实验十一
- 格式:docx
- 大小:357.63 KB
- 文档页数:2
实验十一:葡萄糖酸锌的制备实验十一:葡萄糖酸锌的制备一、实验目的1.学习和掌握葡萄糖酸锌制备的基本原理和方法。
2.掌握化学试剂的纯化和使用技巧。
3.了解实验操作规程和实验安全知识。
二、实验原理葡萄糖酸锌是一种重要的微量元素补充剂,可用于食品、药品等领域。
制备葡萄糖酸锌通常采用化学合成法,即以葡萄糖和硫酸锌为原料,通过氧化、中和、洗涤、结晶等步骤制备得到。
本实验将采用此方法进行制备。
三、实验步骤1.葡萄糖溶液的制备:称取一定量的葡萄糖,加入适量的水中,加热搅拌至溶解,冷却至室温后备用。
2.硫酸锌溶液的制备:称取一定量的硫酸锌,加入适量的水中,加热搅拌至溶解,冷却至室温后备用。
3.氧化:将葡萄糖溶液和硫酸锌溶液混合在一起,搅拌均匀,然后缓慢加入适量的双氧水,搅拌均匀后加热至沸腾,保持微沸状态一定时间,使葡萄糖充分氧化。
4.中和:待氧化反应结束后,缓慢加入适量的氢氧化钠溶液,搅拌均匀,使溶液的pH值达到一定范围。
5.洗涤:将上述溶液用适量的水进行洗涤,去除其中的杂质和未反应的物质。
6.结晶:将上述洗涤后的溶液进行蒸发浓缩,得到结晶状态的产品。
7.干燥:将结晶产品进行干燥处理,得到最终的葡萄糖酸锌产品。
四、实验结果与讨论1.通过实验,我们成功地制备得到了葡萄糖酸锌产品。
通过观察实验过程中的反应变化和检测产品的纯度,可以发现实验结果符合预期目标。
2.在制备过程中,需要注意控制各步骤的条件,如温度、pH值、加料速度等,以确保实验结果的稳定性和可重复性。
同时,需要注意实验安全,避免意外情况的发生。
3.本实验采用的制备方法具有操作简便、成本低廉、产品纯度高等优点,但同时也存在一些不足之处,如反应过程中可能会产生一些副产物或杂质,需要进行充分的洗涤和提纯。
此外,实验过程中需要注意控制各步骤的条件和操作顺序,避免出现误差或意外情况。
4.通过本次实验,我们不仅学习和掌握了葡萄糖酸锌制备的基本原理和方法,还进一步了解了化学试剂的纯化和使用技巧以及实验操作规程和实验安全知识。
实验十一电位差计一、实验目的1.了解电位差计的工作原理;2.学习用电位差计测量电动势或电势差的方法;二、实验器材滑线式电位差计,标准电池,待测电池,稳压电源,检流计,箱式电位差计,单刀开关,双刀双向开关,滑线变阻器,电阻箱(2个),导线若干。
三、实验原理电位差计是一种测量电动势(或电势差)的精密仪器,它是利用比较测量法中的电势补偿原理设计的。
电位差计与电压表的区别:一是测量准确度高,二是测量时不需要被测电路提供电流,避免了用电压表测量时带来的接入误差。
补偿法测电动势的原理:如图11-1所示的电路,两直流电源的同极性端相连接,为待测电动势,为电动势数值已知且可调的电源。
调节使检流计的指示值为零,回路中无电流流过,表明电路中两电源的电动势大小相等,方向相反。
这种情况我们称电路达到补偿。
此时,。
应用这个关系,待测电动势可由求得。
利用上述补偿原理测量未知电动势和电势差的方法称为电压补偿法。
按此原理构成的仪器称为电位差计。
(一)滑线式电位差计应用滑线式电位差计测电池的电动势,测量电路如图11-2所示,AB是一根1米长的均匀电阻丝,拉紧在木板的米尺上;是电阻箱,用来调节通过电阻线AB的电流;是滑线变阻器,用来保护检流计和标准电池为稳压电源;是待测电池;是标准电池,本实验使用II极饱和酸性镉电池,它的电动势随温度稍有变化,在时为伏,为简便起见,一律取伏进行计算,不必作温度修正;是单刀开关;是双刀双向开关;为滑动接触头,可在电阻线AB上滑动。
电源E、限流电阻R b和电阻R AB串联成一闭合回路,称为辅助回路。
当调节R b使回路中有恒定电流流过电阻R AB时,电阻R AB上就有一定的电压降,改变滑动触头S的位置,就能改变AC间的电势差U AC的大小。
