求阴影部分面积2(含答案)
- 格式:doc
- 大小:220.00 KB
- 文档页数:2
例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例9.求阴影部分的面积。
五年级数学上册《阴影图形面积》练习题带答案1、求梯形中阴影部分的面积。
(单位:厘米)(32+18)×15÷2-32×15÷2=375-240=135(平方厘米)答:阴影部分的面积是135平方厘米。
2、求图中阴影部分的面积。
(单位:厘米)已知平行四边形面积是24平方厘米。
24-(5+6)×4÷2=2(平方厘米)答:阴影部分的面积是2平方厘米。
3、求图中阴影部分的面积。
(单位:厘米)6×6+4×4-6×6÷2-4×10÷2=14(平方厘米)答:阴影部分的面积是14平方厘米。
4、下图是平行四边形,面积是36平方米,求阴影部分的面积。
(单位:米)36÷6=6(米)6-1.5=4.5(米)4.5×6÷2=13.5(平方米)答:阴影部分的面积是13.5平方米。
5、如图,一个梯形的上、下底分别是6厘米、10厘米,已知阴影部分的面积是24平方厘米,这个梯形的面积是?三角形的高:24×2÷10=4.8(厘米),梯形面积:(6+10)×4.8÷2=38.4(平方厘米)答:这个梯形的面积是38.4平方厘米。
6、求下图阴影部分的面积(单位:厘米)阴影部分面积=大三角形面积+ 小三角形面积= (6×6÷2)+(3×6÷2)=(36÷2)+(18÷2)= 18 + 9= 27(cm²)7、求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×2²-2×1=1.14(平方厘米)8、正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以r²=7,所以阴影部分的面积为:7-r²=7-×7=1.505平方9、求阴影部分的面积。
六年级阴影部分的面积1.求阴影部分的面积。
(单位:厘米)解:割补后如右图,易知,阴影部分面积为一个梯形。
梯形上底DE=7-4=3厘米,1S =S =DE AB)AD 2⨯+⨯阴梯形(=137)42⨯+⨯(=20(平方厘米)2、求阴影部分的面积。
解:S =S 阴梯形,梯形的上底是圆的直径,下底、高是圆的半径,S =S 阴梯形=124)22⨯+⨯(=6(2cm )3、如图,平行四边形的高是6厘米,面积是54平方厘米,求阴影三角形的面积。
解:S =AD AO ⨯ABCD =54平方厘米,且AO=6厘米,所以AD=9厘米。
由图形可知AED∆是等腰直角三角形,所以AE=AD ,OE=OF=AE-AO=9-6=3cm ,BO=BC-OC=9-3=6cm 。
1S =BO OF 2⨯⨯阴=1S =632⨯⨯阴=92cm 。
4、如图是一个平行四边形,面积是50平方厘米,求阴影积分的面积。
解:方法一:过C 点作CF AD ⊥交AD 于点F ,可知AECF 是长方形,面积=5×6=302cm ,ABE CFD S =S ∆∆=(50-30)÷2=102cm 。
方法二:BC=S ABCD ÷AE=50÷5=10cm ,BE=BC-EC=10-6=4cm ,ABE S ∆=BE ×AE ÷2 =4×5÷2=102cm5、下图是一个半圆形,已知AB=10厘米,阴影部分的面积为24.25平方厘米,求图形中三角形的高。
解:S =S -S ∆阴半圆=21AB 22π⎛⎫⨯⨯ ⎪⎝⎭-24.25=21103.1422⎛⎫⨯⨯ ⎪⎝⎭-24.25=152cm , 三角形的高=2S ∆÷AB=2×15÷10=3cm 。
6、如图,一个长方形长是10cm ,宽是4cm ,以A 点和C 点为圆心各画一个扇形,求画中阴影部分的面积是多少平方厘米?解:BECD 1S =S -S 4阴大圆=ABCD 11S -S S 44⎛⎫- ⎪⎝⎭大圆小圆=ABCD 11S +S -S 44大圆小圆=()2213.1410-4-1044⨯⨯⨯ =25.942cm 。
【小学数学】六年级数学预习专题:求阴影部分面积(含答案)1) 正方形:周长=边长×4 C=4a 面积=边长×边长 S=a×a2) 正方体:表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3) 长方形:周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab4) 长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高 V=abh5) 三角形:面积=底×高÷2 s=ah÷26) 平行四边形:面积=底×高 s=ah7) 梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28) 圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr面积=半径×半径×Π9) 圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高10) 圆锥体:体积=底面积×高÷32、面积求解类型从整体图形中减去局部;割补法:将不规则图形通过割补;转化成规则图形。
重难点:观察图形的特点;根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题例1.求阴影部分的面积。
(单位:厘米) 例2.正方形面积是7平方厘米;求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米) 例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米;大圆半径是小圆的3倍;问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
求阴影部分面积例1、求阴影部分得面积、(单位:厘米)ﻫ解:这就是最基本得方法:圆面积减去等腰直角三角形得面积,×-2×1=1.14(平方厘米)ﻫ例2、正方形面积就是7平方厘米,求阴影部分得面积。
(单位:厘米)解:这也就是一种最基本得方法用正方形得面积减去圆得面积。
设圆得半径为r,因为正方形得面积为7平方厘米,所以=7,ﻫ所以阴影部分得面积为:7-=7—×7=1、505平方厘米例3、求图中阴影部分得面积、(单位:厘米)解:最基本得方法之一。
用四个圆组成一个圆,用正方形得面积减去圆得面积,所以阴影部分得面积:2×2-π=0.86平方厘米。
ﻫﻫ例4、求阴影部分得面积。
