18全功率带宽(FPBW)
- 格式:doc
- 大小:161.50 KB
- 文档页数:4
运放带宽相关知识!一、单位增益带宽GB单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
二、运放的带宽是表示运放能够处理交流信号的能力(转)对于小信号,一般用单位增益带宽表示。
单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。
例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。
对于大信号的带宽,既功率带宽,需要根据转换速度来计算。
对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。
1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。
2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。
3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。
就是Gain Bandwidth=放大倍数*信号频率。
当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。
在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。
也就是在设计电路时要同时满足增益带宽和功率带宽。
运放关于带宽和增益的主要指标以及定义开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。
加入我们高速模数转换器精度透视作者:Rob Reeder ,ADI 公司模数转换器(亦称为ADC )广泛用于各种应用中,尤其是需要处理模拟传感器信号的测量系统,比如测量压力、流量、速度和温度的数据采集系统(仅举数例)。
一般而言,这些信号属于时域签名,以脉冲或阶跃函数的形式出现。
在任何设计中,理解这些类型应用的总系统精度始终都是非常重要的,尤其是那些需要对波形中极小的灵敏度和变化进行量化的系统。
理想情况下,施加于信号链输入端的每一个伏特都由ADC 以数字表示一个伏特的输出。
但是,事实并非如此。
所有转换器和信号链都存在与此相关的有限数量误差。
本文描述与模数转换器本身相关的误差。
本文还将揭示转换器内部的不精确性累积到何种程度即会导致这些误差。
定义新设计的系统参数时,若测量精度极为重要,那么这些内容对于理解如何正确指定一个ADC 有着重要作用。
最后,本文将讨论一个简单的误差分析,帮助为设计选择正确的转换器。
ADC 的不精确性无论何种信号链,转换器都是系统的基本要素。
为设计选择的任何ADC 都会决定系统的总精度。
换言之,系统精度不可能高于转换器的最低有效位(LSB )大小。
为了表明这一点,让我们来看一个简短的ADC 不精确性指南。
首先,注意到由于ADC 不是理想的,并且分辨率有限,因此它们在输出端只能显示有限数量的信息表示。
表示的信息数量由转换器满量程输入除以2N 表示,N 为转换器的理想位数。
图1. ADC 量化误差例如,假设选择一个12位ADC ,则它可在输出端以4096个数字表示施加于转换器输入端的任何信号。
这些表示信息确实存在有限量的误差。
因此,如果12位ADC 的输入满量程(VFS )为10 V p-p ,那么其理想情况下的LSB 大小为2.44 mV p-p ,精度为±1.22 mV 。
LSB = VFS/2N = 10/4096 = 2.44 mV = ±1.22 mV公式1而实际上,ADC 是非理想的。
运放参数解析定义大全一、单位增益带宽GB单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
二、运放的带宽是表示运放能够处理交流信号的能力对于小信号,一般用单位增益带宽表示。
单位增益带宽,也叫做增益带宽积,能够大致表示运放的处理信号频率的能力。
例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率1MHz/100=10KHz。
对于大信号的带宽,即功率带宽,需要根据转换速度来计算。
对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。
1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。
2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。
