求阴影部分的面积
- 格式:docx
- 大小:238.58 KB
- 文档页数:7
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规蒈则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:蒇一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面袁例如,下图中,要求整个图形的面积,只要先求出上面积,然后相加求出整个图形的面积..半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了薀衿羅二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积袄.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可差.蚀羆蚇蚃三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右螀的三角形,其面积直42、高是上图,欲求阴影部分的面积,通过分析发现它就是一个底是1?2?4?4。
:接可求为|2莇莂四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组袀例如,欲求下图中阴影部分面积,可以.合成一个新的图形,设法求出这个新图形面积即可. 把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了螈蒅袆袀五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图膈如下图,求两个正方形中转化成若干个基本规则图形,然后再采用相加、相减法解决即可..此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便阴影部分的面积.芄膃羀六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本蕿例如,如下图,欲求阴影部分的面积,只需把右边弓形切.规则图形,从而使问题得到解决.割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半肆羂七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成肀例如,如下图,欲求阴影部分面积,可先沿中间切.一个新的基本规则图形,便于求出面积开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
求阴影部分面积的几种常用方法阴影部分的面积是指在形成的阴影中,被物体遮挡的部分面积。
计算阴影面积在多个领域中都有一定的应用,例如建筑设计、图像处理、计算机视觉等。
下面将介绍几种计算阴影部分面积的常用方法。
1.几何法几何法是最常见且简单的计算阴影面积的方法。
在平行光源的情况下,可以直接使用几何法计算阴影面积。
首先,需要知道光源的位置和物体的形状。
然后,可以通过光线和物体边缘的交点来确定阴影边缘,从而计算出阴影部分的面积。
这种方法在二维平面上的阴影计算中适用,但需要事先获得物体的准确形状和光源的位置。
2.正投影法正投影法是一种常用的计算阴影面积的方法。
在三维空间中,通过将物体和光源投影到一个平面上,然后计算投影面积来得到阴影的面积。
在计算阴影面积时,需要考虑物体的不透明度和光源的位置。
正投影法可以适用于复杂的物体和不同类型的光源。
3.体积投影法体积投影法是一种计算阴影面积的高级方法。
它首先将物体和光源之间的空间划分为多个体素(即体积像素),然后计算每个体素是否在物体的阴影区域中。
通过计算物体和光源之间的交点和遮挡关系,可以确定每个体素是否在阴影中。
最后,将位于阴影区域的体素的体积加总即可得到阴影的面积。
4.数值模拟法数值模拟法是一种计算阴影面积的复杂方法,它利用计算机模拟光线传播和物体与光线的相互作用。
该方法通过在计算机中建立一个模拟的三维场景,模拟光源的物理属性、物体的材质和几何形状,然后使用光线追踪算法模拟光线的传播和阴影的形成过程。
通过记录与阴影相关的信息,可以计算出阴影的面积。
综上所述,几何法、正投影法、体积投影法和数值模拟法是常用的计算阴影面积的方法。
选择适当的方法取决于具体的应用场景和需求。
不同的方法在准确性、计算复杂度和适用性方面存在差异,需要根据具体情况进行选择。
求阴影部分面积的常用方法天文测量学是一门应用数学知识研究天体测量问题的学科,主要研究天体距离、大小及其形状、位置等方面的几何学问题。
其中一个重要的几何问题是求阴影部分面积,已经被用于测算太阳和月亮的位置以及行星的运动规律。
