第5章 第2节 等差数列
- 格式:ppt
- 大小:1.93 MB
- 文档页数:45
第2课时等差数列的性质必备知识·素养奠基1.等差中项:如果x,A,y 是等差数列,那么称A 是x与y的等差中项,且A=。
2。
等差数列中项与序号的关系(1)两项关系a n=a m+(n-m)d(m,n∈N+).(2)多项关系若s+t=p+q(p,q,s,t∈N+),则a s+a t=a p+a q.特别地,若2s=p+q,则2a s=a p+a q.如何证明若m+n=p+q(m,n,p,q∈N+),则a m+a n=a p+a q?提示:因为a m=a1+(m-1)d,a n=a1+(n-1)d。
所以a m+a n=2a1+(m+n—2)d.同理,a p+a q=2a1+(p+q-2)d,因为m+n=p+q,所以a m+a n=a p+a q. 3。
等差数列的项的对称性文字叙述在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和符号表示n为偶数n≥2a1+a n=a2+a n-1=…=+n为奇数n≥3a1+a n=a2+a n—1=…=24.由等差数列构成的新等差数列(1)条件{a n},{b n}分别是公差为d1,d2的等差数列。
(2)结论数列结论{c+a n}公差为d1的等差数列(c为任一常数){c·a n}公差为cd1的等差数列(c为任一常数){a n+a n+k}公差为2d1的等差数列(k为常数,k∈N+){pa n+qb n}公差为pd1+qd2的等差数列(p,q为常数)5。
等差数列的单调性等差数列{a n}的公差为d,(1)当d〉0时,数列{a n}为递增数列。
(2)当d<0时,数列{a n}为递减数列.(3)当d=0时,数列{a n}为常数列。
1。
思维辨析(对的打“√”,错的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列. ()(2)若数列{a n}是等差数列,则a1,a3,a5,a7,a9也是等差数列。
()(3)在等差数列{a n}中,若a m+a n=a p+a q,则m+n=p+q也能成立(m,n,p,q∈N+ ). ()(4)在等差数列{a n}中,若m+n=r,m,n,r∈N+,则a m+a n=a r。
第2节 等差数列及其前n 项和[A 级 基础巩固]1.(一题多解)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:法一 设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 所以d =4,故选C. 答案:C2.(2020·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( ) A .60 B .56 C .12D .4解析:因为在等差数列{a n }中,a 2+a 8=8,所以a 2+a 8=2a 5=8,解得a 5=4,(a 3+a 7)2-a 5=(2a 5)2-a 5=64-4=60.答案:A3.已知等差数列{a n }的前n 项和为S n ,S 2=3,S 3=6,则S 2n +1=( ) A .(2n +1)(n +1) B .(2n +1)(n -1) C .(2n -1)(n +1)D .(2n +1)(n +2)解析:设等差数列{a n }的公差为d , 则2a 1+d =3,3a 1+3d =6,所以a 1=d =1,则a n =1+(n -1)×1=n .因此S 2n +1=(2n +1)(1+2n +1)2=(2n +1)(n +1).答案:A4.(2020·宜昌一模)等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .a 7=0B .|a 7|=|a 8|C .|a 7|>|a 8|D .|a 7|<|a 8|解析:因为公差d >0,(S 8-S 5)(S 9-S 5)<0, 所以S 9>S 8,所以S 8<S 5<S 9,所以a 6+a 7+a 8<0,a 6+a 7+a 8+a 9>0, 所以a 7<0,a 7+a 8>0,|a 7|<|a 8|. 答案:D5.中国古诗词中,有一道“八子分棉”的数学名题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤棉分给8个儿子作盘缠,按照年龄从大到小的顺序依次分棉,年龄小的比年龄大的多17斤棉,那么第8个儿子分到的棉是( )A .174斤B .184斤C .191斤D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的棉数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, 所以8a 1+8×72×17=996,解得a 1=65.所以a 8=65+7×17=184,即第8个儿子分到的棉是184斤. 答案:B6.(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设数列{a n }的公差为d , 则⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27, 解得a 1=-5,d =2,所以S 8=8×(-5)+8×72×2=16.答案:167.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:2008.在等差数列{a n }中,若a 7=π2,则sin 2a 1+cos a 1+sin 2a 13+cos a 13=________.解析:根据题意可得a 1+a 13=2a 7=π, 2a 1+2a 13=4a 7=2π,所以有sin 2a 1+cos a 1+sin 2a 13+cos a 13= sin 2a 1+sin(2π-2a 1)+cos a 1+cos(π-a 1)=0. 答案:09.各项均不为0的数列{a n }满足a n +1(a n +a n +2)2=a n +2a n ,且a 3=2a 8=15.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .(1)证明:依题意得,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,故1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2. (2)解:由(1)可知b n =a n 2n +6=12·1(n +2)(n +3)=12⎝ ⎛⎭⎪⎫1n +2-1n +3,故S n =12⎝ ⎛⎭⎪⎫13-14+14-15+…+1n +2-1n +3=n 6(n +3). 10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . (1)解:设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.[B 级 能力提升]11.(2020·珠海联考)已知数列{a n }中,a 1=1,S n +1S n =n +1n,则数列{a n }( ) A .既非等差数列,又非等比数列 B .既是等差数列,又是等比数列 C .仅为等差数列 D .仅为等比数列 解析:数列{a n }中,S n +1S n =n +1n ,则S n S n -1=nn -1(n ≥2), 则S n =S n S n -1×S n -1S n -2×…×S 2S 1×S 1=n n -1×n -1n -2×…×21×1=n (n ≥2),当n =1时,S 1=a 1=1符合,则当n ≥2时,a n =S n -S n -1=n -(n -1)=1,当n =1时,a 1=1符合,故a n =1(n ∈N *),则数列{a n }为非零的常数列,它既是等差数列,又是等比数列. 答案:B12.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:设等差数列{a n }的公差为d ,因为a 2=-3,S 5=-10,所以⎩⎪⎨⎪⎧a 1+d =-3,5a 1+5×42d =-10, 即⎩⎪⎨⎪⎧a 1+d =-3,a 1+2d =-2,得⎩⎪⎨⎪⎧a 1=-4,d =1,所以a 5=a 1+4d =0,S n =na 1+n (n -1)2d =-4n +n 2-n 2=12(n 2-9n )=12⎝ ⎛⎭⎪⎫n -922-818,因为n ∈N *,所以n =4或n =5时,S n 取最小值,最小值为-10. 答案:0 -1013.已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列; (2)设a 1=d ,T n =∑k =02n(-1)k b 2k,n ∈N *,求证:∑k =0n1T k <12d 2.证明:(1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1·a n +2-a n a n +1=2da n +1,因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n ) =2d (a 2+a 4+…+a 2n ) =2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑k =0n1T k =12d 2∑k =0n 1k (k +1)=12d 2∑k =0n ⎝ ⎛⎭⎪⎫1k -1k +1=12d 2·⎝ ⎛⎭⎪⎫1-1n +1<12d2. [C 级 素养升华]14.(多选题)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则( ) A .a 6+a 7=4 B .a 6+a 7=12 C .a 6a 7≥4D .a 6a 7≤4解析:在等差数列{a n }中,因为S 12=6(a 6+a 7)=24, 所以a 6+a 7=4.又a 6>0,a 7>0,所以a 6a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故选AD. 答案:AD。