电流不变的情况下,U AC正比于电阻R AC。
测量时把AC两端的电势差U AC 引出与待测电动势进行比较。
由待测电池(或标准电池)、检流计G、保护电阻R h和精密电阻R AC组成的回路称为补偿回路。
实验十一测量电源的电动势和内阻1. (2022·南京六校期初调研)在“用DIS测电源的电动势和内阻”实验中.(1) 下图中,A代表电流传感器,B代表电压传感器,R为变阻器,R1为定值电阻.则下列各电路图中,图________最合理.(2) 某次实验得到的电源的U-I图线,其拟合方程为y=-1.2x+2.9,该电源的电动势E=________V,内阻r=________Ω.(3) 根据实验测得的该电源的U、I数据,若令y=UI,x=UI,则通过计算机拟合得出y-x图线如图所示,则图线最高点A点的坐标x=________Ω,y=________W.(结果均保留两位有效数字)2. (2022·苏锡常镇调研一)某兴趣小组为了测量电动车上电池的电动势E(约为36 V)和内阻r(约为10 Ω),需要将一个量程为15 V的电压表(内阻R g约为10 kΩ)改装成量程为45 V的电压表,然后再测量电池的电动势和内阻.以下是该实验的操作过程:(1) 由于不知道该电压表内阻的确切值,该兴趣小组将一个最大阻值为50 kΩ的电位器R P(视为可变电阻)与电压表串联后,利用如图甲所示的电路进行改装,请完成③的填空:①将总阻值较小的滑动变阻器的滑片P移至最右端,同时将电位器的阻值调为零.②闭合开关S,将滑片P向左移动,使电压表的示数为12 V.③保持滑片P的位置不变,调节电位器,使电压表的示数为________V.④不再改变电位器的阻值,保持电压表和电位器串联,撤去其他电路就得到改装后的电压表.(2) 用改装后的电压表接入电路测量已知电压时,其示数总是________ (填“大于”“等于”或“小于”)真实值.(3) 通过调整R P使改装后的电压表准确.该兴趣小组利用一个电阻箱R(0~999.9 Ω)和改装后的电压表(电压表的表盘没有改变,读数记为U)连接成如图乙所示的电路来测量该电池的电动势和内阻.该小组首先得出了1R与1U的关系式为____________(用E、r和U表示),然后根据测得的电阻值R和电压表的读数U作出1R-1U图像如图丙所示,则该电池的电动势E=______V,内阻r=______Ω.3. 某同学要测量一个电源的电动势和内阻,可以选择的器材如下:①待测电源E(电动势约3 V,内阻大约几十欧)②电流表mA(量程30 mA,内阻未知)③电压表V(量程为1.5 V,内阻R V=1 000 Ω)④滑动变阻器R1(0~10 Ω)⑤滑动变阻器R2(0~200 Ω)⑥电阻箱R3(0~9 999 Ω)⑦开关一个,理想导线若干(1) 该同学用上述器材测量电源E的电动势和内阻,测量电路如图甲所示,电阻箱R3的阻值应该调为________(填“100 Ω”“1 000 Ω”或“5 000 Ω”);滑动变阻器应选用________(填“R1”或“R2”).(2) 根据测量电路用笔画线连接好实物电路图.(3) 该同学调节滑动变阻器,测出多组数据(U为电压表V的示数,I为电流表的示数)如下表所示,其中第3组数中电流表如图丙所示,读数为________ mA.实验次数1234 5 U/V0.90 1.00 1.10 1.20 1.30I/mA29.124.013.88.7(4) (描点作图)根据表中数据在下面坐标纸上作出U-I图线.(5) 根据U-I图线电路图及图线可以得到被测电源的电动势E=________V,内阻r=________Ω.(结果均保留三位有效数字)4. (2021·全国乙卷)一实验小组利用图甲所示的电路测量一电池的电动势E(约1.5 V)和内阻r(小于2 Ω).图中电压表量程为1 V,内阻R V=380.0 Ω;定值电阻R0=20.0 Ω;电阻箱R最大阻值为999.9 Ω;S为开关.