求阴影部分面积的方法有多种,经过长期的研究和实际应用,衍生出了许多可以用来计算阴影部分面积的方法,这些方法包括三角求面积法、Sommerville法、Trapezoid法和向量法等。
三角求面积法是求阴影部分面积最常用的方法。
若图形由多个三角形组成,则可用此方法求出这些三角形的面积和,再求出总面积。
其求面积的公式为:$$A=frac{1}{2}cdot acdot bcdot sin({theta})$$ 其中$a$和$b$分别为三角形的两条边的长度,${theta}$为这两条边的夹角的大小。
Sommerville法是求阴影部分面积的另一种有效方法,其原理是:根据顶点和其他顶点坐标,计算阴影区域面积。
该方法在实际应用中便于编程操作,结果往往比三角求面积法更准确。
通常根据多边形表示,如:{$A_1$,$A_2$,$A_3$,$A_4$,…,$A_n$},其阴影着陆面积S由$$S=frac{1}{2}sum_{i=1}^{n}{A_icdot A_{i+1}cdotsin({theta_i})}$$得到,其中$A_i$和$A_{i+1}$分别为多边形的相邻的顶点的坐标,${theta_i}$是这两个顶点的夹角大小。
Trapezoid法是另一种求阴影部分面积的有效方法,它通过使用梯形计算阴影部分面积。
假设有一个梯形,其两个腰段的长度分别为$a$和$b$,中间部分长度为$c$,面积则有:$$A=frac{1}{2}(a+b)cdot c$$此外,研究者还衍生了以向量法求面积的方式。
假设有一个以$O(x_1,y_1)$为原点的平面,其上有一个直线段$AB((x_2,y_2)-(x_3,y_3))$,则其面积可以表示为:$$A=|(vec{OA})cdot (vec{OB})|$$其中$vec{OA}=(x_2-x_1,y_2-y_1)$和$vec{OB}=(x_3-x_1,y_3-y_1)$。
四种方法求阴影部分面积首先,我们可以使用几何方法来求解阴影部分的面积。
设阴影部分的形状为矩形,其底边的长度为a,高度为h。
阴影的边界可以用两条直线来表示,设直线1与x轴的交点为A,直线2与x轴的交点为B。
两条直线与x轴的交点之间的距离为b。
则阴影部分的面积可以用以下公式表示:A=(a+b)*h/2第二种方法是通过将阴影部分分割成多个小矩形来求解。
首先,我们将阴影部分分割成n个小矩形,每个小矩形的底边长度为ai,高度为hi。
则阴影部分的面积可以表示为以下公式的和:A = ∑(ai * hi)其中i的范围从1到n。
第三种方法是使用积分来求解。
假设阴影部分的形状可以用函数y=f(x)来表示。
要求阴影部分的面积,我们需要找到函数f(x)的定义域上的积分区间[a,b]。
A = ∫[a, b] f(x) dx最后一种方法是使用统计学方法来求解。
假设我们已经获得了一组阴影部分的随机样本,符合一定的分布规律。
我们可以使用这组样本数据来进行统计分析,得出阴影部分的面积的估计值。
首先,我们可以计算出这组样本数据的平均值和标准差。
然后,使用均值加减一个标准差的方法,来计算阴影部分的上下边界。
根据阴影部分的上下边界和样本数据的分布,我们可以得到阴影部分面积的估计值。
需要注意的是,这种方法求得的阴影部分面积只是一个估计值,可能存在一定的误差。
综上所述,我们可以用几何法、分割法、积分法和统计法来求解阴影部分的面积。
每种方法都有自己的优缺点和适用范围,选择合适的方法取决于具体情况和问题要求。
求阴影部分面积的方法在几何学中,求阴影部分的面积是一个常见的问题。
阴影部分的面积可以通过多种方法来计算,本文将介绍几种常用的方法。
一、几何图形分割法。
在几何图形分割法中,我们可以将阴影部分分割成几个简单的几何图形,然后分别计算每个图形的面积,最后将它们相加得到阴影部分的面积。
这种方法适用于较为规则的几何图形,如矩形、三角形等。
二、积分法。
对于较为复杂的曲线或曲面的阴影部分,我们可以利用积分法来求解。
通过建立适当的坐标系和积分限,我们可以将阴影部分的面积表示为一个定积分,通过积分计算得到阴影部分的面积。
三、几何变换法。
在一些特殊情况下,我们可以利用几何变换来求解阴影部分的面积。
例如,通过平移、旋转、镜像等几何变换,将阴影部分变换成一个已知的几何图形,然后计算这个已知几何图形的面积,最后根据几何变换的性质得到阴影部分的面积。
四、数值逼近法。
对于一些无法通过解析方法求解的阴影部分,我们可以利用数值逼近法来求解。
通过将阴影部分分割成若干小区域,然后分别计算每个小区域的面积,最后将它们相加得到阴影部分的面积的近似值。
五、利用计算机软件求解。
在现代科技条件下,我们还可以利用计算机软件来求解阴影部分的面积。
通过建立相应的数学模型,利用计算机软件进行数值计算,可以得到阴影部分的面积的精确值。
六、其他方法。
除了上述几种方法外,还有一些其他特殊的方法可以用来求解阴影部分的面积,如利用相似性、三角函数等性质来进行计算。