第2节等差数列一、教材概念·结论·性质重现1.等差数列的定义如果数列从第2项起,每一项与它的前一项之差都等于同一个常数d,即a n +1-a n=d恒成立,则称{a n}为等差数列,其中d称为等差数列的公差.等差数列的定义用递推公式表示为a n+1-a n=d(n∈N*,d为常数).2.等差数列的通项公式(1)如果等差数列{a n}的首项是a1,公差是d,则这个等差数列的通项公式是a n=a1+(n-1)d.(2)若已知a k,公差是d,则这个等差数列的通项公式是a n=a k+(n-k)d.当d≠0时,等差数列通项公式可以看成关于n的一次函数a n=dn+(a1-d).3.等差中项如果x,A,y是等差数列.那么称A为x与y的等差中项,即A=x+y 2.4.等差数列的常用性质(1)通项公式的推广公式:a n=a m+(n-m)d(n,m∈N*)⇔d=a n-a mn-m(n≠m).(2)若{a n}为等差数列,且m+n=p+q=2w,则a m+a n=a p+a q=2a w(m,n,p,q,w∈N*).(3)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(4)若{a n},{b n}是等差数列,则{pa n+qb n}也是等差数列.5.等差数列的前n项和公式及其性质(1)设等差数列{a n}的公差为d,其前n项和S n=n(a1+a n)2=na1+n(n-1)2d.(2)等差数列{a n}的前n项和为S n,数列S m,S2m-S m,S3m-S2m,…(m∈N*)也是等差数列,公差为m2d.(3)等差数列的前n 项和的最值在等差数列{a n }中,若a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.(4)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a n a n +1. (5)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .数列{a n }是等差数列⇔数列的前n 项和公式S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ⇔S n =An 2+Bn (A ,B 为常数),所以当d ≠0时,等差数列前n 项和公式可以看成关于n 的二次函数,且常数项为0.二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(4)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )(5)等差数列的前n 项和S n 是项数为n 的二次函数.( × ) 2.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d 等于( ) A .14 B .12 C .2D .-12A 解析:因为a 4+a 8=2a 6=10,所以a 6=5.又a 10=6,所以公差d =a 10-a 610-6=6-54=14.故选A. 3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项的和S 11等于( ) A .58 B .88 C .143D .176B 解析:S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,其前n 项和为S n .若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34B 解析:由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,所以S 8=8a 1+8×72d =32.5.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.20 解析:设物体经过t 秒降落到地面,物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列,所以4.90t +12t (t -1)×9.80=1 960, 即4.90t 2=1 960,解得t =20.考点1 等差数列的定义、通项公式、基本运算——基础性1.等差数列{a n }的前n 项和为S n ,若a 1=3,S 5=35,则数列{a n }的公差为( )A .-2B .2C .4D .7B 解析:因为a 1=3,S 5=35,所以5×3+5×42d =35,解得d =2. 2.(2020·宜春模拟)已知等差数列{a n }中,a 1=1,前10项的和等于前5项的和.若a m +a 7=0,则m =( )A .10B .9C .8D .2B 解析:设等差数列{a n }的公差为d ,a 1=1. 因为前10项的和等于前5项的和,且a m +a 7=0, 则10+45d =5+10d,2+(m +5)d =0, 解得m =9.3.(2021·哈尔滨实验中学模拟)数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2a n +1是等差数列,且a 1=1,a 3=-13,那么a 2 022=( )A .1 0101 011 B .-1 0101 011 C .2 0192 021 D .-2 0212 022B解析:设等差数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2a n +1的公差为d ,且a 1=1,a 3=-13,所以2a 1+1=1,2a 3+1=3, 所以3=1+2d ,解得d =1. 所以2a n +1=1+n -1=n ,所以a n =2n -1. 那么a 2 022=22 022-1=-1 0101 011.4.(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.16 解析:设数列{a n }的公差为d , 则⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27,解得a 1=-5,d =2,所以S 8=8×(-5)+8×72×2=16.等差数列运算问题的解题策略(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.考点2 等差数列的判定与证明——综合性数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >nn +1.(1)证明:因为a n +1=a n2a n +1,所以1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n=2, 故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)解:由(1)知1a n=2n -1,所以S n =n (1+2n -1)2=n 2,1S n =1n 2>1n (n +1)=1n -1n +1.证明:1S 1+1S 2+…+1S n=112+122+…+1n 2>11×2+12×3+…+1n (n +1) =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1.1.若本例条件变为“若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *)”,求数列{a n }的通项公式.解:由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n .2.若本例条件变为“a 1=35,na n +1=(n +1)a n +n (n +1)”,求数列{a n }的通项公式.解:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1. 又a 1=35,所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,所以a n n =35+(n -1)·1=n -25, 所以a n =n 2-25n .等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数. (2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.(3)通项公式法:得出a n =pn +q 后,再根据定义判定数列{a n }为等差数列. (4)前n 项和公式法:得出S n =An 2+Bn 后,再使用定义法证明数列{a n }为等差数列.已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列.证明:由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1,因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以数列{c n }是等差数列.考点3 等差数列性质的应用——应用性考向1 等差数列项的性质问题(1)(2020·宁德二模)已知等差数列{a n }的前n 项和为S n ,且a 2+a 5+a 8=9,则S 9=( )A .21B .27C .30D .36B 解析:因为等差数列{a n }的前n 项和为S n ,且a 2+a 5+a 8=9=3a 5,所以a 5=3,则S 9=9(a 1+a 9)2=9a 5=27.(2)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8C 解析:(方法一)设等差数列{a n }的公差为d , 依题意⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4.(方法二)等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5.又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 所以d =4.等差数列的项的性质的关注点(1)项的性质:在等差数列{a n }中,m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .(2)在等差数列题目中,只要出现项的和问题,一般先考虑应用项的性质. (3)项的性质常与等差数列的前n 项和公式S n =n (a 1+a n )2相结合命题.考向2 等差数列前n 项和的性质(1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A .35B .42C .49D .63B 解析:在等差数列{a n }中, S 5,S 10-S 5,S 15-S 10成等差数列, 即7,14,S 15-21成等差数列, 所以7+(S 15-21)=2×14, 解得S 15=42.(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.2 020 解析:由等差数列的性质可得数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0192 019-S 2 0132 013=6d =6,所以d =1.故S 2 0202 020=S 11+2 019d =-2 018+2 019=1,所以S 2 020=1×2 020=2 020.