(单位:厘米)ﻫ解:同上,正方形面积减去圆面积,16-π()=16—4πﻫ=3。
44平方厘米ﻫ例5。
求阴影部分得面积。
(单位:厘米)ﻫ解:这就是一个用最常用得方法解最常见得题,为方便起见,ﻫ我们把阴影部分得每一个小部分称为“叶形",就是用两个圆减去一个正方形,ﻫπ()×2-16=8π-16=9.12平方厘米ﻫ另外:此题还可以瞧成就是1题中阴影部分得8倍。
例6、如图:已知小圆半径为2厘米,大圆半径就是小圆得3倍,问:空白部分甲比乙得面积多多少厘米?ﻫ解:两个空白部分面积之差就就是两圆面积之差(全加上阴影部分)ﻫπ-π()=100。
48平方厘米ﻫ(注:这与两个圆就是否相交、交得情况如何无关)例7、求阴影部分得面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)ﻫ正方形面积为:5×5÷2=12。
5所以阴影面积为:π÷4-12.5=7。
125平方厘米(注:以上几个题都可以直接用图形得差来求,无需割、补、增、减变形) 例8。
求阴影部分得面积。
(单位:厘米)解:右面正方形上部阴影部分得面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3、14平方厘米例9、求阴影部分得面积。
【史上最全小学求阴影部分面积专题—含答案】小学及小升初复习专题-圆与求阴影部分面积----完整答案在最后面目标:通过专题复习,加强学生对于图形面积计算的灵活运用。
并加深对面积和周长概念的理解和区分。
面积求解大致分为以下几类:1、从整体图形中减去局部;2、割补法,将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
例1.求阴影部分的面积。
例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米) 例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米)例10.求阴影部分的面积。
(单位:厘米)例11.求阴影部分的面积。
(单位:厘米)例12.求阴影部分的面积。
(单位:厘米)例13.求阴影部分的面积。
(单位:厘米)例14.求阴影部分的面积。
(单位:厘米)例16.求阴影部分的面积。
(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米) 例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例19.正方形边长为2厘米,求阴影部分的面积。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.图中四个圆的半径都是1厘米,求阴影部分的面积。
例22.如图,正方形边长为8厘米,求阴影部分的面积。
例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
小学六年级求阴影部分面积试题和答案求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法: 圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为 r ,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例 5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见, 我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形, π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5 所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法: 圆面积减去等腰直角三角形的面积,例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米)例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米) 厘米例9.求阴影部分的面积。
(单位:厘米)例10.求阴影部分的面积。
(单位:厘米)例11.求阴影部分的面积。
(单位:厘米) 例12.求阴影部分的面积。
(单位:厘米) 例13.求阴影部分的面积。
(单位:厘米) 例14.求阴影部分的面积。
(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例16.求阴影部分的面积。
(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米) 例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例19.正方形边长为2厘米,求阴影部分的面积。
米例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.图中四个圆的半径都是1厘米,求阴影部分的面积。
例22.如图,正方形边长为8厘米,求阴影部分的面积。
例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以阴影部分的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.解:阴影部分为大正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25.如图,四个扇形的半径相等,求阴影部分的面积。
人教版小学数学五年级上册6.《求阴影部分面积》重点考点(含答案)五年级上册数学重点考点求阴影部分面积(知识点:平行四边形的面积三角形的面积梯形的面积组合图形的面积)1.计算下面图形的面积。
2.求下图阴影部分的面积。
(单位:厘米)3.如图是两个正方形,求阴影部分的面积(单位:厘米)。
4.将一张长方形纸如图折叠,求图中阴影部分面积。
(单位:cm)5.计算图中阴影部分的面积。
(单位:cm)6.有一张长方形纸,把纸的一角如图那样折叠,求图中阴影部分的面积。
7.寻找合适的条件,求出下图中涂色部分的面积。
(单位:cm)8.下图梯形中,阴影部分面积是24平方分米,求梯形面积。
9.求如图中阴影部分的面积。
(单位:厘米)10.已知阴影部分面积是24cm2,求梯形面积。
11.求阴影部分的面积。
(单位:米)12.计算阴影部分的面积。
(单位:dm)13.计算图形中阴影部分的面积。