综上所述,求解阴影部分的面积涉及到多种方法,我们可以根据具体的情况选择合适的方法来进行计算。
在实际问题中,我们可以根据问题的特点和要求来选择合适的方法,从而求解阴影部分的面积。
希望本文介绍的方法对您有所帮助。
六年级阴影部分的面积1.求阴影部分的面积。
(单位:厘米)解:割补后如右图,易知,阴影部分面积为一个梯形。
梯形上底DE=7-4=3厘米,1S =S =DE AB)AD 2⨯+⨯阴梯形(=137)42⨯+⨯(=20(平方厘米)2、求阴影部分的面积。
解:S =S 阴梯形,梯形的上底是圆的直径,下底、高是圆的半径,S =S 阴梯形=124)22⨯+⨯(=6(2cm )3、如图,平行四边形的高是6厘米,面积是54平方厘米,求阴影三角形的面积。
解:S =AD AO ⨯ABCD =54平方厘米,且AO=6厘米,所以AD=9厘米。
由图形可知AED∆是等腰直角三角形,所以AE=AD ,OE=OF=AE-AO=9-6=3cm ,BO=BC-OC=9-3=6cm 。
1S =BO OF 2⨯⨯阴=1S =632⨯⨯阴=92cm 。
4、如图是一个平行四边形,面积是50平方厘米,求阴影积分的面积。
解:方法一:过C 点作CF AD ⊥交AD 于点F ,可知AECF 是长方形,面积=5×6=302cm ,ABE CFD S =S ∆∆=(50-30)÷2=102cm 。
方法二:BC=S ABCD ÷AE=50÷5=10cm ,BE=BC-EC=10-6=4cm ,ABE S ∆=BE ×AE ÷2 =4×5÷2=102cm5、下图是一个半圆形,已知AB=10厘米,阴影部分的面积为24.25平方厘米,求图形中三角形的高。
解:S =S -S ∆阴半圆=21AB 22π⎛⎫⨯⨯ ⎪⎝⎭-24.25=21103.1422⎛⎫⨯⨯ ⎪⎝⎭-24.25=152cm , 三角形的高=2S ∆÷AB=2×15÷10=3cm 。
6、如图,一个长方形长是10cm ,宽是4cm ,以A 点和C 点为圆心各画一个扇形,求画中阴影部分的面积是多少平方厘米?解:BECD 1S =S -S 4阴大圆=ABCD 11S -S S 44⎛⎫- ⎪⎝⎭大圆小圆=ABCD 11S +S -S 44大圆小圆=()2213.1410-4-1044⨯⨯⨯ =25.942cm 。
求与圆相关的阴影部分面积的十大方法(一)、相加法(分割法):将不规则图形分割成成几个基础规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例:下图只要先求出上面半圆的面积,再求出下面正方形的面积,然后相加即可。
(二)、相减法:将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例:下图只需先求出正方形面积再减去里面圆的面积即可。
(三)、直接求法:根据已知条件,从整体出发直接求出不规则图形面积。
例:下图阴影部分的面积,分析发现它是一个底为2,高为4的三角形,就可以直接求面积了。
(四)、重新组合法:将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。
S 阴影=S 半圆+S 正方形S 阴影=S 正方形-S 圆S 阴影=S 三角形例:下图可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。
(五)、辅助线法:根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可。
例:下图虽然可以用相减法解决,但不如添加一条辅助线后用直接法计算2个三角形面积之和更简便。
(六)、割补法:把原图形的一部分切割下来,补在图形中的另一部分,使之成为规则图形,从而使问题得到解决。
例:下图只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半。
(七)、平移法:将图形中某一部分切割下来,平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
S 阴影=S 正方形-S 圆S 阴影=S 正方形÷2S 阴影=S 三角形①+S 三角形②例:下图可先沿中间切开,把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
(八)、旋转法:将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度,贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
求图形面积的几种常用方法1、割补法:对于一些求不在一起的几块阴影面积的和,往往需要把它们通过剪割、拼补在一起,才便于计算,在剪割、拼补过程中,一定要注意割下来的图形和补上去的图形的形状、大小必须完全一样。