等差数列前n 项和的性质在等差数列{a n }中,S n 为其前n 项和,则: (1)S m ,S 2m -S m ,S 3m -S 2m ,…,构成等差数列. (2)S 2n =n (a 1+a 2n )=…=n (a n +a n +1). (3)S 2n -1=(2n -1)a n .1.已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7=( )A .2B .7C .14D .28C 解析:因为2+a 5=a 6+a 3,所以2+a 4+d =a 4+2d +a 4-d ,解得a 4=2. 所以S 7=7(a 1+a 7)2=7a 4=14.2.(2020·海南模拟)已知等差数列{a n },{b n }的前n 项和分别为S n 和T n ,且S nT n=n +52n -1,则a 7b 6=( ) A.67 B.1211 C.1825D.1621A 解析:因为等差数列{a n },{b n }的前n 项和分别为S n 和T n ,且S n T n =n +52n -1,所以可设S n =kn (n +5),T n =kn (2n -1),k ≠0. 所以a 7=S 7-S 6=18k ,b 6=T 6-T 5=21k , 所以a 7b 6=67.3.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________.200 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.考点4 等差数列前n 项和的最值——应用性等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 4B .S 5C .S 6D .S 7B 解析:因为⎩⎨⎧a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎨⎧a 5>0,a 6<0,所以S n 的最大值为S 5.1.本例若把条件改为“等差数列{a n }中,S 5<S 6,S 6=S 7>S 8”,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6,S 7均为S n 中的最大值C 解析:由S 5<S 6得a 1+a 2+a 3+…+a 5<a 1+a 2+…+a 5+a 6,即a 6>0. 又因为S 6=S 7,所以a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7, 所以a 7=0,故B 正确. 同理由S 7>S 8,得a 8<0. 因为d =a 7-a 6<0,故A 正确.而C 选项中S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,显然C 选项是错误的.因为S 5<S 6,S 6=S 7>S 8,所以S 6与S 7均为S n 的最大值,故D 正确. 2.本例条件变为“等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0”,则S n 取最大值时n 的值为( )A .6B .7C .8D .13B 解析:根据S 13>0,S 14<0,可以确定a 1+a 13=2a 7>0,a 1+a 14=a 7+a 8<0,所以a 7>0,a 8<0,所以S n 取最大值时n 的值为7.故选B.求等差数列前n 项和S n 最值的两种方法(1)二次函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图像求二次函数最值的方法求解.(2)通项变号法:①当a 1>0,d <0时,满足⎩⎨⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .等差数列{a n }中,若a 9a 8<-1,且它的前n 项和S n 有最小值,则当S n >0时,n的最小值为( )A .14B .15C .16D .17C 解析:因为数列{a n }是等差数列,它的前n 项和S n 有最小值,所以公差d >0,首项a 1<0,{a n }为递增数列.因为a 9a 8<-1,所以a 8·a 9<0,a 8+a 9>0,由等差数列的性质知,2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0. 因为S n =n (a 1+a n )2,所以当S n >0时,n 的最小值为16.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15.求当n 取何值时,S n 取得最大值,并求出它的最大值.[四字程序]读 想算思 n 取何值时,S n 取得最大值1.S n 的表达式;2.求最值的方法? 1.求通项公式a n ;2.求前n 项和S n 转化与化归 等差数列,a 1=20,S 10=S 151.利用等差数列的项的符号;2.利用二次函数的性质1.a n =-53n +653;2.S n =-56n 2+1256n1.数列的单调性;2.二次函数的性质思路参考:先求基本量d ,再由a n 确定S n 取得最大值时n 的值. 解:因为a 1=20,S 10=S 15,所以10×20+10×92d =15×20+15×142d , 所以d =-53.由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.因为a 1=20>0,d =-53<0, 所以数列{a n }是递减数列.由a n =-53n +653≤0,得n ≥13,即a 13=0. 当n ≤12时,a n >0,当n ≥14时,a n <0, 所以当n =12或13时,S n 取得最大值, 且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.思路参考:先求出d ,再由S n 的表达式确定其最大值. 解:因为a 1=20,S 10=S 15, 所以10×20+10×92d =15×20+15×142d ,所以d =-35.S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53 =-56n 2+1256n =-56⎝ ⎛⎭⎪⎫n -2522+3 12524.因为n ∈N *,所以当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.思路参考:利用等差数列的性质求解.解:由S 10=S 15得S 15- S 10=a 11+a 12+a 13+a 14+a 15=0, 所以5a 13=0,即a 13=0. 又d =a 13-a 113-1=-53, 所以当n =12或13时,S n 有最大值. 所以S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.思路参考:结合二次函数知识解答.解:因为等差数列{a n }的前n 项和S n 是关于n 的二次函数,且S 10=S 15, 所以10×20+10×92d =15×20+15×142d ,所以d =-53. 又10+152=12.5,所以n =12或13时,S n 取得最大值.所以S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.1.基于课程标准,解答本题一般需要学生熟练掌握数学阅读技能、运算求解能力、推理能力和表达能力,体现了逻辑推理、数学运算的核心素养,试题的解答过程展现了数学文化的魅力.2.基于高考数学评价体系,本题创设了数学探索创新情景,通过知识之间的联系和转化,将最值转化为熟悉的数学模型.本题的切入点十分开放,可以从不同的角度解答题目,体现了基础性;同时,解题的过程需要知识之间的转化,体现了综合性.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n =________时,S n 最大.7 解析:(方法一)由S 3=S 11,得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1.又a 1>0,所以-a 113<0.故当n =7时,S n 最大.(方法二)由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图像关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大.(方法三)由方法一可知,d =-213a 1. 要使S n 最大,则有⎩⎨⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. (方法四)由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0, 故a 7+a 8=0.又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.。
第二节 等差数列及其前n 项和[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.用符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) [答案] (1)× (2)√ (3)√ (4)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d 等于( ) A .-1 B.1 C .2D.-2D [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2,故选D.] 3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5 B.7 C .9D.11A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]4.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100 B.99 C .98D.97C [法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.]5.(教材改编)在100以内的正整数中有__________个能被6整除的数. 16 [由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n . 由a n =6n ≤100,即n ≤1646=1623, 则在100以内有16个能被6整除的数.]n n 为{a n }的前n项和,若S 8=4S 4,则a 10=( )A.172 B.192 C .10D.12(2)(2017·云南省二次统一检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A .9 B.10 C .11D.15(1)B (2)B [(1)∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192.