⎛⎫-⎪⎝⎭,,2a F b b ⎛⎫+ ⎪⎝⎭.又C ,F 在抛物线y 2=2px (p >0)上,所以222,22(),2a a p ab p b ⎧=⨯⎪⎪⎨⎪=+⎪⎩①②由②÷①,得222b b aa a+=,即b 2-2ba -a 2=0,解得1ba =±负值舍去).故1ba=±25.(四川14)设m ∈R ,过定点A 的动直线 x +my =0和过定点B 的动直线 mx -y -m +3=0交于点P (x ,y ), 则|P A |·|PB |的最大值是__________.解析:由题意可知点A 为(0,0),点B 为(1,3).又∵直线x +my =0的斜率11k m=-,直线mx -y -m +3=0的斜率k 2=m ,∴k 1k 2=-1. ∴两条动直线互相垂直.又∵圆的性质可知,动点P (x ,y )的轨迹是圆,∴圆的直径为AB ==.∴222||||||=522PA PB AB PA PB +⋅≤=. 当且仅当|P A |=|PB |∴|P A |·|PB |的最大值是5.26.(浙江16)设直线x -3y +m =0(m ≠0)与双曲线22221x y a b-=(a >0,b >0)的两条渐近线分 别交于点A ,B .若点P (m,0)满足|P A |=|PB |, 则该双曲线的离心率是__________.解析:由双曲线方程可知,它的渐近线方程为b y x a =与by x a=-,它们分别与x -3y +m =0联立方程组,解得33am bm A a b a b --⎛⎫⎪--⎝⎭,,33am bm B a b a b -⎛⎫ ⎪++⎝⎭,. 由|P A |=|PB |知,可设AB 的中点为Q ,则333322am am bm bm a b a b a b a b Q ---⎛⎫++ ⎪-+-+ ⎪ ⎪⎝⎭,, 由PQ ⊥AB ,得k PQ ·k AB =-1, 解得2a 2=8b 2=8(c 2-a 2),即225=4c a .故c a 二.解答题1.(课标全国Ⅰ.20满分12分)已知点A (0,-2),椭圆E :22221x y a b +=(a >b >0),F 是椭圆E 的右焦点,直线AFO 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.分析:(1)由过A (0,-2),F (c,0)的直线AF 的或过两点的直线斜率公式可求c ,再由c e a ==,可求a ,由b 2=a 2-c 2可求b 2,则椭圆E 的方程可求.(2)由题意知动直线l 的斜率存在,故可设其斜 率为k ,写出直线方程,并与椭圆方程联立, 消去y ,整理成关于x 的一元二次方程, 利用弦长公式求出弦PQ 的长|PQ |,利用点到直线的公式求出点O 到直线PQ 的 距离d ,则由12OPQ S PQ d ∆=⋅, 可将S △OPQ 表示成关于k 的函数,转化为求函数f (k )的最大值问题.注意k 应使得一元二次方程的判别式大于0.解:(1)设F (c,0),由条件知,2c =得c =又2c a =,所以a =2,b 2=a 2-c 2=1. 故E 的方程为2214x y +=. (2)当l ⊥x 轴时不合题意,故设l :y =kx -2, P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入2214x y +=, 得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即234k >时,1,22841k x k ±=+. 从而12241PQ x k =-=+. 又点O 到直线PQ的距离d =,所以△OPQ 的面积S △OPQ =12d PQ ⋅=241k +t =,则t >0,24444OPQ t S t t t∆==++. 因为44t t +≥,当且仅当t =2,即k =时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为2y x =-或2y x =-.2. (课标全国Ⅱ.20满分12分)设F 1,F 2分别是椭圆C :22221x y a b+=(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2, 且|MN |=5|F 1N |,求a ,b .分析:在第(1)问中,根据椭圆中a ,b ,c 的关系及题目给出的条件可知点M 的坐标,从而由斜率条件得出a ,c 的关系,再利用离心率公式可求得离心率,注意离心率的取值范围;在第(2)问中,根据题目条件,O 是F 1F 2的中点,MF 2∥y 轴,可得a ,b 之间的一个关系式,再根据条件|MN |=5|F 1N |,可得|DF 1|与|F 1N |的关系,然后可求出点N 的坐标,代入C 的方程,可得a ,b ,c 的另一关系式,最后利用a ,b ,c 的关系式可求得结论.解:(1)根据c =2,b Mc a⎛⎫ ⎪⎝⎭, 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得12c a =,2ca=- (舍去). 故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故24b a=, 即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |, 设N (x 1,y 1),由题意知y 1<0,则112,22,c x c y (--)=⎧⎨-=⎩即113,21,x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得2229114c a b+=.②将①及c =22941144a a a a(-)+=. 解得a =7,b 2=4a =28,故a =7,b =3. (大纲全国21满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且54Q F P Q =.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 分析:(1)设出Q 点坐标,利用54QF PQ =列出关于p 的方程,借助于p 的几何意义及抛物线的性质确定p .(2)通过题设分析判断直线l 与x 轴不垂直.因直线l 过F (1,0),可设l 的方程为x =my +1(m ≠0). 直线l 与抛物线方程联立,利用韦达定理得到 y 1+y 2,y 1y 2关于m 的表达式,借助弦长公式得12|||AB y y =-(其中A (x 1,y 1),B (x 2,y 2)),同理可得34|||MN y y =-(其中M (x 3,y 3), N (x 4,y 4)).由题目中的A ,M ,B ,N 四点在同一圆上得到关于m 的方程,进而求出m ,得到直线l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得08x p=. 所以8||PQ p =,08||22p p QF x p =+=+.由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2. 所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m , y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),212|||4(1)AB y y m =-=+.又l ′的斜率为-m ,所以l ′的方程为2123x y m m=-++. 将上式代入y 2=4x , 并整理得2244(23)0y y m m+-+=. 设M (x 3,y 3),N (x 4,y 4),则344y y m+=-, y 3y 4=-4(2m 2+3). 故MN 的中点为222223,E m m m ⎛⎫++-⎪⎝⎭,34|||MN y y =-=由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而22211||||||44AB DE MN +=,即2222222242241214(1)22m m m m m m m (+)(+)⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭++, 化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0. 4. (陕西20满分13分)如图,曲线C 由上半椭圆C 1:22221y x a b+=(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2 的公共点为A ,B ,其中C 1(1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程. 分析:在第(1)问中,利用公共点A ,B 是椭圆的两个顶点,可求出b 的值,再结合离心率c e a=的值,以及a 2-c 2=b 2关系式可求得a 的值. 对于第(2)问,结合第(1)问结论,可先设出直线 l 的方程,l 与C 1联立得出P 的坐标,l 与C 2 联立得出Q 的坐标,进而利用AP ⊥AQ ,借助于0AP AQ ⋅=或k AP ·k AQ =-1,可列出关于k 的方程,从而求解得出k 值,故可求得直线方程.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左右顶点. 设C 1的半焦距为c ,由c a =及a 2-c 2=b 2=1 得a =2.∴a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为22+=14y x (y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方 程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得2244P k x k -=+,从而284P ky k -=+,∴点P 的坐标为22248,44k k k k ⎛⎫-- ⎪++⎝⎭. 同理,由2(1)(0),1(0),y k x k y x y =-≠⎧⎨=-+≤⎩得点Q 的坐标为(-k -1,-k 2-2k ). ∴224kAP k =+ (k ,-4), AQ =-k (1,k +2).∵AP ⊥AQ ,∴0AP AQ ⋅=,即222[4(2)]04k k k k --+=+, ∵k ≠0,∴k -4(k +2)=0, 解得83k =-.经检验,83k =-符合题意, 故直线l 的方程为8(1)3y x =--.5. (北京19满分14分)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与 圆x 2+y 2=2的位置关系,并证明你的结论. 分析:(1)先把方程化为标准方程,分别求出 a ,c ,即可求得离心率e ;(2)分别设出A ,B 两点的坐标,先利用OA ⊥OB 求出两点坐标之间的关系,然后根据A ,B 两点横坐标是否相等分类,分别求出原点O 到直线AB 的距离,将其与置关系.解:(1)由题意,椭圆C 的标准方程为22=142x y +. 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c =故椭圆C的离心率2c e a ==. (2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2), 其中x 0≠0.因为OA ⊥OB ,所以0OA OB ⋅=,即tx 0+2y 0=0,解得002yt x =-.当x 0=t 时,202t y =-,代入椭圆C 的方程,得t =故直线AB的方程为x =圆心O 到直线AB的距离d ,此时直线AB与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为0022=y y x t---(x -t ),即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =.又2200+24x y =,00t x =-,故d 此时直线AB 与圆x +y 2=2相切.6. (天津18满分13分)设椭圆2222=1x y a b+(a >b >0)的左、右焦点分别为F,F 2,右顶点为A ,上 顶点为B .已知12AB F .(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切,求直线l 的斜率.分析:(1)由题知A (a,0),B (0,b ),|F 1F 2|=2c ,因此可由已知条件结合b 2=a 2-c 2,求出离心率. (2)由(1)可设出只含一个参数c 的椭圆标准方程,设出P 点坐标.由以PB 为直径的圆过F 1知PF 1⊥BF 1,得P 点坐标关系.由P 点在椭圆上,得P 点坐标另一关系,由此确定P 点坐标.再根据过原点的直线l 与圆相切,列出斜率k 的方程,即可求出k 值.解:(1)设椭圆右焦点F 2的坐标为(c,0).由12||||AB F F ,可得a 2+b 2=3c 2, 又b 2=a 2-c 2,则221=2c a .所以椭圆的离心率e =.(2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为2222=12x y c c+.设P (x 0,y 0).由F 1(-c,0),B (0,c ),有100=()F P x c y +,,1=()F B c c , 由已知,有11=0F P F B ⋅,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0. ①又因为点P 在椭圆上,故220022=12x y c c+. ② 由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043x c =-,代入①得0=3c y ,即点P 的坐标为433c c ⎛⎫- ⎪⎝⎭,.设圆的圆心为T (x 1,y 1),则1423==23c x c -+-,12323c cy c +==,进而圆的半径 r ==.设直线l 的斜率为k ,依题意,直线l 的 方程为y =kx . 由lr ,3, 整理得k 2-8k +1=0,解得4k =所以,直线l 的斜率为4或47. (安徽19满分13分)如图,已知两条抛物线 E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0), 过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求12S S 的值. 分析:(1)先将直线l 1,l 2的方程设出来,再分别与抛物线y 2=2p 1x 和y 2=2p 2x 联立求出A 1与A 2的坐标,同理再求得B 1,B 2的坐标,利用向量这一工具,把11A B 与22A B 的坐标求出,由向量共线(平行)条件知A 1B 1∥A 2B 2. (2)由(1)中的结论,得出B 1C 1∥B 2C 2,C 1A 1∥C 2A 2,进而得出△A 1B 1C 1∽△A 2B 2C 2,以及△A 1B 1C 1与△A 2B 2C 2的相似比,再由相似三角形的面积比等于相似比的平方从而求解.(1)证明:设直线l 1,l 2的方程分别为 y =k 1x ,y =k 2x (k 1,k 2≠0),则由121,2,y k x y p x =⎧⎨=⎩得11121122,p p A k k ⎛⎫ ⎪⎝⎭,由122,2,y k x y p x =⎧⎨=⎩得22221122,p p A k k ⎛⎫ ⎪⎝⎭.同理可得11122222,p p B k k ⎛⎫⎪⎝⎭,22222222,p p B k k ⎛⎫ ⎪⎝⎭.所以111112122222121212122221111,2,p p p p A B p k k k k k k k k ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭.222222222222121212122221111,2,p p p p A B p k k k k k k k k ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭.故111222p A B A B p =, 所以A 1B 1∥A 2B 2. (2)解:由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2.所以△A 1B 1C 1∽△A 2B 2C 2. 因此2111222||||S A B S A B ⎛⎫= ⎪⎝⎭. 又由(1)中的111222p A B A B p =知111222||||A B p p A B =. 故211222S p S p =. 8. (福建19满分13分)已知双曲线E :22221x y a b-= (a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.分析:在第(1)问中,已知渐近线方程,即a 与b 的关系,再结合双曲线本身a ,b ,c 的关系及离心率ce a=,便可求得离心率. (2)首先根据渐近线方程设双曲线方程,然后根据动直线l 的斜率是否存在进行分类讨论.显然斜率不存在时,由直线l 和双曲线有且只有一个公共点可知其方程为x =a ,此时只需检验△OAB 的面积是否为8即可;当直线l 的斜率存在时,设其方程为y =kx +m ,首先由△OAB 的面积为8求出k ,m 的关系式,然后根据直线和圆锥曲线有且只有一个公共点,利用判别式的符号判断其存在性.解法一:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x , 所以2ba=, 所以2=,故c =,从而双曲线E 的离心率ce a==. (2)由(1)知,双曲线E 的方程为222214x y a a -=.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a ,又因为△OAB 的面积为8,所以1||||82OC AB ⋅=,因此1482a a ⋅=,解得a =2, 此时双曲线E 的方程为221416x y -=. 若存在满足条件的双曲线E ,则E 的方程只能为221416x y -=.以下证明:当直线l 不与x 轴垂直时,双曲线E :221416x y -=也满足条件. 设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则,0m C k ⎛⎫-⎪⎝⎭.记A (x 1,y 1),B (x 2,y 2). 由,2y kx m y x =+⎧⎨=⎩得122m y k =-,同理得222my k=+,由S △OAB =12|OC |·|y 1-y 2|得,1228222m m m k k k-⋅-=-+,即m 2=4|4-k 2|=4(k 2-4).由22,1416y kx m x y =+⎧⎪⎨-=⎪⎩得,(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16),又因为m 2=4(k 2-4), 所以Δ=0,即l 与双曲线E 有且只有一个公共点. 因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为221416x y -=. 解法二:(1)同解法一.(2)由(1)知,双曲线E 的方程为222214x y a a -=. 设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2).依题意得1122m -<<. 由,2y my t y x=+⎧⎨=⎩得1212t y m =-,同理得2212ty m-=+.设直线l 与x 轴相交于点C ,则C (t,0).由S △OAB =12|OC |·|y 1-y 2|=8, 得122||821212t t t m m⋅+=-+, 所以t 2=4|1-4m 2|=4(1-4m 2).由2222,14x my t x y a a=+⎧⎪⎨-=⎪⎩得, (4m 2-1)y 2+8mty +4(t 2-a 2)=0.因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0, 即4m 2a 2+t 2-a 2=0,即4m 2a 2+4(1-4m 2)-a 2=0, 即(1-4m 2)(a 2-4)=0, 所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为221416x y -=. 解法三:(1)同解法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程 为y =kx +m ,A (x 1,y 1),B (x 2,y 2). 依题意得k >2或k <-2.由22,40y kx m x y =+⎧⎨-=⎩得, (4-k 2)x 2-2kmx -m 2=0,因为4-k 2<0,Δ>0,所以21224m x x k -=-,又因为△OAB 的面积为8,所以12|OA |·|OB |·sin ∠AOB =8, 又易知4sin 5AOB ∠=,8=, 化简得x 1x 2=4.所以2244m k-=-,即m 2=4(k 2-4). 由(1)得双曲线E 的方程为222214x y a a -=, 由2222,14y kx m x y a a=+⎧⎪⎨-=⎪⎩得, (4-k 2)x 2-2kmx -m 2-4a 2=0,因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0,。
专题六解析几何考前必记的数学概念、公式在下面13个小题中,有3个表述不正确,请在题后用“√"或“×”判定,并改正过来.1.直线的斜率公式k=错误!(x1≠x2);点P0(x0,y0)到直线l:Ax +By+C=0的距离公式d=错误!。
( )2.直线的点斜式方程y-y0=k(x-x0),表示直线过点P(x0,y0),且斜率为k,不包括y轴和平行于y轴的直线.( )3.直线在坐标轴上的“截距”不是“距离",截距可正,可负,也可为0.()4.直线的截距式方程xa+yb=1(ab≠0)不包括坐标轴,平行于坐标轴和过原点的直线;若一条直线在两坐标轴上的截距相等,则方程可设为错误!+错误!=1。
()5.圆(x-a)2+(y-b)2=r2(r>0)的圆心为(a,b),半径为r;二元二次方程x2+y2+Dx+Ey+F=0表示圆的一般方程的充要条件是D2+E2-4F>0。
()6.直线与圆相交时,圆的半径、半弦长、弦心距构成直角三角形,且直线被圆截得的弦长l=2错误!。
()7.两圆相交时,公共弦所在直线方程可由两圆方程相减消去二次项得到;xx0+y0y=r2表示过圆x2+y2=r2上一点(x0,y0)的切线.( )8.平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆.若焦点在x轴上,其标准方程为错误!+错误!=1(a〉b>0);若焦点在y轴上,其标准方程为错误!+错误!=1(a>b>0).()9.平面内满足|PF1|-|PF2|=2a(0<2a≤|F1F2|)的点P的轨迹是双曲线.若焦点在x轴上,其方程是错误!-错误!=1(a〉0,b>0);若焦点在y轴上,其方程是错误!-错误!=1(a〉0,b〉0).( ) 10.双曲线错误!-错误!=1(a>0,b>0)的渐近线方程为y=±错误!x,且焦点到渐近线的距离等于b.( )11.在椭圆与双曲线的标准方程中,离心率e=错误!,且a,b,c满足c2=a2+b2.( )12.焦点在x轴的正半轴上的抛物线方程为y2=2px(p>0),其焦点为F(错误!,0),准线方程x=-错误!.()13.过抛物线y2=2px(p〉0)焦点F的直线l交抛物线于C(x1,y1),D(x2,y2),则(1)焦半径|CF|=x1+p2;(2)弦长|CD|=x1+x2+p;(3)x1x2=错误!,y1y2=-p2。