【例1】如图,每个小圆的半径是2厘米,求阴影部分的面积是多少平方厘米?【例2】右图中三个圆的半径都是4厘米,三个圆两两交于圆心。
求阴影部分的面积是多少平方厘米?2,重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,求下图中阴影部分面积3、加减法:注意观察,所求阴影部分的面积看是由哪几个图形相加,再减去哪个图形变可以得到。
我们把这种通过加、减就能求出它的面积的方法,我们的把它称为“加减法”。
【例3】如图,正方形的边长为4厘米,求阴影部分的面积是多少?【例4】如图,长方形的长为12厘米,宽为8厘米,求阴影部分的面积是多少?4.辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.例如,求下图中阴影部分面积5,平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,求阴影部分面积6.对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,求下图中阴影部分的面积,7、旋转法:在求一些面积时,有时需要把某个图形进行一定方向的旋转,使之拼在一起,变成另一个比较方便求的图形。
【例5】如图,梯形ABCD的上底是3厘米,下底是5厘米,高是4厘米,E是梯形的中点。
求阴影部分的面积是多少?8、等分法:就是将整个图形,平均分成若干份,再看所求的图形的面积占多少份,从而求得阴影部分的面积。
【例6】将三角形ABC的三条边分别向外延长一倍,得到一个大的六边形,已知三角形ABC 的面积是6平方厘米,求大六边形的面积。
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米.解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
阴影部分求面积的几大方法总结
阴影部分求面积的几大方法总结:
1.直接计算法:适用于规则图形,如矩形、三角形等,直
接计算面积公式即可。
2.相减法:适用于两个有关联的规则图形,通过总面积减
去一个图形的面积得到另一个图形的面积。
3.割补法:通过切割或补充图形,将不规则图形转化为规
则图形,再利用直接计算法求解。
4.代数法:适用于较为复杂的图形,通过建立代数方程或
不等式求解面积。
5.微积分法:适用于不规则图形,利用微积分的知识求面
积。
六年级阴影部分的面积1.求阴影部分的面积。
(单位:厘米)解:割补后如右图,易知,阴影部分面积为一个梯形。
梯形上底DE=7-4=3厘米,1S =S =DE AB)AD 2⨯+⨯阴梯形(=137)42⨯+⨯(=20(平方厘米)2、求阴影部分的面积。
解:S =S 阴梯形,梯形的上底是圆的直径,下底、高是圆的半径,S =S 阴梯形=124)22⨯+⨯(=6(2cm )3、如图,平行四边形的高是6厘米,面积是54平方厘米,求阴影三角形的面积。
解:S =AD AO ⨯ABCD =54平方厘米,且AO=6厘米,所以AD=9厘米。
由图形可知AED ∆是等腰直角三角形,所以AE=AD ,OE=OF=AE-AO=9-6=3cm ,BO=BC-OC=9-3=6cm 。
1S =BO OF 2⨯⨯阴=1S =632⨯⨯阴=92cm 。
4、如图是一个平行四边形,面积是50平方厘米,求阴影积分的面积。
解:方法一:过C 点作CF AD ⊥交AD 于点F ,可知AECF 是长方形,面积=5×6=302cm ,ABE CFD S =S ∆∆=(50-30)÷2=102cm 。
方法二:BC=S ABCD ÷AE=50÷5=10cm ,BE=BC-EC=10-6=4cm ,ABE S ∆=BE ×AE ÷2 =4×5÷2=102cm5、下图是一个半圆形,已知AB=10厘米,阴影部分的面积为24.25平方厘米,求图形中三角形的高。
解:S =S -S ∆阴半圆=21AB 22π⎛⎫⨯⨯ ⎪⎝⎭-24.25=21103.1422⎛⎫⨯⨯ ⎪⎝⎭-24.25=152cm , 三角形的高=2S ∆÷AB=2×15÷10=3cm 。
6、如图,一个长方形长是10cm ,宽是4cm ,以A 点和C 点为圆心各画一个扇形,求画中阴影部分的面积是多少平方厘米?解:BECD 1S =S -S 4阴大圆=ABCD 11S -S S 44⎛⎫- ⎪⎝⎭大圆小圆=ABCD 11S +S -S 44大圆小圆=()2213.1410-4-1044⨯⨯⨯ =25.942cm 。
阴影部分面积计算一、直接和间接方法求阴影部分面积例1:已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。