(2)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.][规律方法] 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.[变式训练1] (1)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B.1 C .2D.3(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.【导学号:01772176】(1)C (2)-72 [(1)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.(2)设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎨⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.]已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列. (2)求数列{a n }中的通项公式a n . [解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1.所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1 =1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.5分又b 1=1a 1-1=-52,所以数列{b n }是以-52为首项,1为公差的等差数列.7分 (2)由(1)知,b n =n -72,9分 则a n =1+1b n=1+22n -7.12分[规律方法] 1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.[变式训练2] (1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )【导学号:01772177】A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 61=__________.(1)C (2)480 [(1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知S nS n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 61=S 61-S 60=1212-1192=480.]每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a 52=( )⎝ ⎛⎭⎪⎫a 41a 42 a 43a 51 a 52 a 53a 61a 62a 63 图5-2-1 A .2 B.8 C .7D.4(2)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.(1)C [法一:第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7,故选C.法二:由于每行每列都成等差数列,不妨取特殊情况,即这9个数均相同,显然满足题意,所以有63÷9=7,即a 52=7,故选C.](2)法一:由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,4分 即d =-213a 1.7分从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.9分 故当n =7时,S n 最大.12分 法二:由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,5分即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,9分解得6.5≤n ≤7.5,故当n =7时,S n 最大.12分 法三:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,5分故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,9分 所以a 7>0,a 8<0,所以当n =7时,S n 最大.12分 [规律方法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[变式训练3] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( )A .18 B.99 C .198D.297(2)已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=__________.(1)B (2)20 [(1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20.][思想与方法]1.等差数列的通项公式,前n 项和公式涉及“五个量”,“知三求二”,需运用方程思想求解,特别是求a 1和d .(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,….(2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,….2.等差数列{a n }中,a n =an +b (a ,b 为常数),S n =An 2+Bn (A ,B 为常数),均是关于“n ”的函数,充分运用函数思想,借助函数的图象、性质简化解题过程.3.等差数列的四种判断方法:(1)定义法:a n+1-a n=d(d是常数)⇔{a n}是等差数列.(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列.(3)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(4)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.[易错与防范]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n项和S n的最值时,需要注意“自变量n为正整数”这一隐含条件.。
第二节 等差数列考 点 串 串 讲1.等差数列的定义以及判定方法 (1)等差数列的定义如果数列{an}满足:从第二项起,每一项与它的前一项的差都等于同一个常数(用d 表示),就称这个数列为等差数列.常数d 叫做这个等差数列的公差,即an +1-an =d. 对于等差数列定义需注意:①在等差数列的定义中,要强调“从第二项起”,因为第一项没有前一项;②要强调“同一个常数”,这五个字体现了等差数列的基本特征.如果某几项破坏了这一规律,尽管其他项都满足,那么这个数列也不是等差数列.③要强调公差d =an +1-an(n ∈N +),防止把被减数与减数弄颠倒. ④由定义可知有了某一项和公差,则这个等差数列就被完全确定. (2)等差数列的判定方法①定义法:an +1-an =d(常数)⇔{an}是等差数列.②中项公式法:2an +1=an +an +2(n ∈N*)⇔{an}是等差数列. ③通项公式法:an =pn +q(p ,q 为常数)⇔{an}是等差数列.④前n 项和公式法:Sn =An2+Bn(A ,B 为常数)⇔{an}是等差数列. 2.等差数列的通项公式已知等差数列{an}的首项为a1,公差为d ,则等差数列{an}的通项公式为 an =a1+(n -1)d(n ∈N +).①若已知等差数列{an}的第m 项为am ,公差为d ,则等差数列{an}的通项公式为 an =am +(n -m)d(n ,m ∈N +).② 3.等差数列的前n 项和公式已知等差数列{an}的首项为a1,第n 项为an.则前n 项和Sn =a1+a2+…+an =na1+an2.① 若已知首项a1和公差d ,则 Sn =na1+12n(n -1)d.②若已知末项an 和公差d ,则 Sn =nan -12n(n -1)d.③说明 ①等差数列的求和公式是通过倒序相加法求得的.②在等差数列的五个量:a1,an ,n ,d ,Sn 中,只要已知其中的三个量就可求出其余的两个量. 4.用函数的观点审视等差数列(1)等差数列的通项公式an =a1+(n -1)d 可以化为an =dn +a1-d ,进一步可表示为an =dn +b(这里b =a1-d ,a1是首项,d 为公差).①若d =0,则an =a1.等差数列{an}为常数列,图象为平行于x 轴的直线y =a1上的横坐标为正整数的一些孤立点,如图所示.②若d≠0,则等差数列{an}的图象为直线y =dx +b 上的横坐标为正整数的一些孤立点. 特别地,由通项公式得 d =an -am n -m =f n -f m n -m.这就是解析几何中的斜率公式,因此公差d 是直线y =dx +b 的斜率. 由斜率的意义可知:当d >0时,{an}为递增的等差数列;如图1所示,当d <0时,等差数列{an}单调递减.如图2所示.(2)由Sn =na1+12n(n -1)d 得Sn =d 2n2-12(d -2a1)n.∴当d≠0时,等差数列的前n 项和Sn 是n 的二次函数.其图象是抛物线y =d 2x2-12(d -2a1)x 上横坐标为正整数的一些孤立点.特别地当d >0时,这些点都分布在开口向上、对称轴为x =d -2a12d的抛物线上,如图3所示.当d <0时,这些点都分布在开口向下,对称轴为x =d -2a12d的抛物线上,如图4所示.由此可知,当d >0时Sn 存在最小值,当d <0时,Sn 存在最大值.5.等差中项的定义和性质(1)定义:三个数a 、b 、c 成等差数列,则b 为a 和c 的等差中项. (2)性质:a 、b 、c 成等差数列的充要条件是b =a +c2.说明:这一性质不仅描述了成等差数列的三个数之间的一种数量关系,而且指明了等差中项就是另外两个数的算术平均数.根据这一性质还可以作出以下两个推论.推论1:在等差数列{an}中,有an -1+an +1=2an(n≥2).推论2:在等差数列{an}中,若m ,n ,p 成等差数列,则am +ap =2an.说明:推论1指的是等差数列中的连续三项an -1,an ,an +1,根据性质显然an 是an -1与an +1的等差中项.在推论2中,m ,n ,p 成等差数列.根据等差数列的等距性,am ,an ,ap 也成等差数列.所以由性质可知am +ap =2an.(3)三个数成等差数列一般设为:a -d ,a ,a +d ;四个数成等比数列一般设为a -3d ,a -d ,a +d ,a +3d. 6.等差数列的性质(1)若公差d >0,则此数列为递增数列;若d <0,则此数列为递减数列;若d =0,则此数列为常数列.