3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。
就是Gain Bandwidth=放大倍数*信号频率。
当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。
在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。
也就是在设计电路时要同时满足增益带宽和功率带宽。
三、运放关于带宽和增益的主要指标以及定义1、开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。
LTC6363 系列精密、低功耗差分放大器/ADC 驱动器系列特点⏹提供用户设置增益或0.5V/V、1V/V、2V/V的固定增益⏹折合到输入端噪声:2.9nV/√Hz⏹电源电流:2mA(最大值)⏹增益误差:45ppm(最大值)⏹增益误差漂移:0.5ppm/°C(最大值)⏹CMRR:94dB(最小值)⏹失调电压:100µV(最大值)⏹输入失调电流:50nA(最大值)⏹快速建立时间:720ns 至18 位,8V P–P输出⏹电源电压范围:2.8V (±1.4V) 至11V (±5.5V) ⏹差分轨到轨输出⏹输入共模范围包含地⏹低失真:115dB SFDR,2kHz 时,18V P–P⏹增益带宽积:500MHz⏹–3dB 带宽:35MHz⏹低功耗关断:20µA (V S = 3V)⏹8 引脚MSOP 和2 mm × 3mm 8 引脚DFN 封装应用⏹20 位、18 位和16 位SAR ADC 驱动器⏹单端至差分转换⏹低功耗ADC 驱动器⏹电平转换器⏹差分线路驱动器⏹电池供电仪器仪表说明LTC®6363系列包括四款全差分、低功耗、低噪声放大器,提供轨到轨输出,针对SAR ADC 驱动进行了优化。
LTC6363 是一款独立的差分放大器,其增益通常利用四个外部电阻设置。
LTC6363–0.5、LTC6363–1 和LTC6363–2 均有内部匹配电阻,形成增益分别为0.5V/V、1V/V 和2V/V 的固定增益模块。
每个固定增益放大器都有激光调整的精密片内电阻,可实现精确、超稳定的增益和出色的CMRR。
系列选型表产品型号增益配置LTC6363 用户设置LTC6363–0.5 0.5V/VLTC6363–1 1V/VLTC6363–22V/V所有注册商标和商标均属各自所有人所有。
典型应用从以地为基准的单端输入到LTC2378–20 SAR ADC 的直流耦合接口LTC6363–1 驱动LTC2378–20f IN = 2kHz,–1dBFS,131k 点FFTLTC6363 系列 绝对最大额定值(注释 1)总电源电压 (V + – V –) ........................................... 12V 输入电压(+IN 、–IN )(注释 2)LTC6363–0.5 ........ (V –) – 14.9V 至 (V +) + 14.9V LTC6363–1 ........... (V –) – 11.1V 至 (V +) + 11.1V LTC6363–2 ........... (V –) – 7.45V 至 (V +) + 7.45V 输入电流(+IN 、–IN )LTC6363(注释 3)............................................................................. ±10mA 输入电流(V OCM 、SHDN )(注释 3) .................................................. ±10mA 输出短路持续时间(注释 4) ......................................... 受散热限制 工作温度范围(注释 5)LTC6363I/LTC6363I–0.5/LTC6363I–1/ LTC6363I–2 ................................... –40°C 至 85°C LTC6363H/LTC6363H–0.5/LTC6363H–1/LTC6363H–2 ............................... –40°C 至 125°C 额定温度范围(注释 6)LTC6363I/LTC6363I–0.5/LTC6363I–1/LTC6363I–2 .................................. –40°C 至 85°C LTC6363H/LTC6363H–0.5/LTC6363H–1/LTC6363H–2............................... –40°C 至 125°C 最高结温 .............................................................. 