按电路图连接电路.完成下列填空:甲(1) 为保护电压表,闭合开关前,电阻箱接入电路的电阻值可以选______(填“5.0”或“15.0”) Ω.(2) 闭合开关,多次调节电阻箱,记录下阻值R 和电压表的相应读数U .(3) 根据图甲所示电路,用R 、R 0、R V 、E 和r 表示1U ,得1U =________.(4) 利用测量数据,作出1U -R 图线,如图乙所示.乙(5) 通过图乙可得E =________V(结果保留两位小数),r =________ Ω(结果保留一位小数).(6) 若将图甲中的电压表当成理想电表,得到的电源电动势为E ′,由此产生的误差为⎪⎪⎪⎪⎪⎪E ′-E E ×100%=________%.。
实验十一-配合物的生成、性质与应用一、实验目的1.了解配合物的形成原理及其相关理论知识;2.掌握配合物的生成、性质和应用;3.学会使用一些化学实验技术,如分离、纯化、结晶等。
二、实验原理1. 配合物的定义配合物是由阳离子、阴离子或分子中心离子(配体)和周围的一个或多个配位体(也称配体)组成的化学物质。
配位体是一种能够向中心离子提供一个或多个共价键(配位键)的化合物或离子。
一般情况下,配位体都是较小的分子,如水分子、氨分子和氯离子等。
2. 配合物的形成原理配合物的形成受到多种因素的影响,主要有以下三方面:1.配位体的性质:配位体通常具有一个或多个孤对电子,可以与中心离子形成配位键。
2.中心离子的性质:中心离子通常具有空的d轨道或f轨道,可以接受来自配位体的电子形成配位键。
3.形成的稳定性:配合物的稳定性取决于配位键的强度、离子的电荷、配位体空间位阻等因素。
3. 配合物的性质配合物具有以下一些特征:1.配合物中心离子的化学性质发生变化。
2.配位体对中心离子的性质有重要影响。
3.配合物常呈现出较强的带电性。
4.配合物的化学性质受配位键性质、离子作用力等因素的影响。
4. 配合物的应用配合物具有广泛的应用,包括:1.工业上用于制造农药、颜料、化学催化剂等。
2.医学上用于治疗疾病,如铁离子配合物用于治疗缺铁性贫血等。
3.生物学上用于研究生物大分子结构和作用机制。
三、实验步骤1. 实验材料和仪器FeCl3·6H2O、KSCN、NaClO、稀盐酸、热水、恒温加热器、移液管、pH试纸、试管等。
2. 实验步骤1.制备混合物:将溶液A(5mL FeCl3·6H2O和4mL稀盐酸)和溶液B(5mL NaClO和4mL稀盐酸)混合,注意不要相互混合,避免产生气体。
2.稀释混合物:将混合溶液加入10mL的水中,形成红褐色混合物。
3.测量pH值:用pH试纸测量溶液的pH值,记录下来。
4.添加配体:加入2滴KSCN溶液,并轻轻摇动管子。
实验十一、探究液体压强大小的影响因素【实验目的】探究液体内部压强的影响因素有哪些。
【实验器材】压强计;相同的大烧杯2个;食盐;水;刻度尺。
【实验设计】提出问题: 液体内部压强的大小可能与哪些因素有关?猜想或假设:可能与液体深度,液体的密度,液体重力,方向等有关。
【实验方法】控制变量法和转换法【实验步骤】①将水倒入烧杯,如图a,控制探头在水下深度不变,调节旋钮改变探头的朝向,观察并测出U形管中液面的高度差,将数据填入下表。
②如图b,控制橡皮膜的朝向不变,改变探头浸入水中的深度,观察并测出U形管中液面的高度差,将数据填入下表。
③如图c,控制探头在水和盐水下的深度相同,观察并测出U形管中液面的高度差,将数据填入下表。
【实验记录】:实验内容液体物质探头浸入水下深度橡皮膜朝向U形管两端液面高度差(cm)a 水相同(5cm)向下相同(5cm)向前相同(5cm)向上b 水不同(3cm) 向下不同(5cm)不同(7cm)向下向下c水相同(5cm)向下盐水相同(5cm)向下【实验结论】:实验剖析液体内部向各个方向都有压强,压强随液体深度的增加而增加;同种液体在同深度的各处,各个方向的压强大小相等;不同的液体,在同一深度产生的压强大小与液体的密度有关,密度越大,液体的压强越大。