(2)有穷等差数列中,与首末两项距离相等的两项和相等.并且等于首末两项之和;特别地,若项数为奇数,还等于中间项的2倍,即a1+an =a2+an -1=a3+an -2=…=2a 中.(3)若m ,n ,p ,k ∈N*,且m +n =p +k ,则am +an =ap +ak ,其中am ,an ,ap ,ak 是数列中的项.特别地,当m +n =2p 时,有am +an =2ap.这条性质,还可以推广到有三项、四项……的情形.使用该性质时,一要注意等式两边下标和相等,二要注意等式两边和的项数应是一样多的.(4)在等差数列中,每隔相同的项抽出来的项按照原来顺序排列,构成的新数列仍然是等差数列.但剩下的项按原顺序构成的数列不一定是等差数列.(5)等差数列中连续几项之和构成的新数列仍然是等差数列.(6)若数列{an}与{bn}均为等差数列,则{man +kbn}仍为等差数列.其中m ,k 均为常数.(7)若{an}成等差数列,且Sn 为其前n 项的和,则Sm ,S2m -Sm ,S3m -S2m ,…成等差数列. (8)项数为偶数2n 的等差数列{an},有S2n =n(a1+a2n)=…=n(an +an +1)(an 与an +1为中间的两项); S 偶-S 奇=nd ;S 奇S 偶=anan +1.项数为奇数(2n -1)的等差数列{an},有 S2n -1=(2n -1)an(an 为中间项); S 奇-S 偶=an ;S 奇S 偶=nn -1.S 奇、S 偶分别为数列中所有奇数项的和与所有偶数项的和.(9)在等差数列中,若ap =q ,aq =p ,则ap +q =0;若Sm =n ,Sn =m ,则Sm +n =-(m +n).典 例 对 对 碰题型一 求等差数列的基本量 例1在等差数列{an}中,(1)已知a15=33,a45=153,求a61; (2)已知S8=48,S12=168,求a1和d ; (3)已知a6=10,S5=5,求a8和S8.解析 (1)解法一:设首项为a1,公差为d ,依条件,得⎩⎪⎨⎪⎧ 33=a1+14d ,153=a1+44d ,解方程组,得⎩⎪⎨⎪⎧a1=-23,d =4,∴a61=-23+(61-1)×4=217. 解法二:由d =an -am n -m ,得d =a45-a1545-15=153-3330=4,由an =am +(n -m)d ,得a61=a45+16d =153+16×4=217. (2)∵Sn =na1+12n(n -1)d ,∴⎩⎪⎨⎪⎧8a1+28d =48,12a1+66d =168, 解方程组,得⎩⎪⎨⎪⎧ a1=-8,d =4.(3)∵a6=10,S5=5,∴⎩⎪⎨⎪⎧a1+5d =10,5a1+10d =5,解方程组,得⎩⎪⎨⎪⎧a1=-5,d =3,∴a8=a6+2d =10+2×3=16,S8=8a1+a82=44.变式迁移1在等差数列{an}中,S10=120,那么a1+a10的值是( ) A .12 B .24 C .36 D .48 答案 B解析 根据已知条件10a1+10×92d =120, 即2a1+9d =24,∴a1+a10=2a1+9d =24.题型二 等差数列的判定例2两个数列{an}和{bn}满足bn =a1+2a2+…+nan1+2+…+n求证:(1)若{bn}为等差数列,数列{an}也是等差数列; (2)(1)的逆命题也成立.证明 (1)由已知得a1+2a2+…+nan =12n(n +1)bn ,a1+2a2+…+(n +1)an +1=12(n +1)(n +2)·bn +1,∴an +1=12(n +2)bn +1-12n·b.∴an +1-an =32(bn +1-bn)为常数,∴{an}为等差数列.(2)逆命题:两个数列{an}和{bn}满足bn =a1+2a2+…+nan1+2+…+n ,若{an}为等差数列,则{bn}也为等差数列.由已知得an =12(n +1)bn -12(n -1)·bn -1,an +1=12(n +2) ·bn +1-12n·bn ,∴an +1-an =32(bn +1-bn)为常数,∴bn +1-bn =23(an +1-an)为常数,∴数列{bn}也为等差数列.点评 本例是数列与四种命题的综合题,本题的关键有二:一是用定义证明等差数列,二是逆命题与原命题的关系.变式迁移2在数列{an}中,a1=1,且an =2S2n 2Sn -1(n≥2).证明数列{1Sn }是等差数列,并求Sn.解析 由已知得Sn -Sn -1=2S2n2Sn -1.去分母得(2Sn -1)(Sn -Sn -1)=2S2n ,Sn -1-Sn =2SnSn -1,两边同除以SnSn -1, 得1Sn -1Sn -1=2. ∴{1Sn }是以1S1=1a1=1为首项、2为公差的等差数列,故 1Sn =1S1+(n -1)·2=2n -1(n≥2). 经验证n =1时也成立,所以Sn =12n -1 (n ∈N*).题型三 等差数列的性质及应用例3已知两个等差数列{an},{bn}的前n 项和分别为An ,Bn ,且An Bn =7n +45n +3,则使得anbn 为整数的正整数n的个数是( )A .2B .3C .4D .5解析 ∵A2n -1B2n -1=2n -1a1+a2n -122n -1b1+b2n -12=2an 2bn =anbn , ∴an bn =A2n -1B2n -1=72n -1+452n -1+3=7n +19n +1=7+12n +1,∴当n =1,2,3,5,11时,anbn为整数,故选D.答案 D点评 对等差数列性质的考查是高考的重点,解题的关键是要敏锐地观察出题中各项的脚标间的数量关系,本题只有深入理解Sn 公式中隐含的性质,才能灵活地利用S2n -1公式中的a1+a2n -1与an 的关系.变式迁移3已知方程(x2-2x +m)(x2-2x +n)=0的四个根组成一个首项为14的等差数列,则|m -n|等于( )A .1 B.34C.12D.38 答案 C解析 设a1=14,a2=14+d ,a3=14+2d ,a4=14+3d ,而方程x2-2x +m =0的两根之和为2,x2-2x +n =0的两根之和也是2.∴a1+a2+a3+a4=1+6d =4,∴d =12.即|m -n|=|14×74-34×54|=12.题型四 等差数列的前n 项和的性质例4已知{an}为等差数列,Sn =m ,Sm =n ,其中m≠n ,m ,n ∈N*,求Sm +n.分析 分析1:由已知,可设等差数列的基本量a1,d ,据Sn =m 与Sm =n ,列方程组求出a1,d ,再代入前n 项和公式求Sm +n.分析2:根据等差数列前n 项和公式为不含常数项的二次函数关系式,因此可设Sn =An2+Bn ,据Sm 与Sn 列方程组建立A 与B 的关系,再求Sm +n.分析3:从前n 项和的定义Sn =a1+a2+…+an 入手,结合等差数列的性质:当m +n =p +q 时,有am +an =ap +aq(m ,n ,p ,q 均为正整数)来求解. 解析 解法一:设首项为a1,公差为d ,则⎩⎨⎧m =na1+n n -12d ,n =ma1+mm -12d ,解得⎩⎨⎧a1=n2+m2+mn -m -nmn,d =-2m +nmn .∴Sm +n =(m +n)a1+m +nm +n -12d=-(m +n).解法二:设Sx =Ax2+Bx ,则⎩⎪⎨⎪⎧Am2+Bm =n , ①An2+Bn =m , ② ①-②得A(m2-n2)+B(m -n)=n -m , ∵m≠n ,∴A(m +n)+B =-1,∴Sm +n =A(m +n)2+B(m +n)=-(m +n). 解法三:Sm -Sn =n -m =an +1+an +2+…+am =m -n2·(an +1+am). ∴an +1+am =a1+an +m =-2, ∴Sm +n =-(m +n).点评 涉及等差数列的前n 项和的问题,一般思路是从前n 项和公式入手,设基本量,列方程组解基本量,若考虑数列的函数特征,也可以设Sn =An2+Bn ,而解法三是利用了等差数列的基本性质.变式迁移4等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32:27,求公差d. 解析 ⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶S 奇=3227.∴⎩⎪⎨⎪⎧S 奇=162,S 偶=192. 又S 偶-S 奇=30=6d ,∴d =5.题型五 等差数列前n 项和的最值问题例5等差数列{an}中,a1=25,S17=S9,问数列前多少项的和最大,并求此最大值.解析 解法一:⎩⎪⎨⎪⎧a1=25,S17=S9.则17a1+17×162d =9a1+9×82d ,d =-2.从而Sn =25n +nn -12(-2)=-(n -13)2+169. 故前13项的和最大,最大值是169. 解法二:Sn =d 2n2+(a1-d2)n (d <0).Sn 的图象是开口向下的抛物线上一群离散的点,最高点的纵坐标为9+172,即S13最大(如图).由解法一知,a1=25,d =-2. ∴S13=169.点评 数列是特殊的函数.以上两种解题思路均是转化为函数中求最值的方法,即利用单调性、配方转化为二次函数以及数形结合等.还可根据an≥0且an +1≤0求出n 值.变式迁移5设等差数列{an}的前n 项和为Sn ,已知a3=12,S12>0,S13<0. (1)求公差d 的取值范围;(2)指出S1、S2、…、S12中哪一个值最大,说明理由.解析 (1)由⎩⎪⎨⎪⎧a3=a1+2d =12,S12=12a1+12×112d >0,S13=13a1+13×122d <0,得-247<d <-3.(2)∵S12=6(a1+a12)=6(a6+a7)>0, S13=13a1+a132=13a7<0,∴a6>0且a7<0,故S6最大.【教师备课资源】题型六 两等差数列中的公共项问题例6两个等差数列{an}:5,8,11,…和{bm}:3,7,11,…都有100项,问它们有多少个共同的项. 解析 解法一:∵an =5+(n -1)×3=3n +2, bm =3+(m -1)×4=4m -1,∴两数列共同的项需3n +2=4m -1, ∴n =43m -1,而n ∈N*,m ∈N*∴设m =3r(r ∈N*),得n =4r -1.⎩⎪⎨⎪⎧1≤3r≤100,1≤4r -1≤100. ∴1≤r≤25,∴共有25个共同的项.解法二:设两数列共同项组成新数列{Cn},则C1=11, 又an =3n +2,bm =4m -1,由题意知{Cn}为等差数列,且公差d =12, ∴Cn =11+(n -1)×12=12n -1. 又∵a100=302,b100=399,∴Cn =12n -1≤302,由n ∈N*得n≤25, ∴两数列有25个共同的项.点评 可以看出,新数列的公差应是原来两数列的公差的最小公倍数.变式迁移6在[1000,2000]内能被3整除且被4除余1的整数共有多少个?