150°C 存储温度范围 .................................. –65°C 至 150°C MSOP 引脚温度(焊接,10 秒) ................ 300°C引脚配置LTC6363LTC6363LTC6363–0.5/LTC6363–1/LTC6363–2订购信息 /product/LTC6363#orderinfo管装卷带和卷盘 器件标识* 封装说明温度范围 LTC6363IMS8#PBF LTC6363IMS8#TRPBF LTGSQ 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8#PBFLTC6363HMS8#TRPBFLTGSQ8 引脚塑料 MSOP –40°C 至 125°C LTC6363IMS8–0.5#PBF LTC6363IMS8–0.5#TRPBF LTGST 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8–0.5#PBF LTC6363HMS8–0.5#TRPBF LTGST 8 引脚塑料 MSOP –40°C 至 125°C LTC6363IMS8–1#PBF LTC6363IMS8–1#TRPBF LTGSR 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8–1#PBF LTC6363HMS8–1#TRPBF LTGSR 8 引脚塑料 MSOP –40°C 至 125°C LTC6363IMS8–2#PBF LTC6363IMS8–2#TRPBF LTGSS 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8–2#PBFLTC6363HMS8–2#TRPBFLTGSS8 引脚塑料 MSOP–40°C 至 125°CLTC6363 系列订购信息无铅表面处理卷带和卷盘(迷你型)卷带和卷盘器件标识*封装说明温度范围LTC6363IDCB#TRMPBF LTC6363IDCB#TRPBF LGVG 8 引脚(2mm × 3mm) 塑料DFN –40°C 至85°CLTC6363HDCB#TRMPBF LTC6363HDCB#TRPBF LGVG 8 引脚(2mm × 3mm) 塑料DFN –40°C 至125°CTRM = 500 片。
一、增益带宽积英文:Gain Bandwidth Product。
缩写:GBP,GBWP, GBW or GB。
增益带宽积是用来简单衡量放大器的性能的一个参数。
就像它的名字一样,这个参数表示增益和带宽的乘积。
在频率足够大的时候,增益带宽积是一个常数。
举例说明:假设运算放大器的增益带宽积为1 MHz,它意味着当频率为1 Mhz时,器件的增益下降到单位增益。
即此时A=1。
同时说明这个放大器最高可以以1 MHz的频率工作而不至于使输入信号失真。
由于增益与频率的乘积是确定的,因此当同一器件需要得到10倍增益时,它最高只能够以100 kHz的频率工作。
二、单位增益带宽单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个频率可变恒幅正弦小信号输入到运放的输入端,随着输入信号频率不断变大,输出信号增益将不断减小,当从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)时,所对应的信号频率乘以闭环放大倍数1所得的增益带宽积。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
单位增益带宽, 电压增益为1 时的带宽. 有的文件称为"带宽增益乘积" GBW, 可以用来估算你的放大器电路带宽. 如ICL76XX 的GBW=44KHz, 当接成电压跟随器G=1 时BW=44KHz, 而接成正反相运算电路G=10 时, BW=4.4KHz.三、电源抑制比Power Supply Rejection Ratio电源抑制比(PSRR)是输入电源变化量(以伏为单位)与转换器输出变化量(以伏为单位)的比值,常用分贝表示。
对于高质量的D/A转换器,要求开关电路及运算放大器所用的电源电压发生变化时,对输出的电压影响极小。