2014年全国高考试卷解析几何部分汇编(下)1. (2014理10)已知0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离,则2C 的渐近线方程为( ) A.0x ±= B0y ±= C .20x y ±= D .20x y ±=【解析】 A2. (2014理21)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF△为正三角形. ⑴求C 的方程;⑵若直线1l l ∥,且1l 和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标;②ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【解析】 ⑴当A 的横坐标为3时,过A 作AG x ⊥轴于G ,3pAF =+32pFD AF ∴==+AFD △为等边三角形13224pFG FD ∴==+又32pFG =-33242p p∴+=-,2p ∴=,2:4C y x ∴= ⑵(ⅰ)设11()A x y ,,11FD AF x ==+ ()120D x ∴+,,12AB y k ∴=-1//AB l l ,1112l k y ∴=-又1l 与C 相切,设切点()E E E x y ,, 214x y =,12x y '=,1122E y y -∴=,14E y y ∴=- 22111444E x y y ⎛⎫=-= ⎪⎝⎭,211211444y E A y y y ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,,, 1211121214:444AEy y y l y y x y y +⎛⎫∴-=- ⎪⎝⎭-即()121414y y x y =--恒过点()10,∴直线AE 过定点()10,.(ⅱ)2111:24AB y y l y y x ⎛⎫-=-- ⎪⎝⎭,即21122244y x y y y x ⎧=-++⎪⎨⎪=⎩,得()2211880y y y y +-+= 1218y y y +=-,2118y y y ∴=--12118+AB y y y y =-= 点E 到AB的距离d =32311121111184222222162242y y S AB d y y y y ∴=⋅=+++=+⨯=≥,当且仅当12y =±时,“=”成立.3. (2014文14)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x轴所得弦的长为,则圆C 的标准方程为.【解析】 ()()22214x y -+-= 4. (2014文15)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为.【解析】 y x =±由已知得2p b ==,抛物线准线与双曲线的一个交点坐标为2p c ⎛⎫- ⎪⎝⎭,,即()c b -,代入双曲线方程为22221c b a b -=得222c a=,1b a ∴=∴渐近线方程为y x =±.故答案为y x =±.5. (2014文21)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>,直线y x =被椭圆C⑴求椭圆C 的方程;⑵过原点的直线与椭圆C 交于A B ,两点(A B ,不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值; ②求OMN ∆面积的最大值.【解析】⑴c e a ==,设2c a n ==,,则b n =,椭圆方程为2224x y n +=设y x =与椭圆在第一象限的交点为()00x y ,则00x y =000x y ⎧=⎪⎪=∴⎨⎪=⎪⎩将代入椭圆得1n =,2214x y ∴+=⑵方法一:(ⅰ)设AB l :y kx =2244y kx A B x y =⎛⎫⎛⎫⎧⇒⎨+=⎩, AD l:2211k y x y x k k +⎛⎫=-⇒=- ⎝2222222442242482402114x y k k k k x k k k k y x k ⎧+=⎛⎫++ ⎪⎪+⎪⎝⎭⇒++-=+⎨+⎪=--⎪⎩222216164D D k x k +=⇒=+3D y =3124kk -∴==+BD l:4k y x ⎛⎫-=⎝ 令0y=0m x M ⎛⎫⇒=⇒⎪⎭22k k ∴==-121122k k λ∴=-∴=-,(ⅱ)0⎛⎫⎪⎭,对BD l:4k y x ⎛⎫=- ⎝ 令0x =得3N k y319121224OMNkSkk∴==⨯+△14kk+≥4当且仅当12k=±时取等号[]max919248OMNS∴=⨯=△方法二:(ⅰ)设()()1122B x y D x y,,,则()11A x y--,1212ADy ykx x+=+221122221414xyxy⎧+=⎪⎪⎨⎪+=⎪⎩()()()()121212124x x x xy y y y+-++-=即1212121214y y y yx x x x-+⋅=--+114ADk k∴⋅=-又AB AD⊥1AB ADk k∴⋅=-14ABk k∴=()111:BDl y y k x x-=-令0y=,111yx xk=-+令0x=,111y y k x=-()11111100yM x N y k xk⎛⎫∴-+-⎪⎝⎭,,,111211111111211222ABAByy x kk ky ykxkk x k====--⋅--⋅1212k k∴=-12λ∴=-(ⅱ)()11111112OMNyS x y k xk⎛⎫=-+-⎪⎝⎭△1114ykx=11999888 OMNS x y∴===△[]max 98OMN S ∴=△当且仅当1x ==”成立.6. (2014理12)若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为_________________.【解析】 22(1)1x y +-=根据题意得点(10),关于直线y x =对称的点(01),为圆心,又半径1r =,所以圆C 的标准方程为22(1)1x y +-=.7. (2014理20)如图,曲线C 由上半椭圆1C :()2222100y x a b y a b+=>>,≥和部分抛物线2C :()210y x y =-+≤连接而成,1C 与2C 的公共点为A B ,其中1C.⑴求a b ,的值;⑵过点B 的直线l 与12C C ,别交于点P Q ,(均异于点A B ,),若AP AQ ⊥,求直线l 的方程.【解析】 ⑴在12C C ,的方程中,令0y =,可得1b =,且(10)(10)A B -,,,是上半椭圆1C 的 左,右顶点.设1C 的半焦距为c,由c a =及2221a c b -==得2a =. 21a b ∴==,.⑵解法一:由⑴知,上半椭圆1C 的方程为221(0)4y x y +=≥.易知,直线l 与x 轴不重合也不垂直,设其方程(1)(0)y k x k =-≠,代入1C 的方程,整理得2222(4)240k x k x k +-+-=*() 设点P 的坐标为()p p x y ,, 直线l 过点B ,1x ∴=是方程*()的一个根. 由求根公式,得2244p k x k -=+,从而284p k y k -=+,∴点P 的坐标为22248()44k kk k --++,.同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+⎩≤,,得点Q 的坐标为2(12)k k k ----,. 22(4)(12)4kAP k AQ k k k ∴=-=-++,,,.0Ap AQ AP AQ ∴⊥∴⋅=,,即222[4(2)]04k k k k --+=+,04(2)0k k k ∴≠∴-+=,解得83k =-.经检验,83k =-符合题意,故直线l 的方程为8(1)3y x =--.解法二:若设直线l 的方程为1(0)x my m =+≠,比照解法一给分.8. (2014文11)抛物线24y x =的准线方程为____________.【解析】 1x =- 9. (2014文20)已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左右焦点分别为12(0)(0)F c F c -,,,. ⑴求椭圆的方程;⑵若直线1:2l x m =-+与椭圆交于点A B ,,与以12F F 为直径的圆交于C D ,两点,且满足AB CD =求直线l 的方程.【解析】 ⑴由题设知2221,2,b c a b a c ⎧=⎪⎪=⎨⎪⎪=-⎩解得2a =,b =1c =,∴椭圆的方程为22143x y +=.⑵由⑴知,以12F F 为直径的圆的方程为221x y +=, ∴圆心到直线l的距离d =,由1d <得5||2m <.(*)∴||CD ==.设()()1122A x y B x y ,,由2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩ 得22=0x mx m -+ 有212123x x m x x m +==-,AB =由||||AB CD =1=,解得m =,满足(*) ∴直线l的方程为12y x =-+或12y x =-.10. (2014理22)在平面直角坐标系xoy 中,对于直线:0l ax by c ++=和点111(,)P x y ,222(,)P x y记1122()()ax by c ax by c η=++++,若0η<,则称点12,P P 被直线l 分隔。
解析几何综合(一)2014年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2011年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.(一)热点分析1.重视与向量的综合2.考查直线与圆锥曲线的位置关系几率较高3.与数列相综合4.与导数相综合5.重视应用(二)15年高考预测1.难度:解析几何内容是历年来高考数学试题中能够拉开成绩差距的内容之一,该部分试题往往有一定的难度和区分度,预计这一形式仍将在15年的试题中得到体现. 2.命题内容:从今年各地的试题以及前几年的试题来看,解答题所考查的内容基本上是椭圆、双曲线、抛物线交替出现的,所以,今年极有可能考双曲线的解答题.此外,从命题所追求的目标来看,小题所涉及的内容一定会注意到知识的覆盖,兼顾到对能力的要求.3.命题的热点:(1)与其他知识进行综合,在知识网络的交汇处设计试题(如与向量综合,与数列综合、与函数、导数及不等式综合等);(2)直线与圆锥曲线的位置关系,由于该部分内容体现解析几何的基本思想方法——用代数的手段研究几何问题,因此该部分内容一直是考试的热点,相信,在05年的考试中将继续体现;(3)求轨迹方程.(4)应用题.四、二轮复习建议1.根据学生的实际,有针对性地进行复习,提高复习的有效性由于解析几何通常有2-3小题和1大题,约占28分左右,而小题以考查基础为主、解答题的第一问也较容易,因此,对于所有不同类型的学校,都要做好该专题的复习,千万不能认为该部分内容较难而放弃对该部分内容的专题复习,并且根据生源状况有针对性地进行复习,提高复习的有效性.2.重视通性通法,加强解题指导,提高解题能力在二轮复习中,不能仅仅复习概念和性质,还应该以典型的例题和习题(可以选用04年的各地高考试题和近两年的各地高考模拟试题)为载体,在二轮复习中强化各类问题的常规解法,使学生形成解决各种类型问题的操作范式.数学学习是学生自主学习的过程,解题能力只有通过学生的自主探究才能掌握.所以,在二轮复习中,教师的作用是对学生的解题方法进行引导、点拨和点评,只有这样,才能够实施有效复习.3.