【考点方向】1、由图1、图2可以知道液体压强产生的原因是:液体受到重力作用;液体有流动性。
(因此在太空失重情况下液体不会产生压强)2、探究液体压强与哪些因素有关实验中,采用了哪些方法?答:控制变量法、转换法。
3、通过观察什么开知道液体压强大小的?答“U型管内页面的高度差,高度差越大说明液体产生的压强越大”。
4、实验前的两个操作:(1)先检查U型管左右两边的液面是否相平。
(2)检查装置的气密性:(用手压金属盒上的橡皮膜,观察U型管中液面是否发生变化,若变化明显,则气密性良好)。
5、实验时发现U型管内高度差没变化原因是什么?怎么解决?答:气密性不好,拆下来重新安装。
实验11-验证最大功率传输定理(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除实验十一 最大功率传输条件测定一、实验目的1. 掌握负载获得最大传输功率的条件。
2. 解电源输出功率与效率的关系。
二、原理说明1. 电源与负载功率的关系图1可视为由一个电源向负载输送电能的模型,R 0可视为电源内阻和传输线路电阻的总和,R L负载R L 上消耗的功率P 可由下式表示: 图1当R L =0或R L =∞ 时,电源输送给负载的功率均为零。
而以不同的R L 值代入上式可求得不同的P 值,其中必有一个R L 值,使负载能从电源处获得最大的功率。
2. 负载获得最大功率的条件根据数学求最大值的方法,令负载功率表达式中的R L 为自变量,P 为应变量,并使 dP/dR L =0,即可求得最大功率传输的条件:当满足R L =R 0时,负载从电源获得的最大功率为:这时,称此电路处于“匹配”工作状态。
3. 匹配电路的特点及应用在电路处于“匹配”状态时,电源本身要消耗一半的功率。
此时电源的效率只有50%。
显然,这对电力系统的能量传输过程是绝对不允许的。
发电机的内阻是很小的,电路传输的最主要指标是要高效率送电,最好是100%的功率均传送给负载。
为此负载电阻应远大于电源的内阻,即不允许运行在匹配状态。
而在电子技术领域里却完全不同。
一般的信号源本身功率较小,且都有较大的内阻。
而负载电阻(如扬声器等)往往是较小的定值,且希望能从电源获得最大的功率输出,而电源的效率往往不予考虑。
通常设法改变负载电阻,或者在信号源与负载之间加阻抗变换器(如音频功放的输出级与扬声器之间的输出变压器),使电路处于工作匹配状态,以使负载能获得最大的输出功率。
三、实验内容与步骤1. 按图2接线,负载R L 取电阻箱。
2. 按表1所列内容,令R L 在0~1K 范围内变化时,分别测出U O 、U L 及I 的值,表中U O ,P O,L LL R R R UR I P 202)(+==[]020240020:0)(2)()()(2)(,0R R R R R R R R R UR R R R RdR dPdR dP L L L L L L L L LL ==+-+++-+==,解得令即LL L L L MAXR U R R U R R R U P 4)2()(2220==+=分别为稳压电源的输出电压和功率,U L 、P L 分别为R L 二端的电压和功率,I 为电路的电流。
实验十一金属比热容的测定根据牛顿冷却定律, 用冷却法测定金属比热容是热学中常用方法之一。
若已知标准样品在不同温度的比热容, 通过作冷却曲线可测量各种金属在不同温度时的比热容。
本实验以铜为标准样品, 测定铁、铝样品在 (实验条件)时的比热容。
【实验目的】1. 通过本实验了解金属冷却速率和它与环境之间的温差关系以及进行测量的实验条件, 进一步巩固牛顿冷却定律;2. 用冷却法测定金属比热容。
【实验仪器】金属比热容测量仪、升降台、热源(电烙铁)、铜-康铜热电偶、金属样品(铁、铝、铜)、防风筒(加盖)、电源线、真空保温杯、调零线、秒表、支架。