运放参数解析定义全一、单位增益带宽GB单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
二、运放的带宽是表示运放能够处理交流信号的能力对于小信号,一般用单位增益带宽表示。
单位增益带宽,也叫做增益带宽积,能够大致表示运放的处理信号频率的能力。
例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率1MHz/100=10KHz。
对于大信号的带宽,即功率带宽,需要根据转换速度来计算。
对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。
1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。
2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。
3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。
就是Gain Bandwidth=放大倍数*信号频率。
当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。
在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。
也就是在设计电路时要同时满足增益带宽和功率带宽。
三、运放关于带宽和增益的主要指标以及定义1、开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。
L T E之R S、P A、P B详解-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1前言目前很多资料上都有RS、RA、RB的介绍以及小区功率的算法。
但是大多数资料都是将公式堆在上面,让阅读的人很难理解。
即使会计算了也不知道为什么要这样算。
本文主要将RS、RA、RB详细解释,并将计算方法剖析给大家。
2参考图图1.1:本图是协议36211里面经典图中扣出来的2天线端口的部分,原图在协议中叫“Figure 6.10.1.2-1. Mapping of downlink reference signals (normal cyclic prefix).”本图形象的指出什么是A/B符号。
3参数解释这些都是计算需要用到的一些参数,大家一定要看清楚每个参数的单位。
EA:A符号中PDSCH所在RE的功率,单位mWEB:B符号中PDSCH所在RE的功率,单位mWERS:RS所在RE的功率,单位mWρ、Bρ指示了一个下行slot中不同OFDM符号的EPRE。
这个不太好理解,大家可以将Aρ看Aρ=10logEA-10logERS=10log(EA/ERS),成EA相对ERS的偏移量。
功率等式应该是10log Aρ也是一样。
如下计算公式就是这样得来的。
Bρ = EA/ERS;Aρ = EB/ERS;BRS = 10logERS 表示小区参考信号的功率值,单位是0.1dBm 。
PA=10log (EA/ERS )单位是dB ,表示A 符号中的RE 的功率相对RS 的大小。
注意,PA 并不是A 符号中的RE 的功率相对RS 的比值,PA 是有功率单位的。
协议里面关于A ρ和PA 的换算关系如下:▪ A ρ is equal to )2(log 1010offset -power ++A P δ [dB] when the UE receives a PDSCH data transmission using precoding for transmit diversity with 4 cell-specific antenna ports according to Section 6.3.4.3 of [3]; ▪ A ρ is equal to A P +offset -power δ [dB] otherwise由于A ρ不是一个功率单位,所以不能理解成A ρ = AP +offset -power δ(很多资料上都是这样写的,结果只能让阅读的人更崩溃)。
运放参数的详细解释——输入偏置电流b I 和输入失调电流os I1、输入偏置电流b I :实际的运放,会有电流流入(datasheet 中b I 为负)或流出(datasheet 中b I 为正)运放的输入端(与理想运放虚断的概念不一样),这两个输入端电流的平均值就是输入偏置电流。
2、输入失调电流os I :流入或流出运放输入端正极和负极偏置电流的差。
3、运放的输入级采用差分输入的双极型晶体管Bipolar 时,b I 来源于输入级三极管的基极电流。