1、如图,ABCD是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE的面积。
A 匚5F 122、已知正方形甲的边长是8厘米,正方形乙的面积是36平方厘米,那么图中阴影部分的面积是多少?______________3、求右图中阴影部分图形的面积及周长。
二、割补法求阴影部分的面积例1:求下图中阴影部分的面积。
2.求右图中阴影部分的面积。
三、等量代换法求阴影部分的面积例3:右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)4JT.1C 1、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
(单位:厘米) ECB 的直角边EC 长8厘 1.求右图中阴影部分的面积。
例4:在右图中,平行四边形 ABCD 的边BC 长10厘米,直角三角形米。
已知阴影部分的总面积比三角形 EFG 的面积大10平方厘米,求平行四边形ABCD 的面积。
4 W 1210厘例4:右图是一块长方形公园绿地,绿地长 24米,宽16米,中间有一条宽为2米的道路, 1、下图的长方形是一块草坪,中间有两条宽 1米的走道,求植草的面积。
1在右图中,三角形 EDF 的面积比三角形 ABE 的面积大75平方厘米,已知正方形 ABCD 的 边长为15厘米,(1)求三角形ACF 的面积(2) DF 的长是多少厘米?四、平移法求面积求草地(阴影部分)的面积。
五、等高求面积例5:如图,ABCD 是直角梯形,求阴影部分的面积和。
(单位:厘米)2、如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
六、按一定的比求面积把下图三角形的底边BC四等分,在下面括号里填上“〉”、“V”或甲的面积()乙的面积。
例6:如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
已知三角形的面积是108平方厘米,求三角形CDE的面积。
求阴影部分面积例1. 求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,X -2X1=(平方厘米)例3. 求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2X2 - n=平方厘米。
例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,n()X2 -16=8n -16=平方厘米另外:此题还可以看成是1 题中阴影部分的8 倍。
例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长X对角线长* 2,求)正方形面积为:5X5*2=所以阴影面积为:n* =平方厘米(注: 以上几个题都可以直接用图形的差来求, 无需割、补、增、减变形)例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2X3=6 平方厘米例11. 求阴影部分的面积。
(单位: 厘米)例2. 正方形面积是7 平方厘米, 求阴影部分的面积。
(单位: 厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r ,因为正方形的面积为7 平方厘米,所以=7 ,所以阴影部分的面积为:7-=7- X7=¥方厘米例4.求阴影部分的面积。
(单位: 厘米)解:同上,正方形面积减去圆面积,16- n()=16 -4n=平方厘米例6. 如图:已知小圆半径为2 厘米,大圆半径是小圆的3 倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)n - n ()=平方厘米(注:这和两个圆是否相交、交的情况如何无关)例8.求阴影部分的面积。
(单位: 厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:n ()=平方厘米例10.求阴影部分的面积。
求阴影面积的十种方法
阴影面积是指在光源照射下,物体投射出的阴影所覆盖的面积。
在几何学中,阴影面积是计算投影面积的一个重要概念。
对于不同形状的物体,计算其阴影面积有不同的方法,下面介绍几种常见的方法。
1. 直接计算法:对于简单的几何体,例如矩形、三角形、圆形等,可以根据相应的公式计算出其阴影面积。
2. 消影法:利用几何形体之间的消影关系计算阴影面积,这种方法适用于多个物体在同一平面上的情况。
3. 画图法:通过绘制物体投影图和阴影图,求出阴影面积。
4. 面积加减法:对于复杂物体,可以将其分解成若干个简单形体,再分别计算其阴影面积,最后将得到的结果加减得到总面积。
5. 数学模型法:利用数学模型模拟物体在光源照射下的投影过程,计算出阴影面积。