实验装置如图2-1所示, 对测量试样温度采用常用的铜-康铜做成的热电偶, 当冷端为冰点时, 测量热电偶热电动势差的二次仪表由高灵敏、高精度、低漂移的放大器加上三位半数字电压表(放大电路的满量程为)组成, 由数字电压表显示的数即对应待测温度值。
加热装置可自由升降和左右移动。
被测样品安放在大容量的防风圆筒内即样品室, 其作用保持高于室温的样品自然冷却, 这样结果重复性好, 可以减少测量误差, 提高实验准确度。
本实验可测量金属在各种温度时的比热容(室温到)。
其中:a.热源,加热采用75瓦电烙铁改制而成,利用底盘支撑固定并可上下移动(其电源由......... 图2-1属比热容测量仪上的“热源”开关控制);b.实验样品, 是直径,长的小圆柱, 其底部深孔中安放热电偶(其热电动势约), 而热电偶的冷端则安放在冰水混合物内;c.铜-康铜热电偶;d.热电偶支架;e.防风容器;f.三位半数字电压表[其输出电压(温度)由金属比热容测量仪中的数字电压表读出], 显示用三位半面板表;g.冰水混合物。
【实验原理】单位质量的物质, 其温度升高(或1 )所需的热量叫做该物质的比热容, 其值随温度而变化。
将质量为的金属样品加热后, 放到较低温度的介质(例如: 室温的空气)中, 样品将会逐渐冷却。
其单位时间的热量损失与温度下降的速率成正比(由于金属样品的直径和长度都很小, 而导热性能又很好, 所以可认为样品各处的温度相同), 于是得到下述关系式:tM C t Q ∆θ∆∆∆111= (2-1) (2-1)式中 为该金属样品在温度 时的比热容, 为金属样品在 时的温度下降速率。
实验十一电导法测定弱电解质的电离常数和难溶盐的溶解度Ⅰ、电导法测定弱电解质的电离常数一、实验目的1.掌握电导法测定弱电解质电离常数的原理。
2.掌握用电导率仪测定醋酸电离常数K的方法。
HAc3.通过实验了解溶液的电导(L)、摩尔电导率(λ)、弱电解质的电离度(α)、电离常数(K)等概念及它们之间的关系。
4.学会使用DDS-1lA型电导率仪。
二、实验原理弱电解质如醋酸,在一般浓度范围内,只有部分电离。
因此有如下电离平衡:+- Ac + H HAc =起始浓度 C 0 0平衡浓度C(1-α) CαCα-+的平衡状态下AcH及α各为HAc、α为电离度,故C(1-α)、C其中C为醋酸的起始浓度,的浓度。
如果溶液是理想的,在一定温度下,可由质量作用定律得到电离常数(K)为:HAc(1)根据电离学说,弱电解质的α随溶液的稀释而增加,当溶液无限稀释时,α→1,即弱电解质趋近于全部电离。
当温度一定时,弱电解质溶液在各种不同浓度时,。
只与在该浓度时所生成的离子数有关,因此可通过测量在该浓度所生成的离子数有关的物理量,如pH值、电导率等来测定α。
本实验是通过测量不同浓度时溶液的电导率来计算α和K值。
1-(欧姆)或S((欧姆),所以电导的单位为Ω西门电导,即电阻的倒数,电阻的单位是Ω成反比,和导体的截面积(A)l)成正比。
)。
对于金属导体,电导(L)的数值和导体的长度(子(2)其中l/A为常数,定义为Q;Lo称为电导率或比电导,其物理意义是长l为lm,截面积A2-1/m或S/m的导体的电导,所以它的单位可以写成Ω。
对于每种金属导体,为lm温度一定,电导率(Lo)是一定的,因此可以用它来衡量金属导体的导电能力。
但是,对于电解质溶液,其导电机制是靠正、负离子的迁移来完成的。
它的电导率,不仅与温度有关,而且与该电解质溶液的浓度有关,所以若用电导率L。
来衡量电解质溶液的导电能力就不合适了。
这样,就提出了摩尔电导率λ的概念。
它的定义是:含有lmol电解质的溶液,全部置于相距为单位距离(SI单位用lm)的两个平行电极之间,该溶液的电导称为摩尔电导率(λ)。
实验十一多普勒效应的验证
多普勒效应是指声波或光波在相对运动的对象之间传播时所产生的频率变化现象。