注意强化思维的严谨性,力求规范解题,尽可能少丢分在解解析几何的大题时,有不少学生常出现因解题不够规范而丢分的现象,因此,要通过平时的讲评对易出现错误的相关步骤作必要的强调,减少或避免无畏的丢分.题型一:直线的倾斜角与斜率、直线的方程 例1.[2014·湖北卷] 设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ),例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b 的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b.(以上两空各只需写出一个符合要求的函数即可)例2.[2014·江西卷] 如图1-7所示,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).图1-7(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x=32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.例3.[2014·四川卷] 已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程.(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C 于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当|TF||PQ|最小时,求点T的坐标.题型二:两直线的位置关系与点到直线的距离例4.[2014·全国卷] 已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=54|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.题型三:直线与圆的关系例5.(1)[2014·安徽卷] 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ |≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R(2)[2014·湖北卷] 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.(3).[2014·山东卷] 已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.(4)[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.例6.[2014·重庆卷] 如图1-4所示,设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,|F1F2||DF1|=22,△DF1F2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条。
2014解析几何部分:一选择题1(2014全国大纲卷)6.已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,离心率为2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为 A .22132x y += B .2213x y += C .221128x y += D .221124x y += 2(全国大纲卷)9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( ) A .14 B .13 CD3(2014课标1)4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为AB .3 CD .3m4(2014课标1)10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 5(2014新课标2)10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.B.C. 6332D. 946(2014辽宁卷)10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .437(2014福建卷)10设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.268(2014广东卷)4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等9(2014四川卷)10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3 CD二填空题1(2014全国大纲卷)15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 .2(2014新课标2)16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.3(2014陕西卷)12若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.4(2014辽宁卷)15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .5(2014广东卷)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__6(2014湖南卷)15.如图4,正方形ABCD 和正方形DEFG 的边长分别为(),a b a b <,原点O 为AD 的中点,抛物线)0(22>=p px y 经过F C ,两点,则_____=ab.7(2014四川卷)14设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是____________8(2014上海卷)3若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.9(2014上海卷)14.已知曲线C:x =l :x=6。
2014年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)一、选择题:1. (2014安徽文)过点P (_.、.3,1)的直线I 与圆 是( x 2 • y 2 =1有公共点,则直线I 的倾斜角的取值范围 /兀, (o ,] 3 易知直线I 的斜率存在, _ JI . H , C. [0, —] D. [0,—] 6 3 A.(0,] 6 6. D 所以可设 I : y + 1 = k (x +"..;3),即 kx — y +±j 3k — 1 = 0. 因为直线I 圆x 2 + y 2= 1有公共点,所以圆心(0, 0)到 直线I 的距离 巒一胆1, 即卩k 2—0,寸1 + k 解得0W k < 3, 故直线I 的倾斜角的取值范围是 B. [解析],已考点:1.直线的倾斜角;2•直线与圆的相交问题2 22. (2014北京文)已知圆C: x-3 • y -4 1和两点 存在点P ,使得.APB 二90,则m 的最大值为( A. 7 B. 6 C. 5 D. 4 【答案】B 【解析】由图可知当圆 C 上存在点P 使/APB=90°, 即圆C 与以AB 为直径的圆有公共点, 二 m —1 乞 32 42 三 m 1 , 解之得4乞m 空6. .. 23. (2014 福建文)已知直线I 过圆x 2 是 ( ) A.x y -2 = 0 B.x -y 2=0 【答案】D2 ■ y -3 4的圆心, 【解析】由已知得$圆心芮〔Q3), 、—-#-1)4 A —m,0 , B m,0 ] [ m 0,若圆 C 上 ) 且与直线 x y ^0垂直,则I 的方程C.x y -3 = 0D.x -y 3=0 所求直线的为-1,所求直线方程为X-J/ + 3-0 ,选D. 4.(2014福建文)在平面直角坐标系中,两点 P (x,, y , ),F2(x 2,y 2 )间的“ L-距离”定义为 RF 2 = x , —x 2% - y 2 •则平面内与x 轴上两个不同的定点 R, F 2的“ L-距离”之和等于定值(大 [来源:Z&xx&]D于IRF Q I)的点的轨迹可以是【答案】卫【解析】不躺设吗(—10,尽(1』),户(扎刈冥数平面内符合条件的点,网有|盂+1|+|护汁|誥"汁|护|=勿,y = a-1 > 0t J -时・ y=]-a ; l 时* x + y-a - 0i、八0 k >0— 22 — 22— —5 (2014 湖南文)若圆 C i :x y =1 与圆 C 2 :x • y -6x-8y • m = O 外切,则 m=()A.21B. 1 9C. 9D.-11【答第】c 【解析】因为* +F+叭=Q = f ■汀+<v- J - 25 -附,所以 U 昭> 0 => w? <戸且圆U :的副>沏*1:半径为忙则Ji —冷-or =i+*G-T?=> ^ = 9 选U6. (2014江西理)在平面直角坐标系中, A,B 分别是x 轴和y 轴上的动点,若以 AB 为直径的圆C 与 直线2x • y -4 =0相切,则圆C 面积的最小值为()3 厂5 B. — : C. (6 -2 5)二 D.二44A4原点O 到直线2x • y -4 =0的距离为d ,贝V d ——,点C 到直线2x • y - 4 = 0的距离 <5 是圆的半径r ,由题意知C 是AB 的中点,又以斜边为直径的圆过三个顶点,则在直角:AOB 中三d 2角形中,圆C 过原点O,即|OC=r ,圆C 的轨迹为抛物线,O 为焦点,1为准线,所以张=?=勇,2 .Sm — §,所以选A 。
平面解析几何必修2 第2章 平面解析几何初步§2.1直线与方程考纲要求:①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判断这两条直线平行或垂直.④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两直线的交点坐标.⑥掌握两点间的距离公式,点到直线的距离公式,会求两条平行直线间的距离.§2.1.1 直线的斜率重难点:对直线的倾斜角、斜率的概念的理解能牢记过两点的斜率公式并掌握斜率公式的推导.经典例题:已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA 的斜率, 并判断它们的倾斜角是钝角还是锐角.当堂练习:1.过点(3, 0)和点(4,3)的斜率是( )A .3B .-3C .33D . -332.过点(3, 0)和点(0, 3)的倾斜角是( )A .045B .-045C .0135D .- 01353.过点P(-2, m)和Q(m, 4)的直线斜率等于1,那么m 的值等于 ( )A .1或3B .4C .1D .1或44.在直角坐标系中,直线y= -3x+1的倾斜角为( )A .0120B .-030C .060D .- 0605.过点(-3, 0)和点(-4,3)的倾斜角是( )A .030B .0150C .060D .01206.如图,直线l1、l2、l3的斜率分别是k1、k2、k3,则有( )A .k1<k2<k3B .k3<k1<k2C .k3<k2<k1D .k1<k3<k27.若两直线a,b 的倾斜角分别为21αα,,则下列四个命题中正确的是( )A . 若21αα<, 则两直线斜率k1< k2B . 若21αα=, 则两直线斜率k1= k2C .若两直线斜率k1< k2, 则21αα<D .若两直线斜率k1= k2, 则21αα=8.下列命题:(1)若点P (x1,y1),Q (x2,y2), 则直线PQ 的斜率为1212x x y y k --=; (2)任意一条直线都存在唯一的倾斜角,但不一定都存在斜率;(3)直线的斜率k 与倾斜角α之间满足αtan =k ;(4)与x 轴平行或重合的直线的倾斜角为00.以上正确的命题个数是( )A .0个B . 1个C . 2个D .3个9.若直线1x =的倾斜角为α,则α( )A .等于0B .等于4πC .等于2πD .不存在10.已知θ∈R ,则直线sin 10x θ-+=的倾斜角的取值范围是( )A .[0°,30°]B .[)150,180 C .[0°,30°]∪[)150,180 D .[30°,150°] 11.设()f x 为奇函数,且在(),0-∞内是减函数。