当采用场效应管FET 时,b I 来源于差分输入端的一对ESD 保护二极管的漏电流(栅极电流很小,一般会在fA 级)。
4、Bipolar 输入的运放输入偏置电流b I 比较大,可达uA 级。
比较好的CMOS 运放输入偏置电流和输入失调电流可以做到小于1pA 的目标。
5、要使FET 输入偏置电流b I 最小,要把共模电压设置在2SS CC V V -处。
6、输入偏置电流b I 会流经外面的电阻网络,转化成运放的失调电压,再经过运放后到达运放的输出端,造成运放的输入误差。
7、许多运放的输入失调电流会随着温度的变化而变化,甚至在100℃的输入偏置电流b I 是25℃的几百倍,如果设计的系统在很宽的温度范围内工作,这一因素不得不考虑。
8、参数举例:OPA642当V V CM 0=时 b I =25uA os I =0.5uA OPA842 当V V CM 0=时 b I =-35uA os I =1±uA运放参数的详细解释和分析——输入失调电压os V 及温漂1、输入失调电压os V :当输入信号为0时,为了使运放的输出电压等于0,必须在运放两个输入端加一个小的电压,这个小电压就是os V 。
2、运放的输入失调电压os V 来源于运放差分输入级两个管子的不匹配。
3、输入失调电压os V 会随着温度的变化而变化,即温漂。
一大批运放的os V 是符合正态分布的。
采集时间采集时间是从释放保持状态(由采样-保持输入电路执行)到采样电容电压稳定至新输入值的1 LSB范围之内所需要的时间。
采集时间(Tacq)的公式如下:混叠根据采样定理,超过奈奎斯特频率的输入信号频率为“混叠”频率。
也就是说,这些频率被“折叠”或复制到奈奎斯特频率附近的其它频谱位置。
为防止混叠,必须对所有有害信号进行足够的衰减,使得ADC不对其进行数字化。
欠采样时,混叠可作为一种有利条件。
孔径延迟ADC中的孔径延迟(tAD)是从时钟信号的采样沿(下图中为时钟信号的上升沿)到发生采样时之间的时间间隔。
当ADC的跟踪-保持切换到保持状态时,进行采样。
孔径抖动孔径抖动(tAJ)是指采样与采样之间孔径延迟的变化,如图所示。
典型的ADC孔径抖动值远远小于孔径延迟值。
二进制编码(单极性)标准二进制是一种常用于单极性信号的编码方法。
二进制码(零至满幅)的范围为从全0 (00.。
.000)到全1的正向满幅值(11.。
.111)。
中间值由一个1 (MSB)后边跟全0 (10.。
.000)表示。
该编码类似于偏移二进制编码,后者支持正和负双极性传递函数。
双极性输入术语“双极性”表示信号在某个基准电平上、下摆动。
单端系统中,输入通常以模拟地为基准,所以双极性信号为在地电平上、下摆动的信号。
差分系统中,信号不以地为基准,而是正输入以负输入为参考,双极性信号则指正输入信号能够高于和低于负输入信号。
共模抑制(CMRR)共模抑制是指器件抑制两路输入的共模信号的能力。
共模信号可以是交流或直流信号,或者两者的组合。
共模抑制比(CMRR)是指差分信号增益与共模信号增益之比。
CMRR通常以分贝(dB)为单位表示。
串扰(Crosstalk)串扰表示每路模拟输入与其它模拟输入的隔离程度。
对于具有多路输入通道的ADC,串扰指从一路模拟输入信号耦合到另一路模拟输入的信号总量,该值通常以分贝(dB)为单位表示;对于具有多路输出通道的DAC,串扰是指一路DAC输出更新时在另一路DAC输出端产生的噪声总量。
基于FPGA的超高速数据采集与处理系统王彦如(青海师范大学国际教育交流中心,青海、西宁 810008)摘 要:介绍了一种基于FPGA的超高速数据采集与处理系统,给出了系统实现的方案,并详细阐述了各硬件电路的具体构成。
对系统软件功能做了简要介绍,并利用嵌入式逻辑分析仪对该超高速数据采集系统进行了测试,验证了采样结果的正确性。
该超高速数据采集与处理系统通用性和可扩展性较强,适合工程应用。
关键词:数据采集;嵌入式逻辑分析仪;高速A/D;FPGA中图分类号:TN974A Ultra high speed data acquisition and processing systembased on FPGAWang Yanru(Coll. of Information and Communication Engineering, Harbin Engineering Univ., Harbin 150001, China ) Abstract:A scheme of the high speed data acquisition and processing system based on FPGA is introduced in the paper. The design