在
日常生活中,我们很容易就能观察到这种现象。
比如,当一辆汽车以高速行驶时,发出的
喇叭声会和平静时所发出的声音不同,这种现象就是多普勒效应。
多普勒效应不仅是声波,也适用于光波。
因此,在物理学中,多普勒效应也被称为多
普勒位移。
为了验证多普勒效应,我们可以通过实验来观测光波的多普勒位移。
实验步骤如下:
1.准备实验材料:一个圆盘和激光器。
2.在圆盘上,固定一些不同颜色的纸片。
3.将圆盘固定在一种运动平台上,以便于可以以不同的速度旋转圆盘。
4.将激光器置于圆盘旁边,并使其发出一束线性光。
5.打开运动平台,使圆盘开始旋转。
同时,向圆盘靠近的一侧观测激光器发出的光线
是否有颜色变化。
6.将圆盘旋转到一定速度后,会发现光线的颜色变化,这就是多普勒位移的现象。
7.重复实验,以不同的圆盘转速和颜色来观察多普勒效应的变化。
多普勒效应的验证实验可以通过观察光线颜色的变化来完成。
当光源靠近观察者时,
较短的波长会向观察者移动,而较长的波长则会向光源移动。
反之,当光源远离观察者时,相反的情况会发生。
因此,当圆盘旋转时,颜色的变化是由多普勒效应而引起的。
总之,通过观察多普勒效应的变化,我们可以了解到物体的运动速度。
这种效应也常
常应用于测量、控制和导航等方面。
实验中,我们通过观测光线颜色的变化验证了多普勒
效应的存在,这有助于我们更深入地了解多普勒效应的理论和应用。
实验十一、簿层色谱法一、实验目的1、1、初步掌握簿层色谱法的实验技术;2、2、学会用薄层色谱法跟踪有机反应。
二、实验原理薄层色谱(Thin Layer Chromatography, TLC)是色谱法中的一种,用来快速分离和定性分析少量物质的一种很重要的实验技术,同时具有柱色谱和纸色谱的优点,适用于少量样品(几微克到几克,甚至0.01微克)的分离;如果在制作薄层板时,加厚加大吸附层,又可用来分离纯化、精制样品,此法特别适用于挥发性小或在较高温度易发生变化而不能用气相色谱、液相色谱分析的物质。
此外,薄层色谱法还可用来跟踪有机反应及进行柱色谱之前的一种极性监测。
这是利用吸附剂(硅胶、氧化铝等)对不同组分吸附能力的差异从而达到分离目的的方法。
三、实验步骤薄层色谱法的整个过程包括以下步骤:1、薄层板的制备制薄层板的主要原料是吸附剂和粘结剂吸附剂:最常用于 TLC的吸附剂为硅胶 GF254,硅胶HF254,中性Al2O3。
粘结剂:一般用粉状固体羧甲基纤维素钠(CMC),使用时配成1%水溶液。
制板:(1)小板的制备:将1% CMC加入到硅胶,调成桨状(在平铺玻璃板上能晃动但不能流动),将其涂在载玻片上(75 mm×25mm),为使其坦平,可将载玻片用手端平晃动,致坦平为止,放在干净平坦的台面上,晾干之后放入110℃烘箱活化1小时即可使用(一次可做很多块),现在基本上是从市场购置直接使用,无需自己制备。
(2)大板的制备:与小板制备类似,可以调节厚度。
2、点样用内径为0.5mm的管口平整的毛细管将溶于低沸点溶剂(乙醚、丙酮)配成的约为1%的溶液点样。
点样前,先用铅笔在小板上距一端5mm处轻轻划一横线,作为起始线,然后用毛细管吸取样品在起始线上小心点样。
3、展开展开剂的选择主要根据样品的极性、溶解度和吸附剂的活性等因素来考虑。
薄层展开在密闭的容器中进行。
点样的位置必须在展开剂液面之上,当展开剂上升到薄层的前沿(离前端 5-10mm)或多组分已明显分开时,取出薄层板放平晾干,用铅笔划溶剂前沿的位置后,即可显色。
实验11环境微⽣物的检测_基础⽣物学实验(安徽⼤学研究⽣复试⽤,⽣物⽣命科学)实验⼗⼀环境微⽣物的检测⼀、实验⽬的1.学习从混杂的微⽣物群体中分离纯化微⽣物的⽅法,掌握分离纯化的基本操作技术;2.学会从菌落及培养特征辨别细菌、酵母菌、放线菌和霉菌四⼤类微⽣物;3.学会好氧、厌氧的微⽣物平板及斜⾯培养的⽅法。