6. 三角网格法:使用三角网格模型计算阴影面积,适用于复杂非规则形状的物体。
7. 光线追踪法:通过模拟光线在场景中的传播方向,计算出阴影面积。
8. 蒙特卡罗法:通过随机生成光线投射到物体上,进行多次模拟,最终统计得到阴影面积。
9. 深度图法:通过产生一个深度图,依据深度图中的遮挡关系得出阴影区域,计算阴影面积。
10. 像素级法:将物体的每一个像素与光线相交,统计被覆盖的像素点,通过像素点的数量计算出阴影面积。
总之,计算阴影面积的方法主要取决于物体的形状和光源的位置,通过选择适合的方法,能够得到比较准确的结果。
六年级阴影部分得面积1、求阴影部分得面积。
(单位:厘米)解:割补后如右图,易知,阴影部分面积为一个梯形。
梯形上底DE=74=3厘米, ==20(平方厘米)2、求阴影部分得面积。
解:,梯形得上底就是圆得直径,下底、高就是圆得半径,==63、如图,平行四边形得高就是6厘米,面积就是54平方厘米,求阴影三角形得面积。
解:=54平方厘米,且AO=6厘米,所以AD=9厘米。
由图形可知就是等腰直角三角形,所以AE=AD,OE=OF=AEAO=96=3cm,BO=BCOC=93=6cm。
==9。
4、如图就是一个平行四边形,面积就是50平方厘米,求阴影积分得面积。
解:方法一:过C点作交AD于点F,可知AECF就是长方形,面积=5×6=30,=(5030)÷2=10。
方法二:BC=÷AE=50÷5=10cm,BE=BCEC=106=4cm,=BE×AE÷2=4×5÷2=105、下图就是一个半圆形,已知AB=10厘米,阴影部分得面积为24、25平方厘米,求图形中三角形得高。
解:=24、25=24、25=15,三角形得高=÷AB=2×15÷10=3cm。
6、如图,一个长方形长就是10cm,宽就是4cm,以A点与C点为圆心各画一个扇形,求画中阴影部分得面积就是多少平方厘米?解:====25、94。
7、如图,正方形得面积就是10平方厘米,求圆得面积。
解:正方形得边长=圆得半径,设为r,=10,=3、14×10=31、4。
8、如图,已知梯形得两个底分别为4厘米与7厘米,梯形得面积就是多少平方厘米?解:由图,易知、就是等腰直角三角形,所以AB=BE=4cm,DC=CE=7cm,BC=BE+CE=4+7=11cm,==60、5。
9、如图,ABCD就是一个长方形,AB=10厘米,AD=4厘米,E、F分别就是BC、AD 得中点,G就是线段CD上任意一点,求阴影部分得面积。
求阴影部分的面积
1如图,求阴影部分的周长(单位:米)。
2有三根直径都是2分米的圆柱形木材,想用一根绳子把它们捆成一捆,捆三圈最短需要多少分米长的绳子(打结处绳长不计)?
3根据图中给出的数据,求阴影部分的面积。
4下图是由两个正方形组合成的,其中正方形ABCD的边长4厘米,正方形EFGD的边长是6厘米,求图中阴影部分的面积。
5如图(单位:厘米),OA=OB=OC,AB=10。
求图形的面积
6如下图,△ABC是一个等腰直角三角形,AB=BC=10,求图中阴影部分的面积。
(单位:分米)
7把半径分别是6厘米、4厘米的两个半圆如图放置,求阴影部分的周长?
8有四根直径是1米的圆柱形管子,用一根铁丝紧紧地捆在一起,铁丝的长度最短是多少米?(打结处铁丝长度不计)
9把半径都是10分米的两个圆如下图放置,求图形外围的周长是多少分米?
10求图中阴影部分的面积。
(单位:厘米)
11求图中阴影部分的面积。
(单位:厘米)
12如图:小正方形的边长是大正方形边长的一半,阴影的面积是50平方厘米,求环形的面积是多少平方厘米?
13如图,A、B、C是三个圆的圆心,圆的半径都是10分米,求阴影部分的面积。
14、右图是圆心为O,半径是10厘米的圆。
以C为圆心,CA为半径画一条弧。
求阴影部分
的面积。
(广东省1998年复赛题)
15、如图,一个圆心角为450的扇形,其中等腰直角三角形的直角边是6厘米,求阴影部分的面积。
16下图所示,AF =12厘米,ED =10厘米,BE
CF =
6
厘米,求四边形
ABCD 的面积(4分)
18边长为8米的正方形中阴影部分的面积是( )平方米.
19、三条边长分别是6厘米、8厘米、10厘米的直角三角形。
将它的最短边对折到斜边相重合(如图),那么,图中阴影部分面积是多少平方厘米?
20有A 、B 两个容器,如图,先把A 容器装满水,然后将水倒入B 容器,B
容器中水的深度是多少厘米?
D
*21.如右图,是一个棱长为4分米的正方体零件,它的上、下、左、右面上各有一个半径为2厘米的圆孔,孔深为1分米,这个零件的表面
积是多少?体积是多少?
22.如图,这顶帽子,帽顶部分是圆柱形,用花布做的,帽沿部分是一个圆环,也是用同样花布做,已知帽顶的半径,高和帽沿宽都是1
分米,那么做这顶帽子至少要用多少平方分米的花布?。