of system i s proposed and the composition is described in detail. The system software function is briefly introduced and the sampling signal is tested and verified correctly though embedded logic analyzer. The ultra high speed data acquisition and processing system has some universality and expansibility and fits for engineering application.Key words:data acquisition; embedded logic analyzer; high-speed A/ D; Field-programmable gate array0引言在电子信息领域中,通常要求处理的频带要尽可能的宽、动态范围要尽可能的大,以便得到更宽的频率搜索范围,获取更多的信息量,这就要求A/D转换速度快而采样精度高,以便满足系统处理的要求]1[。
基于ADC083000的高速数据采集系统设计王军【摘要】文章以超宽带雷达侦察接收机信号处理为应用背景,论述了一种基于ADC083000的高速数据采集系统的设计方案.该方案以Xilinx公司Virtex-5系列FPGA为平台,控制高速模数转换器ADC083000,完成雷达信号的带通采样、数据传输、存储、信号处理功能,并选取高速DDR2作为存储设备,解决海量数据存储问题.该方案实现了软件、硬件设计,测试结果验证了方案的可行性.【期刊名称】《实验科学与技术》【年(卷),期】2010(008)002【总页数】4页(P8-11)【关键词】超宽带雷达;高速数据采集;ADC083000模数转换器;现场可编程阵列【作者】王军【作者单位】电子科技大学电子工程学院,成都,610054【正文语种】中文【中图分类】TN971.1;TN957.524现代高科技战争对雷达装备的功能和性能提出了越来越高的要求。
传统雷达信号带宽较窄难以提供更多的目标信息,因此超宽带雷达技术得到了日益广泛的应用。
高速数据采集和实时信号处理是超宽带雷达的关键技术。
超宽带雷达的相对带宽很大,且要求在此带宽内系统的幅频特性和相频特性必须满足严格的要求,因此超宽带雷达系统实现的难度比较大[1]。
高速、高精度数据采集与高速数据传输是制约超宽带雷达信号处理的关键因素之一。
本文主要研究超宽带雷达的超高速数据采集和信号处理技术,提出了一种以FPGA为核心控制器,DDR2为外部存储器,基于ADC083000的高速数据采集系统。
将ADC083000芯片输出的超宽带雷达信号数据经现场可编程阵列(Field Programmable Gate Array, FPGA)预处理后存入外部DDR2中,以便后续处理。
同时利用RS232接口与PC机通信,方便数据的进一步分析与处理,系统实现了硬件、软件设计,最后给出了测试结果。
超宽带雷达侦察接收机接收频率范围为114~216 GHz,瞬时带宽为112 GHz,信号带宽为200 MHz的雷达照射信号,系统根据带通采样定理,利用ADC083000对其进行采样,采样率为217 GHz[2]。
运算放⼤器的性能指标⼀.直流指标(静态指标)1.输⼊失调电压(Input offset voltage)2.输⼊失调电压的温漂在实际当中,每个芯⽚的输⼊失调电压并⾮固定不变,输⼊失调电压会随温度的变化⽽漂移,这个参数相当于是对输⼊失调电压的进⼀步补充。
以上参数有些datasheet中除了会给出典型的值外,还会给出不同的输⼊失调电压下的芯⽚的分布⽐例和不同温度的会出现温漂的芯⽚的分布⽐例,⼀般都是符合正态分布的。
3.输⼊偏置电流(Input bias current)理想的运放输⼊阻抗⽆穷⼤,因此不会有电流流⼊输⼊端,⼀般情况下,CMOS和JFET的偏置电流⽐双极性的都要⼩,偏置电流⼀般⽆需考虑。
输⼊偏置电流的值应该是(Ib+ +Ib-)/2.4.输⼊失调电流(Input offset current)输⼊失调电流的值为(Ib+- Ib-)对于⼩信号的处理,运放的选择要选择偏置电流⽐较⼩的。
对于偏置电流的另外⼀种解决⽅案为在地和同相端之间接⼀格电阻,电阻的⼤⼩为Req=R1//R2.5.输⼊共模电压Vicm(Input Voltage common-mode Range)共模输⼊电压Vicm被定义为⼀个电压范围:当超过该范围时,运放停⽌⼯作。
如果输⼊的电压不在此范围之类,运放将停⽌⼯作。