⼆、实验原理从杂居在⼀起的微⽣物群体中获得只含有某⼀种或某⼀株微⽣物的过程称为微⽣物的分离与纯化。
具体的⽅法有1.单细胞挑取法简易单孢⼦分离法是⼀种不需显微单孢操作器,可直接在普通显微镜下利⽤低倍镜分离单孢⼦的⽅法。
它采⽤很细的⽑细管吸取较稀的萌发的孢⼦悬浮液滴在培养⽫盖的内壁上,在低倍镜下逐个检查微滴,将只含有⼀个萌发孢⼦的微滴放⼀⼩块营养琼脂⽚上,使发育成微⼩菌落。
再将微⼩菌落转移到培养基中,即可获得仅由单个孢⼦发育⽽成的纯培养。
2.平板分离法该⽅法操作简便,普遍⽤于微⽣物的分离、纯化。
基本原理包括:(1)选择适合的待分离微⽣物的⽣长条件,例如营养条件、合适的酸碱度、温度和氧等要求或加⼊某种抑制剂造成只利于该微⽣物⽣长,⽽抑制其他微⽣物⽣长的环境,从⽽淘汰⼀些不需要的微⽣物。
(2)微⽣物在固体培养基上⽣长繁殖形成的单个菌落可以是由⼀个细胞繁殖⽽成的集合体。
可以通过挑取单菌落⽽获得⼀种纯培养,获取单个菌落的⽅法可通过稀释涂布平板法或平板划线法等技术完成。
值得⼀提的是从微⽣物群体中经分离⽣长在平板上的单个菌落并不⼀定保证是纯培养。
纯培养的确定除了观察其菌落形态外,还要结合显微镜观察到的个体形态特征后才能确定,有些微⽣物的纯培养要经过⼀系列的分离与纯化过程和多种特征鉴定⽅能得到。
⼟壤是微⽣物⽣活的⼤本营,它所含微⽣物⽆论是种类还是数量上都是极其丰富的。
因此⼟壤是微⽣物多样性的重要场所,是开发微⽣物资源的重要基地,可以从其中分离、纯化得到许多有价值的微⽣物菌株。
本实验将采⽤以下不同的培养基从⼟壤中分离出不同类型的微⽣物。
实验十一偏振现象的观察与分析光波是电磁波,其电矢量的振动方向垂直于传播方向,是横波.由于普通光源各原子分子发光的随机和无序性,光波电矢量的分布(方向和大小)对传播方向来说是对称的,反应不出横波特点,这种光称为自然光.如果限制了某振动方向的光而使光线的电矢量分布对其传播方向不再对称时,这种光称为偏振光.对于偏振现象的研究在光学发展史中有很重要的地位,光的偏振使人们对光的传播(反射、折射、吸收和散射)规律有了更透彻的认识,本实验将对光偏振的基本性质进行观察、分析和研究.·实验目的1.观察光的偏振现象,掌握产生和检验偏振光的原理和方法,学会确定偏振片的透振方向,验证马吕斯定律;2.用反射起偏法测量平面玻璃的布儒斯特角,求得玻璃的折射率;3.了解λ/4波片、λ/2波片的工作原理和作用(任选其中部分内容);·实验仪器光具座,He—Ne激光器,光点检流计,光电转换装置,GPS-Ⅱ型偏振光实验仪(包括偏振片×2,λ/4波片×2,λ/2波片×2,背面涂黑的玻璃片及刻度支架,小孔光阑,白屏).图1 实验仪器(重拍)偏振片及刻度旋转装置:由直径为2cm的偏振片固定在转盘上制成,转盘上指针的位置不一定是偏振片的透振方向.波片及刻度旋转装置:由直径为2cm的波片固定在转盘上制成,转盘上指针的位置不一定是波片的快轴或慢轴的位置.·实验原理从自然光获得偏振光的办法有3种,即利用二向色性的材料制作的偏振片;利用晶体的双折射性质做成的偏振棱镜;利用光学各向同性的两介质分界面上的反射和折射.本实验中所用的偏振片是利用二向色性的材料制作的.一、起偏、检偏与马吕斯定律将自然光变成偏振光的过程称为起偏,检查偏振光的装置称为检偏.按照马吕斯定律,强度为I 0的线偏振光通过检偏器后,透射光的强度为:20cos I I θ= (12-1)式中I 0为入射线偏光的光强,θ为入射光偏振方向与检偏器透振轴之间的夹角.显然,当以光线传播方向为轴转动检偏器时,透射光强度I 将发生周期性变化.当θ=00时,透射光强度最大;当θ=090时,透射光强度最小(消光状态);当00<θ<090时,透射光强度介于最大值和最小之间.因此,根据透射光强度变化的情况,可以区别光的不同偏振状态.实验中让入射光共轴依次通过两个偏振片,旋转检偏器,读出不同θ角下出射光的强度,验证马吕斯定律.