2014年解析几何高考题选讲1. (北京卷)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.42、(四川卷)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A、 B、 C、 D、3(福建卷)已知圆()()22:1C x a y b -+-=,设平面区域70,30,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为 ( ).5.29.37.49A B C D4.(江西卷)过双曲线12222=-by a x C :的右定点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A ,则双曲线C 的方程为( )A.112422=-y x B.19722=-y x B. C.18822=-y x D.141222=-y x5. (上海卷)已知曲线C :x =l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为6. (辽宁卷)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .7. (江西卷)设椭圆()01:2222>>=+b a b y a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.8.(湖北卷)已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b = ; (Ⅱ)λ= .9. (北京卷)已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.10.(江西卷)如图,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.11.(陕西卷)已知椭圆22221(0)x y a b a b +=>>经过点,离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (1)求椭圆的方程;(2)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D两点,且满足||||4AB CD =,求直线l 的方程. x12.(大纲卷)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.2014年解析几何高考题选讲答案1.B2.B3.C4.A5. [2,3]8. (Ⅰ)12-;(Ⅱ)129. 解:(I )由题意,椭圆C 的标准方程为22142x y +=, 所以224,2a b ==,从而2222c a b =-=、内部 ,因此2,a c ==,故椭圆C 的离心率 .(II )设点A ,B 的坐标分别为00(,2),(,)t x y ,其中00x ≠, 因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得002y t x =-,又220024x y +=, 所以22200||()(2)AB x t y =-+-=2200002()(2)y x y x ++-=2220002044y x y x +++ =2220002042(4)42x x x x --+++=2200284(04)2x x x ++<≤, 因为22002084(04)2x x x +≥<≤,且当204x =时间等号成立,所以2||8AB ≥,故线段AB长度的最小值为10.(1)解:依题意可设AB 方程为2y kx =+,代入24x y =,得24(2)x kx =+,即2480x kx --=.设1122(,),(,)A x y B x y ,则有:128x x =-,直线AO 的方程为11y y x x =;BD 的方程为2x x =;解得交点D 的坐标为1221(,)y x x x ,注意到128x x =-及2114x y =,则有212121211244y x x x x x y x x ====-,因此D 点在定直线2(0)y x =-≠上.(2)依题设,切线l 的斜率存在且不等于零,设切线l 的方程为(0)y ax b a =+≠,代入24x y =得24()x ax b =+,即2440x ax b --=,由0∆=得2(4)160a b +=,化简整理得2b a =-,故切线l 的方程可写为2y ax a =-,分别令2,2y y ==-得12,N N 的坐标为1222(,2),(,2)N a N a a a +-+-,则222222122()4()8MN MN a a a a -=-+-+=,即2221MN MN -为定值8.11. (1)由题意可得312222b c a b a c ⎧=⎪⎪=⎨⎪⎪=⎩—xyF 2F 1DCBA O解得2,3,1a b c ===∴椭圆的方程为22143x y += (2)由题意可得以12F F 为直径的圆的方程为221x y +=∴圆心到直线l 的距离为5d =由1d <15<,可得5||m <22242||21215455m CD d m ∴=-=-=-设1122(,),(,)A x y B x y联立2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩ 整理得2230x mx m -+-=由求根公式可得:12x x m +=,2123x x m =-||AB ∴==||||4AB CD =1=解方程得3m =±,且满足||2m < ∴直线l的方程为123y x =-+或123y x =--12.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2.所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),2124(1)AB y y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+. 故MN的中点为E(23422223,),m MN y m m ++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.。
2014年全国各地高考试题分类汇编(文数)解析几何(解答题)(2014安徽文数)21.(本小题满分13分)设1F ,2F 分别是椭圆E :22221x ya b+=(0)a b >>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,113AF F B =.(1)若2||4,AB ABF =△的周长为16,求2AF ; (2)若23cos 5AF B ∠=,求椭圆E 的离心率. 解:(1)由113AF F B =,4AB =,得13AF =,11F B =.因为2ABF △的周长为16, 所以由椭圆定义可得416a =,1228AF AF a +==.故212835AF a AF =-=-=.(2)设1F B k =,则0k >且13AF k =,4AB k =.由椭圆定义可得223AF a k =-,22BF a k =-.在2ABF △中,由余弦定理可得222222222cos AB AF BF AF BF AF B =+-∠, 即()()()()()222642322325k a k a k a k a k =-+----.化简可得()()30a k a k +-=,而0a k +>, 故3a k =.于是有213AF k AF ==,25BF k =.因此22222BF F A AB =+,可得12F A F A ⊥,1AF F △为等腰直角三角形.从而2c a =,所以椭圆的离心率2c e a ==. (2014北京文数)19.(本小题满分14分)已知椭圆C :2224x y +=.(1)求椭圆C 的离心率; (2)设O 为原点,若点A 在直线2y =上,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.解:(1)由题意知,椭圆C 的标准方程为22142x y +=.所以24a =,22b =,从而2222c a b =-=.因此2a =,c =C的离心率2c e a ==. (2)直线AB 与圆222x y +=相切.证明如下:设点,A B 的坐标分别为()00,x y ,(),2t ,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅=uu r uu u r ,即0020tx y +=,解得002yt x =-.当0x t =时,202t y =-,代入椭圆C的方程,得t =AB的方程为x =圆心O 到直线AB的距离d =AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为()0022y y x t x t--=--,即()()0000220y x x t y x ty ---+-=. 圆心O 到直线AB 的距离d =.又220024x y +=,02y t x =-,故d ===AB 与圆222x y +=相切.(2015大纲文数)22.(本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 解:(1)设()0,4Q x ,代入22y px =得08x p =.所以8PQ P =,0822p p QF x p=+=+.由题设得85824p p p+=+,解得2p =-(舍去)或2p =.所以C 的方程为24y x =. (2)依题意知l 与坐标轴不垂直,故可设l 的方程为()10x my m =+≠.代入24y x =得2440y my --=.设()11,A x y ,()22,B x y ,则124y y m +=,124y y =-.故AB 的中点为()221,2D mm +,()21241AB y y m =-=+.又l '的斜率为m -,所以l '的方程为2123x y m m=-++. 将上式代入24y x =,并整理得()2244230y y m m+-+=.设()33,M x y ,()44,N x y , 则344y y m +=-,()234423y y m ⋅=-+.故MN 的中点为222223,E m mm ⎛⎫++- ⎪⎝⎭,(234241m MN y m+=-=.由于MN 垂直平分AB , 故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而2221144AB DE MN +=, 即()()()2222222244121224122m m m m m m m++⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.化简得210m -=,解得1m =或1m =-.所求直线l 的方程为10x y --=或10x y +-=.(2014福建文数)21.(本小题满分12分)已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y=分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论. 