解析 设{an}为[1000,2000]内能被3整除且被4除余1的整数由小到大组成的数列, 由题意知{an}为等差数列,且首项a1=1005,公差d =12, ∴an =1005+(n -1)×12=12n +993. ∵an≤2000,即12n +993≤2000, 解得n≤831112,由n ∈N*得n≤83,∴数列项数为83,即符合题意的整数共有83个.题型七 数据表中的等差数列 例7在下表所示的5×5正方形的25个空格中填入正整数,使得每一行,每一列都成等差数列,则标有*号的空格中的数是________.*742y 186 y 103 0x2x解析 记aij 为从上到下第i 行,从左到右第j 列的空格中所填的数,则a52=x ,a41=y.由第3行得a33=2y +1862,由第3列得a33=2×103-2x ,所以2x +y =113. ① 由第2行得a23=2×74-3y ,由第3列得a23=2a33-103=3×103-4x ,所以148-3y =3×103-4x , 整理得4x -3y =161. ② 联立①②解得x =50,y =13. 所以a15=2×186-a55=2×186-4x =172, a13=2a33-a53=112,故a14=a13+a152=142.答案 142点评 数据表数列问题均有一 定的规律,破解数据表数列问题的关键就是要能够敏锐地捕捉数据表数列分组信息中的规则,合理巧妙地运用由特殊到一般及由一般到特殊的思想解决问题.变式迁移7下表给出一个“ 4 7 () () () … a1j … 7 12 () () () … a2j … () () () () () … a3j … () () () () () … a4j … … … … … … … … … ai1 ai2 ai3 ai4 ai5 … aij … …………………(1)写出a45的值;(2)写出aij 的计算公式;(3)证明:正整数N 在该等差数阵中的充要条件是2N +1可以分解成两个不是1的正整数之积. 解析 (1)该等差数阵的第一列是首项为4,公差为3的等差数列,∴a41=4+3×(4-1)=13,第二列是首项为7,公差为5的等差数列,∴a42=7+5×(4-1)=22,故第四行是首项为13,公差为9的等差数列,∴a45=13+9×(5-1)=49.(2)该等差数阵的第一行是首项为4,公差为3的等差数列,∴a1j =4+3(j -1),第二行是首项为7,公差为5的等差数列,∴a2j =7+5(j -1),…,第i 行是首项为4+3(i -1),公差为2i +1的等差数列,因此aij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i(2j +1)+j.(3)证明:必要性:若N 在该等差数阵中,则存在正整数i ,j 使得N =i(2j +1)+j ,从而2N +1=2i(2j +1)+2j +1=(2i +1)(2j +1),即正整数2N +1可以分解成两个不是1的正整数之积. 充分性:若2N +1可以分解成两个不是1的正整数之积,由于2N +1是奇数,则它必为两个不是1的奇数之积,即存在正整数k ,l ,使得2N +1=(2k +1)(2l +1),从而N =k(2l +1)+l =akl ,可见N 在该等差数阵中.综上所述,正整数N 在该等差数阵中的充要条件是2N +1可以分解成两个不是1的正整数之积.方 法 路 路 通1.通项公式与前n 项和公式联系着五个基本量a1、d(或q)、n 、an 、Sn.“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.2.判断一个数列是等差数列或等比数列,常用的方法是这两类数列的定义.特别地,当判断三个实数a ,b ,c 成等差数列时,常用a +c =2b.3.在求等差数列前n 项和的最大(小)值时,常利用函数的思想和方法加以解决. 4.数列{an}为等差数列,前n 项和为Sn ,数列{|an|}的前n 项和为Tn. ①若ak >0,ak +1<0,即先正后负,则Tn =⎩⎪⎨⎪⎧Sn n≤k2Sk -Sn , n≥k +1.②若ak <0,ak +1>0,即先负后正,则Tn =⎩⎪⎨⎪⎧-Sn n≤kSn -2Sk , n≥k +1.5.两等差数列间的关系若{an},{bn}分别是公差为d1和d2的等差数列,则 ①设它们的前n 项和分别是Sn 和Tn , 则有an bn =S2n -1T2n -1②数列{k1an +k2bn}(其中k1、k2为常数)是公差为k1d1+k2d2的等差数列.正 误 题 题 辨例已知数列{an}的通项公式是an =4n -25,求数列{|an|}的前n 项和. 错解 错解一:∵an =4n -25 an +1=4(n +1)-25 an +1-an =4 a1=4×1-25=-21所以,数列{an}是以-21为首项,以4为公差的等差数列.从而可得数列{|an|}是以21为首项,以-4为公差的等差数列,其前n 项和Sn =21n +n n -12×(-4)=-2n2+23n错解二:an =4n -25;an +1=4(n +1)-25;an +1-an =4;a1=4×1-25=-21. 所以数列{an}是以-21为首项,以4为公差的递增等差数列.令⎩⎪⎨⎪⎧an =4n -25<0 ①an +1=4n +1-25≥0 ② 由①得n <614由②得n≥514所以n =6即数列{an}的前6项为负值,从第7项起以后各项均为非负值. 所以数列{|an|}的前6项是首项为21,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列. |a7|=a7=4×7-25=3所以数列{|an|}的前n 项和为 ⎩⎨⎧21n +n n -12-4 n≤63n +n n -12×4 n≥7=⎩⎪⎨⎪⎧-2n2+23n n≤62n2+n n≥7点击 错解一中把数列{an}各项的符号都看成了负号,事实上是不可能的,因为首项为负,而公差为正.错解二对数列前n 项和Sn 的含义认识不深刻,得出数列{|an|}前n 项和的表达式,当n≥7时的情况,忽略了数列的前6项,因而导致错误. 正解 an =4n -25 an +1=4(n +1)-25 an +1-an =4 a1=4×1-25=-21.所以数列{an}是以-21为首项,以4为公差的递增等差数列.令⎩⎪⎨⎪⎧an =4n -25<0 ①an +1=4n +1-25≥0 ② 由①得n <614;由②得n≥514所以n =6即数列{|an|}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列. 而|a7|=a7=4×7-25=3设{an}和{|an|}的前n 项和分别为Sn 、Tn 则Tn =⎩⎨⎧21n +n n -12×-4 n≤6-S6+3n -6+n -6n -72×4n≥7=⎩⎪⎨⎪⎧-2n2+23n n≤62n2-23n +132 n≥7。
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4. 答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5. 答案 S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( ) A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d , 依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10. 答案 (1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( ) A.3 B.4 C.log 318 D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2, 解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318, ∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d , 由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列. 【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23.=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3, ∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质, ∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8. ∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A 考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0, 因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2). 所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2nλ. (2)当a 1>0,λ=100时,由(1)知,a n =2n100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n=2-n lg 2,所以数列{b n }是单调递减的等差数列,公差为-lg 2, 所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值. ①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn=na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列. 2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. (2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组 (建议用时:40分钟)一、选择题1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a 100=a 1+99d =-1+99=98. 答案 C2.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.12 解析 由于S 11S 9=11a 69a 5=119×911=1. 答案 A 3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A.10B.20C.30D.40解析 依题意,11x n +1-11x n=x n +1-x n =d , ∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.