对于有不同输⼊级的运放,其输⼊共模电压是不⼀样的。
由于运放向单电源低电压趋势发展,所以该参数越来越重要。
这个参数是运放选择时⾮常重要的⼀个参数,有些信号通过运放之后可能会出现削顶的情况,可能就是因为这个参数选的不好。
6.共模抑制⽐CMRR (Common-Mode Rejection)共模抑制⽐的定义:差分电压放⼤倍数与共模电压放⼤倍数之⽐(理想运放的这个值为⽆穷⼤,实际中⼀般是数万倍),为了说明差分放⼤电路抑制共模信号及放⼤查分信号的能⼒。
这个性能主要是指运放在差分输⼊的情况下,对共模⼲扰的抑制性能,⼀般⽤单位db来表⽰,这个值⼀般在80db-120db之间。
目录Part1 输入偏置电流和输入失调电流 (2)Part2 如何测量输入偏置电流Ib,失调电流Ios (6)Part3 输入失调电压Vos及温漂 (9)Part4 运放噪声快速计算 (13)Part5 电源抑制比DC-PSRR (17)Part6 电源抑制比AC-PSRR (19)Part7 共模抑制比CMRR (21)Part8 模抑制比CMRR的影响 (24)Part9 放大电路直流误差(DC error) (28)Part10 放大电路直流误差(DC error)的影响因素 (30)Part11输入阻抗和输入电容 (32)Part12 输入电容Cin的测量 (34)Part13 轨至轨输入(rail to rail input) (36)Part14 轨至轨输入_TI的领先技术 (39)Part15 开环增益Aol (42)Part16 增益带宽积(GBW) (45)Part17 从开环增益曲线谈到运放稳定性 (47)Part18 压摆率(SR) (50)Part19 全功率带宽(FPBW) (53)Part20 建立时间(Settling Time) (55)Part21 总谐波失真(THD) (57)Part22 轨至轨(rail to rail)输出 (59)Part23 输出短路电流 (62)Part24 输出阻抗Ro和Rout (64)Part25 运放的热阻 (67)Part1 输入偏置电流和输入失调电流一般运放的datasheet中会列出众多的运放参数,有些易于理解,我们常关注,有些可能会被忽略了。
在接下来的一些主题里,将对每一个参数进行详细的说明和分析。
力求在原理和对应用的影响上把运放参数阐述清楚。
由于本人的水平有限,写的博文中难免有些疏漏,希望大家批评指正。
第一节要说明的是运放的输入偏置电流Ib和输入失调电流Ios .众说周知,理想运放是没有输入偏置电流Ib和输入失调电流Ios .的。
运放参数的详细解释和分析-part19
全功率带宽(FPBW)
因此这里要引入一个重参数,重要程度堪比增益带宽积。
那就是运放的全功率带宽。
虽然只是一个数学推导。
对于一个输出为正弦波的信号,输出电压可表示为:
Vout = Vp * sin(2*pi*f*t)
这个输出电压对时间求导可得:
上式的max是指在求导后的余弦信号在t=0时得到最大值。
这个很好理解,也就是说原正弦信号在t=0时压摆率最大。
可以看出dV/dt表示的压摆率,跟信号的频序有关,还与信号的输出幅值有关。
上式中,如果Vp是运放的输出满幅值。
则上式可表示为
此时FPBW就是运放的满功率带宽了。
记住它吧,它简值太重要了。
例如如果想在100Khz以内得到正弦波的10Vo-p振幅,按照公式需要转换速率的是6.3v/us以上的OP。
可以看出,满功率带宽由压摆率和输出信号的幅值决定的。
也就是压摆率一定的情况下,输出信号的幅值越大,全功率带宽越小。
这也解释了上面OPA333的测试结果。
这里还要说一个得要的公式,就是运放的上升时间与带宽的关系。
如下式,面熟,这个公式在很多地方都见过。
也太重要了,记住它吧。
今天我们深一点分析这个公式的由来。
其实它是由一阶系统的响应计算而来的。
对于一阶RC的频率响应为
一阶系统的阶跃响应为下式。
Vo=0.1Vm时 t=0.1RC。
(-ln0.9 =0.1)当Vo=0.9Vm时,t=2.3RC (-ln0.1=2.3)。
则RC阶跃响应的时间为Tr=2.2RC.
而对于一个一阶RC的带宽又可以表示为:BW=1/(2*pi*RC)。
上升时间里也有RC,这两个RC是同一个喽。
这句是废话。
那
Tr=2.2/(2*pi* BW)=0.35/BW。
下面我们对这个结论用TINA进行一下仿真。
运放为OPA2188,增益带宽积为2MHz。
运放设置为增益为1的同向放大电路。
输入信号为10mV的阶跃信号。
输出信号的上升时间为
220.8ns-82.5nS=138.3nS.
下面看一下计算结果:计算结果为175nS。
约20%的误差。
但也有很好的参考价值了。