解:(1)解法一:设(),S x y 为曲线Γ上任意一点,依题意, 点S 到()0,1F 的距离与它到直线1y =-的距离相等,所以曲线Γ是以点()0,1F 为焦点,直线1y =-为准线的抛物线, 所以曲线Γ的方程为24x y =.解法二:设(),S x y 为曲线Γ上任意一点,则()32y --,依题意,点(),S x y 只能在直线3y =-的上方,所以3y >-1y =+,化简得,曲线Γ的方程为24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下: 由(1)知抛物线Γ的方程为214y x =,设()()000,0P x y x ≠,则20014y x =,由12y x '=,得切线l 的斜率0012x x k y x ='==,所以切线l 的方程为()00012y y x x x -=-,即2001124y x x x =-. 由20011240y x x x y ⎧=-⎪⎨⎪=⎩得01,02A x ⎛⎫⎪⎝⎭.由20011243y x x x y ⎧=-⎪⎨⎪=⎩得0016,32M x x ⎛⎫+ ⎪⎝⎭.又()0,3N ,所以圆心0013,34C x x ⎛⎫+ ⎪⎝⎭,半径0011324r MN x x ==+,AB所以点P 在曲线Γ上运动是,线段AB 的长度不变.(2014广东文数)20.(本小题满分14分)已知椭圆()2222:10x y C a b a b+=>>的一个焦点为),离心率(1)求椭圆C 的标准方程; (2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P的轨迹方程.解:(1)由题意知c =c e a ==,所以3a =,2224b a c =-=,故椭圆C 的标准方程为22194x y +=.(2)当过P 点的两条切线的斜率均存在时,不妨设为12,k k ,则过P 点的切线方程可设为()0000y y k x x y kx y kx -=-⇒=+-,由0022194y kx y kx x y =+-⎧⎪⎨+=⎪⎩消去y , 有()()()222000094189360k x y kx kx y kx ++-+--=,()()()222200009944y kx k k y kx ∆⎡⎤=--+--=0⎣⎦,整理得()22200009240x k x y k y --+-=,所以()2012020439y k k x x -=≠±-,由已知得121k k =-,所以22419y x -=--,所以220013x y +=,即此时点P 的轨迹方程为220013x y +=.当两条切线中有一条垂直于x 轴时,此时P 点坐标为()3,2±±,也满足方程()22000133x y x +=≠±.综上所述,所求P 点的轨迹方程为220013x y +=. (2014湖北文数)22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围. 解:(I )设点(),Mx y ,依题意得1MFx =+1x +,化简整理得()221y x =+.故点M 的轨迹C 的方程为24, 0,0, 0.x x y x ⎧=⎨<⎩…(II )在点M 的轨迹C 中,记1C :24yx =,2C :()00y x =<,依题意,可设直线l 的方程为()12y k x -=+.由方程组()2124y k x y x-=+⎧⎪⎨=⎪⎩可得()244210ky y k -++=.①(1)当0k =时,此时1y =.把1y =代入轨迹C 的方程,得14x =. 故此时直线l :1y =与轨迹C 恰好有一个公共点1,14⎛⎫⎪⎝⎭. (2)当0k ≠时,方程①的判别式为()21621k k ∆=-+-.② 设直线l 与x 轴的交点为()0,0x ,则由()12y k x -=+,令0y =,得021k xk+=-.③ (i )若00x ∆<⎧⎨<⎩由②③解得1k <-或12k >.即当()1,1,2k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点. (ii )若000x ∆=⎧⎨<⎩或000x ∆>⎧⎨⎩…则由②③解得11,2k ⎧⎫∈-⎨⎬⎩⎭或102k -<….即当11,2k ⎧⎫∈-⎨⎬⎩⎭时,直线l 与1C 只有一个公共点,与2C 有一个公共点. 当1,02k ⎡⎫∈-⎪⎢⎣⎭时,直线l 与1C 有两个公共点,与2C 没有公共点. 故当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点. (iii )若000x ∆>⎧⎨<⎩<则由②③解得112k -<<-或102k <<.即当111,0,22k ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合(1)(2)可知,当(){}1,1,02k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与轨迹C 恰好有一个公共点;当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点;当111,0,22k ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭时,直线l 与轨迹C 恰好有三个公共点.(2014湖南文数)20.(本小题满分13分)如图所示,O 为坐标原点,双曲线221112211:1(00)x y C a b a b -=>>,和椭圆222222222:+1(0)y x C a b a b =>>均过点1P ⎫⎪⎪⎝⎭,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(1)求12C C ,的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且OA OBAB +=?证明你的结论.解:(1)由题意得:2211222241314131a b a b ⎧⎪-=⎪⎪⎨⎪⎪-=⎪⎩①②且222122a a b =-,又()221112222a a ⨯==,得211a =,所以213b =. 2222222241311a b a b +=⎧⎪⎪⎨⎪=+⎪⎩①②,则222214113b b +=+,整理得()2222422222223443133b b b b b b ++=+=+, 化简得42223440b b --=,即()()22223220b b +-=,即222b =,故223a =.1C :2213y x -=;2C :22132x y +=.(2)由OA OBAB OB OA +==-,得OA OB ⊥,因为OA OB ⊥,则在1C 中,点O 到直线AB 的距离为1d ,则22211111112133d a b =-=-=,故2132d =.在3C 中,点O 到AB 的距离为2d ,则22222211165d a b =+=,故2256d =.12d d ≠,故不存在. (2014江西文数)20.(本小题满分13分)如图所示,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)求证:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,求证:2221MN MN -为定值,并求此定值.解:(1)设()11,A x y ,()22,B x y ,:2AB y kx =+.联立方程组224y kx x y=+⎧⎨=⎩,消y 得2480x kx --=,故121248x x k x x +=⎧⎨=-⎩,11OA y k x =,11:yOA y x x =,2:BD x x =,所以2121,x y D x x ⎛⎫ ⎪⎝⎭,又()21212211122x kx x y x kx x x x +==+,128x x -=, 所以21221228x y x kx x x =+-222222444x kx x kx -=-=()2122212244x x x x x x +-===-. 因此动点D 在定直线2y =-上.(2)设抛物线24x y =上任意一点200,4x x ⎛⎫ ⎪⎝⎭处的切线方程为:()200042x xy x x -=-,化简得22000224x x x y x =-+20024x x x =-,200224y x x y x =⎧⎪⎨=-⎪⎩,得20108,22x N x ⎛⎫+ ⎪⎝⎭.200224y x x y x =-⎧⎪⎨=-⎪⎩,得20208,22x N x ⎛⎫-⎪⎝⎭.22201082x MN x ⎛⎫+= ⎪⎝⎭,2220208162x MN x ⎛⎫-=+ ⎪⎝⎭ , 故222222002100881622x x MN MN x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2020321616884x x =-=-=为定值. (2014辽宁文数)20.(本小题满分12分)如图所示,圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P .(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB △的面积为2,求C 的标准方程.解:(1)设切点坐标为()()0000,0,0x y x y >>,则切线斜率为0x y -,切线方程为()0000x y y x x y -=--,即004x x y y +=.此时,两个坐标轴的正半轴与切线围城的三角形面积为000014482S x y x y =⋅⋅=,由22000042x y x y +=…知当且仅当00x y ==00x y 有最大值,即S 有最小值,因此点P的坐标为.(2)设C 的坐标方程为()222210x y a b a b+=>>,点()11,A x y ,()22,B x y .由点P 在C 上知22221a b +=,并由22221x y a b y x ⎧+=⎪⎨⎪=+⎩,得222620b x b ++-=,又1x ,2x是方程的根,因此12212262x x b x x b ⎧+=⎪⎪⎨-⎪=⎪⎩,由11y x =22y x =12AB x =-=.由点P 到直线l及122PAB S AB ==△得429180b b -+=,解得26b =或3,因此26b =,23a =(舍)或23b =,26a =,从而所求C 的方程为22163x y +=.(2014山东文数)21.(本小题满分14分)在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为2,直线y x =被椭圆C截得的线段长为5.(1)求椭圆C 的方程; (2)过原点的直线与椭圆C 交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于,M N 两点.(i )设直线,BD AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值; (ii )求OMN △面积的最大值.解:(1)由题意知2a =,可得224a b =,椭圆C 的方程可简化为2224x y a +=.将y x =代入可得x ==2a =.因此1b =,所以椭圆C 的方程为2214x y +=. (2)(i )设()()1111,0A x y x y ≠,()22,D x y ,则()11,B x y --,因为直线AB 的斜率11AB y k x =,又AB AD ⊥,所以直线AD 的斜率11x k y =-.设直线AD 的方程为y kx m =+,由题意知0k ≠,0m ≠.由2214y kx mx y =+⎧⎪⎨+=⎪⎩可得()222148440k x mkx m +++-=.所以122814mk x x k +=-+,因此()121222214my y k x x m k +=++=+.由题意知12x x ≠-,所以1211121144y y y k x x k x +==-=+.