答案 B4.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65. ∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.答案 B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4 B.5 C.6 D.4或5 解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4, 即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.答案 B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________. 解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n =2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111. 答案 1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案 200三、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269. 答案 B12.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( ) A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎪⎨⎪⎧2a 7=26,9a 5=81,解得⎩⎪⎨⎪⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2,∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.新高考创新预测15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.解析 由{a n }为等差数列,得数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1,公差为d 2的等差数列,∵S 55-S 44=2,∴d 2=2⇒d =4,又S 2=S 6⇒2a 1+4=6a 1+6×52×4⇒a 1=-14. 答案 -14 4。
课时规范练A 组 基础对点练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14 D.12解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.答案:B2.等差数列{a n }中,a 1=1,a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( )A .3,7,9,15,100B .4,10,12,34,100C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B. 答案:B3.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5,故选A. 答案:A4.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( )A .-2B .0C .2D .4 解析:设等差数列{a n }的公差为d ,∵S 8-S 4=36,a 6=2a 4,∴⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫8a 1+8×72d -⎝ ⎛⎭⎪⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎨⎧a 1=-2,d =2.故选A. 答案:A 5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A .12B .13C .14D .15解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.答案:B6.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:由题意可知,⎩⎨⎧a 1+4d =3,a 1+9d =8,解得a 1=-1,d =1,所以a 100=-1+99×1=98.答案:C7.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38, 解得n =10.答案:108.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5.答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值.(2)已知数列{b n }满足b n =S n n ,证明数列{b n }是等差数列,并求其前n 项和T n .解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a=8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *). (1)求证:数列{b n }为等差数列;(2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n,且a n =a n -12a n -1+1, ∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n, ∴b n +1-b n =2a n +1a n -1a n=2. 又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列. (2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. B 组 能力提升练11.(2019·唐山统考)已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .6解析:设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.答案:D12.已知数列{a n }是等差数列,数列{b n }是等比数列,公比为q ,数列{c n }中,c n=a n b n ,S n 是数列{c n }的前n 项和.若S m =11,S 2m =7,S 3m =-201(m 为正偶数),则S 4m 的值为( )A .-1 601B .-1 801C .-2 001D .-2 201解析:令A =S m =11,B =S 2m -S m =-4,C =S 3m -S 2m =-208, 则q m ·A =(a 1b 1+a 2b 2+…+a m b m )q m =a 1b m +1+…+a m b 2m .故B -q m ·A =(a m +1-a 1)b m +1+…+(a 2m -a m )b 2m =md (b m +1+…+b 2m ),其中,d 是数列{a n }的公差,q 是数列{b n }的公比.同理C -q m ·B =md (b 2m +1+…+b 3m )=md (b m +1+…+b 2m )·q m ,故C -q m ·B =q m (B -q m ·A ).代入已知条件,可得11(q m )2+8q m -208=0,解得q m =4或q m =-5211(因m 为正偶数,舍去).又S 4m -S 3m =(a 1b 1+a 2b 2+…+a m b m )q 3m +3md (b m +1+…+b 2m )q 2m =11×43+3(B -q m ·A )×42=11×43-3×12×43=-1 600.故S 4m =S 3m -1 600=-1 801.答案:B13.(2019·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( )A .9B .10C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值,故选B.答案:B14.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n=2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6, 因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941. 所以a 6b 6=1941. 答案:194115.(2019·银川模拟)在等差数列{a n }中,已知a 3=7,a 6=16,依次将等差数列的各项排成如图所示的三角形数阵,则此数阵中,第10行从左到右的第5个数是________.解析:由题知公差d =a 6-a 36-3=16-73=3,所以a n =7+(n -3)d =3n -2,第10行从左到右的第5个数是原等差数列中第1+2+…+9+5=50项,即为 a 50=3×50-2=148.答案:14816.(2019·太原模拟)设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0.(1)求S n 的最小值及此时n 的值.(2)求n 的取值集合,使其满足a n ≥S n .解析:(1)设公差为d ,则由S 2 015=a 1+2 015×2 0142d =a 1+1 007d =0,d =-11 007a 1,a 1+a n =2 015-n 1 007a 1,所以S n =n 2(a 1+a n )=n 2·20 15-n 1 007a 1=a 12 014(2 015n -n 2 ).因为a 1<0,n ∈N *,所以当n =1 007或1 008时,S n 取最小值504a 1.(2)a n =1 008-n 1 007a 1,S n ≤a n a 12 014(2 015n -n 2)≤1 008-n 1 007a 1.因为a 1<0,所以n 2-2 017n +2 016≤0, 即(n -1)(n -2 016)≤0,解得1≤n ≤2 016.故所求n 的取值集合为{n |1≤n ≤2 016,n ∈N *}.。
课题:必修⑤2.2等差数列三维目标:1.知识与技能(1)通过实例,理解等差数列、公差的概念,明确一个数列是等差数列的限定条件;(2)了解等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)体会等差数列与一次函数的关系。