14.求出阴影部分的面积。
(单位:cm)15.求涂色部分的面积。
16.计算阴影部分的面积。
(1)(2)17.求下列阴影部分的面积。
(单位:cm)18.求阴影部分面积。
19.求下面图形中阴影部分的面积。
(单位:cm)20.求阴影部分的面积。
21.求阴影部分的面积。
(单位:分米)22.求阴影部分的面积。
(单位:cm)23.求阴影部分的面积。
(单位:分米)24.求阴影部分的面积。
参考答案:1.100平方厘米【分析】要求的图形面积可以看作是一个长为15厘米,宽为10厘米的长方形面积减去两个底为5厘米,高为5厘米的三角形面积和一个边长为5厘米的正方形的面积之和,再根据长方形面积=长×宽,正方形面积=边长×边长,三角形面积=底×高÷2,代入相应数值计算,即可解答。
【详解】(平方厘米)【点睛】本题主要考查的是组合图形面积的计算,解题关键是先分析都是由哪些基本图形组成,再根据相应图形面积的计算公式,代入数值计算即可。
2.144平方厘米【分析】用长方形的面积减去梯形的面积即是阴影部分的面积,分别利用长方形的面积=长×宽和梯形的面积=(上底+下底)×高÷2求解。
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1。
14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2—π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3。
44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2—16=8π-16=9。
12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100。
48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7。
求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12。
5所以阴影面积为:π÷4-12.5=7。
125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:?圆面积减去等腰直角三角形的面积,?×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个?圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米?(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例9.求阴影部分的面积。
【史上最全小学求阴影部分面积专题—含答案】小学及小升初复习专题-圆与求阴影部分面积----完整答案在最后面目标:通过专题复习,加强学生对于图形面积计算的灵活运用。
并加深对面积和周长概念的理解和区分。
面积求解大致分为以下几类:1、从整体图形中减去局部;2、割补法,将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
例 2.正方形面积是 7 平方厘米,求阴影部分的面积。
例 1.求阴影部分的面积。
(单位:厘米)(单位:厘米)例 4.求阴影部分的面积。
(单位:厘米)例 3.求图中阴影部分的面积。
(单位:厘米)例 5.求阴影部分的面积。
(单位:厘米) 例 6.如图:已知小圆半径为 2 厘米,大圆半径是小圆的 3 倍,问:空白部分甲比乙的面积多多少厘米?例 7.求阴影部分的面积。
(单位:厘米)例 8.求阴影部分的面积。
(单位:厘米)例 9.求阴影部分的面积。
(单位:厘米)例 10.求阴影部分的面积。
(单位:厘米)例 11.求阴影部分的面积。
(单位:厘米)例 12.求阴影部分的面积。
(单位: 厘米)例 13.求阴影部分的面积。
(单位:厘米)例 14.求阴影部分的面积。
(单位:厘米)例 15.已知直角三角形面积是 12 平方厘米,求阴影部分的面积。
例 16.求阴影部分的面积。
(单位:厘米)例 17.图中圆的半径为 5 厘米,求阴影部分的面积。
(单位:厘米) 例 18.如图,在边长为 6 厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例 19.正方形边长为 2 厘米,求阴影部分的面积。
例 20.如图,正方形 ABCD 的面积是 36 平方厘米,求阴影部分的面积。
例 21.图中四个圆的半径都是 1 厘米,求阴影部分的面积。
例 22. 如图,正方形边长为 8 厘米,求阴影部分的面积。
例 23.图中的 4个圆的圆心是正方形的4 个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1 厘米,那么阴影部分的面积是多少?例 24.如图,有 8 个半径为 1 厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
求阴影部分面积2
例1.求阴影部分的面积。
(单位:厘米) 例2.求阴影部分的面积。
(单位:厘米)
例3.图中圆的半径为5厘米,求阴影部分的面积。
(单例4.求阴影部分的面积。
(单位:厘米)
(三个部分拼成一个半圆面
积.)
例5求阴影部分的面积。
(单位:厘米) 例6求阴影部分的面积。
(单位:厘米)
例7.正方形边长为2厘米,求阴影部分的面积。
例8求阴影部分的面积。
(单位:厘米)
求阴影部分面积2答案
1.解:把右面的正方形平移至左边的正方形部分,则阴影部分合成
一个长方形,所以阴影部分面积为:2×3=6平方厘米
2.解:同上,平移左右两部分至中间部分,则合成一个长方形,
所以阴影部分面积为2×1=2平方厘米
3.解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。
所以阴影部分面积为:5×5÷2+5×10÷2=平方厘米
4.解:三个部分拼成一个半圆面积.π()÷2=平方厘米
5.解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半. 所以阴影部分面积为:8×8÷2=32平方厘米
6.解:梯形面积减去圆面积(4+10)×4- π=28-4π=平方厘7.解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。
所以面积为:1×2=2平方厘米
8.解:[π+π-π]
=π(116-36)=40π=平方厘米。