所以直线BD 的方程为()11114y y y x x x +=+.令0y =,得13x x =,即()13,0M x .可得1212y k x =-.所以1212k k =-,即12λ=-.因此存在常数12λ=-使得结论成立.(ii )直线BD 的方程为()11114y y y x x x +=+,令0x =,得134y y =-,即130,4N y ⎛⎫- ⎪⎝⎭.由(i )知()13,0M x ,可得OMN △的面积11111393248S =x y x y ⨯⨯=.因为22111114x x y y +=…,当且仅当112x y ==时等号成立,此时S 取得最大值98,所以OMN △面积的最大值为98. (2014陕西文数)20.(本小题满分13分)已知椭圆()222210x y a b a b+=>>经过点)3,0(,离心率为21,左、右焦点分别为()10F c-,,()20F c ,.(1)求椭圆的方程;(2)若直线1:2l y x m =-+与椭圆交于A ,B 两点,与以12F F 为直径的圆交于,C D两点,且满足AB CD=求直线l 的方程.解:(1)由题设知22212b c a b a c ⎧=⎪⎪=⎨⎪⎪=-⎩,解得2a =,b =1c =,所以椭圆的方程为22143x y +=. (2)由(1)知,以12F F 为直径的圆的方程为221x y +=,所以圆心到直线l的距离d =1d <得m <()*所以CD ===()11,A x y ,()22,B x y ,由2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得2230x mx m -+-=,由根与系数关系可得12x x m +=,2123x x m ⋅=-. 所以AB ==AB CD =1=, 解得3m =±,满足()*.所以直线l 的方程为123y x =-+或123y x =--. (2014四川文数)20.(本小题满分13分)已知椭圆C :()222210x y a b a b+=>>的左焦点为()2,0F -,离心(1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.解:(1)因为(2,0)F -,所以2c =,又e 3=所以a =2222b a c =-=, 即椭圆C 的方程为22162x y +=.(2)如图所示,由题意可设直线PQ 的方程为2x my =-.当0m =时,2x =-,此时()3,0T -,P ,Q 关于点F 对称,但DF TF ≠,故四边形OPTQ 不是平行四边形,与题意不符,故0m ≠.直线TF :()2y m x =-+,令3x =-,得y m =,即()3,T m -,连接OT ,设O TP Q E =,则3,22m E ⎛⎫- ⎪⎝⎭,联立方程222162x my x y =-⎧⎪⎨+=⎪⎩,消去x 整理得()22236my y -+=,即()223420m y my +--=,显然()2216830m m ∆=++>,令()11,P x y ,()22,Q x y .则12243m y y m +=+,12223y y m -=+,则1222232E y y m m y m +===+,解得21m =. 此时PQ ====TF ==.所以四边形OPTQ的面积122S PQ TF =⨯⨯⨯== (2014天津文数)18.(本小题满分13分)设椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,右顶点为A ,上顶点为B.已知12AB F =.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l与该圆相切于点M ,2MF = 解:(1)设椭圆右焦点2F 的坐标为(),0c.由12AB F =,可得2223a b c +=,又222b a c =-, 则2212c a =.所以,椭圆的离心率2e =. (2)由(1)知222a c =,22b c =.故椭圆方程为222212x y c c+=.设()00,P x y .由()1,0F c -,()0,B c ,有()100,F P x c y =+uuu r ,()1,F B c c =uuu r. 由已知,有110F P F B ⋅=uuu r uuu r,即()000x c c y c ++=.又0c ≠,故有000x y c ++=.①因为点P 在椭圆上,故22002212x y c c+=②由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043x c =-,代入①得03cy =,即点P 的坐标为4,33c c ⎛⎫- ⎪⎝⎭.该圆的圆心为()11,T x y ,则1402323c x c -+==-,12323ccy c +==,进而圆的半径3r ==.由已知,有22222TF MF r =+,又2MF =故有22222508339c c c c ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭,解得23c =.所以,所求椭圆的方程为22163x y +=. (2014新课标1文数)20.(本小题满分12分)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积.解:(1)圆C 的方程可化为()22416x y +-=,所以圆心为()0,4C ,半径为4.设(),M x y ,(),4CM x y =-,()2,2MP x y =--.由题设知0CM MP ⋅=,故()()()2420x x y y -+--=,即()()22132x y -+-=由于点P 在圆C 的内部,所以M 的轨迹方程是()()22132x y -+-=.(2)由(1)可知M 的轨迹是以点()1,3NOP OM =,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON PM ⊥.因为ON 的斜率为3,所以l 得斜率为13-,故l 的方程为1833y x =-+.又OM OP ==O 到l,PM =,所以POM △的面积为165.(2014新课标2文数)20.(本小题满分12分)设12,F F 分别是椭圆C :22221x y a b+=()0a b >>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直.直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且15M N FN =,求,a b .解:(1)根据c =2,b M c a ⎛⎫ ⎪⎝⎭,223b ac =.将222b ac =-代入223b ac =,解得12c a =或2c a=-(舍去).故C 的离心率为12.(2)由题意,知原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点()0,2D 是线段1MF 的中点,故24b a=,即24b a =,① 由15MN F N =得112DF F N =.设()11,N x y ,由题意知10y <, 则()11222c x c y ⎧--=⎪⎨-=⎪⎩,即11321x c y ⎧=-⎪⎨⎪=-⎩,代入C 的方程为,得2229114c a b +=.②将①及c =()22941144a a a a-+=.解得7a =,2428b a ==.故7a =,b =. (2014浙江文数)22.已知ABP △的三个顶点都在抛物线2:4C x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =;(1)若3PF =,求点M 的坐标;(2)求ABP △面积的最大值.解:(1)由题意知焦点()0,1F ,准线方程为1y =-.设()00,P x y ,由抛物线定义知01PF y =+,得到02y =,所以()2P或()2P -.由3PF FM =,分别得23M ⎛⎫ ⎪ ⎪⎝⎭或23M ⎫⎪⎪⎝⎭. (2)设直线AB 的方程为y kx m =+,点()11,A x y ,点()22,B x y ,()00,P x y .由2,4y kx m x y=+⎧⎨=⎩得2440x kx m --=,于是216160k m ∆=+>,124x x k +=,124x x m =-,所以AB 的中点M 的坐标为()22,2k k m +.由3PF FM =得()()200,132,21x y k k m --=+-,所以0206,463,x k y k m =-⎧⎪⎨=--⎪⎩由2004x y =得214515k m =-+.由0∆>,20k …,得1433m -<….又因为AB =,点()0,1F 到直线AB的距离为d =,所以48ABP ABF S S m ==-=△△. 记()321435133f m m m m m ⎛⎫=-++-< ⎪⎝⎭….令()291010f m m m '=-+=,解得119m =,21m =.可得()f m 在11,39⎛⎫- ⎪⎝⎭上是增函数,在1,19⎛⎫ ⎪⎝⎭上是减函数,在41,3⎛⎫ ⎪⎝⎭上是增函数.又1256492433f f ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,所以当19m =时,()f m 取到最大值256243,此时k = 所以ABP △面积的最大值为135(2014重庆文数)21.(本小题满分12分)如图所示,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F ,,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F △的面积为2.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程,若不存在,请说明理由.DF 2F 1Oyx解:(1)设()1,0F c -,()2,0F c ,其中222c a b =-.由121F F DF =12DF ==.从而1221121222DF F S DF F F ===△,故1c =.从而12DF =,由112D F FF ⊥得222211292DF DF F F =+=,22DF =.∴122a DF DF =+=,故a =2221b a c =-=.所求椭圆的标准方程为2212x y +=. (2)如图,设圆心在y 轴上的圆C 与椭圆2212x y +=相交,()111,,P x y =,(22,P x =是两个交点,10y >,20y >,11F P ,22F P 是圆C 的切线,且1122F P F P ⊥.由圆和椭圆的对称性,易知21x x =-,12y y =.由(1)知()11,0F -,()21,0F ,所以()11111,F P x y =+,()22111,F P x y =--.再由1122F P F P ⊥得()221110x y -++=由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x =. 当10x =时,1P ,2P 重合,此时题设要求的圆不存在. 当143x =-时,过1P ,2P 分别与11F P ,22F P 垂直的直线的交点即为圆心C . 设()00,C y ,由111CP F P ⊥,得1011111y y y x x -⋅=-+.而11113y x =+=,故053y =.故圆C 的半径11213CP ===2253239x y ⎛⎫+-= ⎪⎝⎭.。
2014高中数学必备知识点怎样解答高考解析几何题
平面解析几何研究的内容是曲线的方程和方程的曲线,其核心是通过坐标系将曲线和方程联系起来,实现二者的双向转化.作为高中知识的主干内容,它在高考中占有重要的位置.主要考查点为:求曲线的轨迹方程,求最值问题,求参数的取值范围,圆锥曲线的切线,定点、定值问题,存在性问题等.