2.过程与方法(1)让学生对日常生活中实际问题分析,经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。
并引导学生通过观察,推导,归纳抽象出等差数列的概念;(2)引导学生建立等差数列模型用相关知识解决一些简单的实际问题,在合作探究的过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究;(3)培养学生的观察能力,进一步提高学生的推理归纳能力;(4)培养学生分析问题、解决问题的能力与钻研精神,培养学生的运算能力、严谨的思维习惯以与解题的规范性。
3.情态与价值观(1)通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;(2)借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗;(3)通过对数列知识的学习与探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神,并进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验。
教学重点:1.理解等差数列的概念与其性质,探索并掌握等差数列的通项公式;2.会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:1.概括通项公式推导过程中体现出的数学思想方法。
2.等差数列通项公式与性质的灵活运用教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★同学们,上两节课我们学习了数列的定义与相关的性质,下面,请同学们简单地回顾一下:什么是数列?什么是数列的项?数列有几种分类方法?什么是数列的通项公式?什么是数列的递推公式?★在日常生活中,我们经常会遇到一类特殊的数列。
2022届高考数学一轮复习第五章第二节等差数列及第二节等差数列及其前n项和[全盘巩固]1.已知等差数列{an}的前n项和为Sn,a4=15,S5=55,则数列{an}的公差是()1A.B.4C.-4D.-34解析:选B∵{an}是等差数列,a4=15,S5=55,∴a1+a5=22,∴2a3=22,a3=11,∴公差d=a4-a3=4.2.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.27S3=3a1+3d=9,解析:选B设等差数列{an}的公差为d,依题意得6某5S=36,6=6a1+2=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.3.(2022·辽宁高考)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;anp3:数列是递增数列;np4:数列{an+3nd}是递增数列.解得a1其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析:选D∵{an}是等差数列,∴设an=a1+(n-1)d.∵d>0,∴{an}是递增数列,故a1-da1-d3p1是真命题;nan=dn2+(a1-d)n的对称轴方程为n=-当-时,由二次函数2d2d2anana1-d的对称性知a1>2a2,{nan}不是递增数列,p2=d+,当a1-d>0时,是nnn递减数列,p3是假命题;an+3nd=4nd+a1-d,4d>0,{an+3nd}是递增数列,p4是真命题.故p1,p4是真命题.4.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.用Sn表示{an}的前n项和,则使得Sn达到最大值的n是()A.21B.20C.19D.18解析:选B∵a1+a3+a5=105,a2+a4+a6=99,∴3a3=105,3a4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.某令an≥0且an+1≤0,n∈N,则有n=20.5.已知Sn为等差数列{an}的前n项和,若S1=1=4,则的值为()935 A.B..4423解析:选A由等差数列的性质可知S2,S4-S2,S6-S44,得S4S2S6S4S4S2S4-S2S2S69=3,则S6-S4=5S2,所以S4=4S2,S6=9S2,=.S44某6.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N).若b3=-2,b10=12,则a8=()A.0B.3C.8D.11解析:选B因为{bn}是等差数列,且b3=-2,b10=12,12--某故公差d==2.于是b1=-6,且bn=2n-8(n∈N),即an+1-an=2n-8.10-3所以a8=a7+6=a6+4+6=a5+2+4+6=…=a1+(-6)+(-4)+(-2)+0+2+4+6=3.7.在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=________.-d解析:a1+a2+…+a7=7a1+=21d,2而ak=a1+(k-1)d=(k-1)d,所以(k-1)d=21d,d≠0,故k=22.答案:228.在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5·a6的最大值为________.解析:∵a1+a2+…+a10=30,a1+a10即30,a1+a10=6,∴a5+a6=6,2a5+a62=9.∴a5·a6≤2答案:929.已知等差数列{an}中,an≠0,若n>1且an-1+an+1-an=0,S2n-1=38,则n=________.2解析:∵2an=an-1+an+1,an-1+an+1-an=0,2∴2an-an=0,即an(2-an)=0.∵an≠0,∴an=2.∴S2n-1=2(2n-1)=38,解得n=10.答案:10 1213某10.设Sn是数列{an}的前n项和且n∈N,所有项an>0,且Snn+an -.424(1)证明:{an}是等差数列;(2)求数列{an}的通项公式.1213解:(1)证明:当n=1时,a1=S1=a11-,424解得a1=3或a1=-1(舍去).当n≥2时,112an=Sn-Sn-1(a2n+2an-3)an-1+2an-1-3).4422∴4an=an-an-1+2an-2an-1.即(an+an-1)(an-an-1-2)=0.∵an+an-1>0,∴an-an-1=2(n≥2).∴数列{an}是以3为首项,2为公差的等差数列.(2)由(1)知an=3+2(n-1)=2n+1.11.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求通项公式an;(2)求Sn的最小值;(3)若数列{bn}是等差数列,且bn=,求非零常数c.n+c解:(1)∵数列{an}为等差数列,∴a3+a4=a2+a5=22.又a3·a4=117,2∴a3,a4是方程某-22某+117=0的两实根,又公差d>0,∴a3<a4,∴a3=9,a4=13,Sna1+2d=9,∴a1+3d=13,a1=1,∴d=4.∴通项公式an=4n-3.(2)由(1)知a1=1,d=4,nn-1212∴Sn=na1+d=2n-n=2n-,248∴当n=1时,Sn最小,最小值为S1=a1=1.2Sn2n-n2(3)由(2)知Sn=2n-n,∴bn=n+cn+c1615∴b1=b2=b3.1+c2+c3+c∵数列{bn}是等差数列,∴2b2=b1+b3,61152即2c+c=0,2+c1+c3+c11∴c=-或c=0(舍去),故c=-222212.已知数列{an}是等差数列,bn=an-an+1.(1)证明:数列{bn}是等差数列;(2)若a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k(k为常数),求数列{bn}的通项公式;(3)在(2)的条件下,若数列{bn}的前n项和为Sn,是否存在实数k,使Sn当且仅当n=12时取得最大值?若存在,求出k的取值范围;若不存在,请说明理由.22222解:(1)证明:设{an}的公差为d,则bn+1-bn=(an+1-an+2)-(an-an+1)=2an+1-(an+1222-d)-(an+1+d)=-2d,2(2)∵a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k,∴13d=13-13k,∴d=1-k,-又13a1+某2d=130,∴a1=-2+12k,2∴an=a1+(n-1)d=(-2+12k)+(n-1)(1-k)=(1-k)n+13k-3,2222∴bn=an-an+1=(an+an+1)(an-an+1)=-2(1-k)n+25k-30k+5.(3)存在满足题意的实数k.由题意可知,当且仅当n=12时Sn最大,则b12>0,b13<0,22-k+25k-30k+5>0,-即22--k+25k-30k+5<0,k+18k-19>0,∴2k-22k+21>0,2解得k<-19或k>21.故k的取值范围为(-∞,-19)∪(21,+∞).[冲击名校]a11a12a13a32a33等差数列,若a22=8,则这9个数的和为()A.16B.32C.36D.72解析:选D依题意得a11+a12+a13+a21+a22+a23+a31+a32+a33=3a12+3a22+3a32=9a22=72.2.(2022·新课标全国卷Ⅱ)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.311.已知数阵aa21a22a23中,每行的3个数依次成等差数列,每列的3个数也依次成10a1+45d=0,,得15a1+105d=25,解析:由Sn=na1nn-22解得a1=-3,d=,3nn-212则Sn=-3n+n-10n),233132所以nSn=(n-10n),3132令f(某)=(某-10某),320222则f′(某)=某-=某某,3320当某∈1,时,f(某)单调递减;320当某∈时,f(某)单调递增,320又,f(6)=-48,f(7)=-49,3所以nSn的最小值为-49.答案:-49[高频滚动]21.已知数列{an}的前n项和Sn=-n+3n,若an+1an+2=80,则n的值为()A.5B.4C.3D.22解析:选A由Sn=-n+3n,可得an=4-2n,因此an+1·an+2=[4-2(n+1)][4-2(n+2)]=80,即n(n-1)=20,解得n=-4(舍去)或n=5.2n2.已知数列{an},{bn}满足a1=1,且an,an+1是函数f(某)=某-bn某+2的两个零点,则b10=________.nn+1解析:∵an+an+1=bn,an·an+1=2,∴an+1·an+2=2,∴an +2=2an.nn-1某又∵a1=1,a1·a2=2,∴a2=2,∴a2n=2,a2n-1=2(n∈N),∴b10=a10+a11=64.答案:64。