●解题策略
直线与圆锥曲线的综合问题一直是高考考查的热点,其解答的关键是坐标化,难在代数运算和代数推理上,且字母多,难消元,其解答的策略是:
1. 没有图,不妨画个图形,便于直观思考.
2. “建坐标系,设点坐标,列关系式,化简,验证”是求动点轨迹的通法.
3. 消元转化为一元二次方程,判别式、根与系数关系、中点公式、弦长公式等是常常要考虑的.
4. 多多感悟“设、列、解”.设什么?点坐标,曲线方程,角度,线段长;“列”的前提是找关系;“解”就是要转化,要化简,要变形,变形要有目标,要有方向性,有根据,更要简捷、准确.
5. 紧扣题意和曲线的定义,联系图形、坐标与方程之间的关系,数形结合.
●范例选讲
高考数学复习一定要做好基础知识梳理,比如解析几何知识:圆锥曲线的定义;直线和圆的方程;转化标准方程,从标准方程中读出特征量;通过方程联想图形,通过图形联想方程.在大脑里形成自己的知识结构、知识网络,提炼一些解题方法、解题策略,从数学思想方法的高度去理解怎样学会解答解析几何题.“建立坐标系,设点坐标、设曲线方程,列关系,化简求解,反思验证”是常规的具体的解题通道,可以简化为“建,设,列,解,验”五字法,望读者能在自己的解题过程中,多加实践、总结、回味和体验。
2014高考数学 解析几何 李远敬
1(新课标10.)已知抛物线C :2
8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线
PF 与C 的一交点,若4FP FQ =,则||QF =
A .
72 B .5
2
C .3
D .2 2.(湖北9.)已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123
F PF π
∠=,
则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.
433 B.23
3
C.3
D.2 3.(安徽14)设21,F F 分别是椭圆)10(1:22
2
<<=+b b
y x E 的左、右焦点,过点1F 的直线
交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为__________
4.(山东(10))已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为
2222
1x y a b -=,1C 与2C 的离心率之积为3
2
,则2C 的渐近线方程为 (A )20x y ±=(B )20x y ±=(C )20x y ±=(D )20x y ±=
5.(天津6)已知双曲线)0,0(12222>>=-b a b
y a x 的一条渐近线平行于直线,102:+=x y l 双
曲线的一个焦点在直线l 上,则双曲线的方程为( )
A.
120522=-y x B.152022=-y x C.1100325322=-y x D.125
310032
2=-y x
6.(新课标2。
10.)设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 334
B.
938 C. 6332 D. 94
7.(湖北21)(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C.
(1)求轨迹为C 的方程
(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。
8.(湖南21. )(本小题满分13分)
O 为坐标原点,椭圆22
122:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,离心率为
1e ;双曲线22
222:1x y C a b
-=的左、右焦点分别为34,F F ,离心率为2e .已知123,2e e =且
24||3 1.F F =-
(I ) 求12,C C 的方程;
(II )
过1F 作1C 的不垂直于y 轴的弦AB 的中点.当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.
9.(浙江21)(本题满分15分)
设椭圆(),01:22
22>>=+b a b
y a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第
一象限.
(1)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;
(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.
10(山东(21))(本小题满分14分)
已知抛物线2
:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,
ADF ∆为正三角形.
(Ⅰ)求C 的方程;
(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;
(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 11(广东20)(本小题满分14分)
已知椭圆()01:22
22>>=+b a b
y a x C 的一个焦点为
()0,5,离心率为
3
5。
(1)求椭圆C 的标准方程;
(2)若动点()00,y x P 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.
12(天津18、)(本小题满分13分) 设椭圆的左、右焦点分别为
,,右顶点为A ,上顶点为B.已
知
=
.
(1) 求椭圆的离心率;
(2) 设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线
与该圆相切与点M ,=.求椭圆的方程. 13(新课标2。
20 )(本小题满分12分)
设1F ,2F 分别是椭圆()222210y x a b a b
+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,
直线1MF 与C 的另一个交点为N.
(Ⅰ)若直线MN 的斜率为34
,求C 的离心率;
(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .
14(新课标20. )(本小题满分12分) 已知点A (0,-2),椭圆E :22
221(0)
x y a b a b
+=>>的离心率为
32,F 是椭圆的焦点,直线AF 的斜率为23
3
,O 为坐标原点. (Ⅰ)求E 的方程;
(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.
15(大纲11)已知抛物线:C x y 82
=与点)2,2(-M ,过C 的焦点,且斜率为k 的直线与C 交于B A ,两点,若0=⋅MB MA ,则=k
.
A 2
1
.B 22 .C 2 .D 2
16.(天津5)已知双曲线)0,0(122
22>>=-b a b y a x 的两条渐近线与抛物线
)0(22>=p px y 的准线分别交于B A ,两点,O 为坐标原点,若双曲线的离心率为2,
AOB ∆的面积为3,则=p .A 1 .
B 2
3
.C 2 .D 3
17.(山东11)抛物线:1C )0(212
>=
p x p y 的焦点与双曲线:2C 13
22=-y x 的右焦点的连线交2C 于第一象限的点M 。
若1C 在点M 处的切线平行于2C 的一条渐近线,则=p
.
A 163 .
B 83 .
C 332 .
D 3
3
4 18.(江西9)过点)0,2(引直线l 与曲线21x y -=相交于B A ,两点,O 为坐标原点,当AOB ∆的面积取最大值时,直线l 的斜率等于
.
A 33 .
B 33- .
C 3
3± .D 3- 19.(江西14)抛物线)0(22
>=p py x 的焦点为F ,其准线与双曲线1332
2=-y x 相交于B A ,两点,若ABF ∆为等边三角形,则=p 。
20.(大纲8)椭圆:C 13
42
2=+y x 的左、右顶点分别为21,A A ,点P 在C 上且直线2PA 斜率的取值范围是]1,2[--,那么直线1PA 斜率的取值范围是
.A ]43,21[ .B ]4
3
,83[ .C ]1,21[ .D ]1,43[。