二、布儒斯特定律和反射光的偏振当自然光在空气中以某角度入射至折射率为n 的透明介质表面时,若反射线与折射线垂直,则其反射光为完全的线偏振光,振动方向垂直于入射面;而透射光为部分偏振光.此规律称为布儒斯特定律,入射角称为布儒斯特角,如图11-2所示.arctgn i b = (12-2)实验中可通过用振动方向垂直于入射面的线偏光入射,再用检偏器检查反射光是否消光来确定布儒斯特角,求出玻璃材料的折射率n.图11-2 布儒斯特定律示意图三、λ/4波片与λ/2波片波片是从单轴晶体中切割下来的平行平面板,其表面平行于光轴.当一束单色平行自然光正入射到波片上时,光在晶体内部便分解为o 光与e 光.o 光电矢量垂直于光轴;e 光电矢量平行于光轴.而o 光和e 光的传播方向不变,仍都与表面垂直.但o 光在晶体内的速度为0v ,e 光的为e v ,即相应的折射率0n 、e n 不同.设晶片的厚度为l ,则两束光通过晶体后就有位相差()r n n e o -=∆λπϕ2 (12-3)()l n n e -=0λπσ (12-4)式中λ为光波在真空中的波长.πσk 2=的晶片,称为全波片;ππσ±=k 2的称为半波片(λ/2波片);22ππσ±=k 为λ/4片,上面的k 都是任意整数.不论全波片,半波片或λ/4片都是对一定波长而言.在直角坐标系下,以e 光振动方向为横轴,o 光振动方向为纵轴,则沿任意方向振动的平行光,正入射到波片的表面后,其振动便按此坐标系分解为e 分量和o 分量.透过晶片,二者间产生一附加位相差σ,离开晶片时合成光波的偏振性质,决定于σ及入射光的性质.1.偏振态不变的情形:(1)自然光通过任何波片,仍为自然光;(2)若入射光为线偏振光,其电矢量E 平行e 轴(或o 轴),则任何波长片对它都不起作用,出射光仍为原来的线偏振光.2.λ/2波片与偏振光(1)若入射光为线偏振光,且振动方向与晶片光轴成θ角,则经λ/2玻片出射的光仍为线偏振光,但与光轴成负θ角.即线偏振光经λ/2片电矢量振动方向转过了2θ角.(2)若入射光为椭圆偏振光,则经λ/2玻片后,既改变椭圆长(短)轴的取向,也改变椭圆的旋转方向;若入射光为圆偏振光,出射的只是改变了旋转方向的圆偏振光.3.λ/4波片与偏振光(1)若入射光为线偏振光,当θ角为450时,经λ/4波片后的出射光为圆偏振光,其余情况下为椭圆偏振光;(2)若入射光为圆偏振光,则出射光为线偏振光;(3)若入射光为椭圆偏振光,则出射光一般仍为椭圆偏振光,(详见利萨如图11-3).π2图11-3 同频率、振动方向垂直的两振动合成的利萨如图·实验内容与步骤1.定偏振片光轴:把两个偏振片插入光具座,接入光电转换装置及光点检流计,调至共轴.旋转第二个偏振片,使光屏显示消光,此即表示起偏器的透振轴与检偏器的透振轴相互垂直.再从θ=00开始到900每隔100读一个光电流值,用坐标纸作图验证(12-1)式马吕斯定律.2.测量玻璃板的布儒斯特角,求得玻璃的折射率:在上述1的基础上,撤掉检偏器,将装有底座的待测玻璃片插入光具座,共轴调节后,使玻璃板的法线方向与入射光线重合,记录指针的位置.旋转玻璃片所在的平面,用白板跟踪接收反射光.当入射角在某个特定角附近,仔细旋转起偏器,观察接收屏上光强变化,当光强最小时固定起偏器,再微旋玻璃片的方位,找到光强最弱位置;重复上述调整至消光,此时读出光线对玻璃片的入射角即为玻璃板的布儒斯特角;测量5次,根据(12-2)式计算玻璃的折射率.且与标称值作比较,计算标准偏差.3.考察平面偏振光通过λ/2、λ/4波片时的现象:(选做)(1)在两块偏振片之间插入λ/2波片,旋转检偏器一周,观察消光的次数并解释这现象.(2)将λ/2波片转任意角度,这时消光现象被破坏.把检偏器转动一周,观察发生的现象并作出解释.(3)仍使起偏器和检偏器处于正交(即处于消光现象时),插入λ/2波片,使消光,再将转150,破坏其消光.转动检偏器至消光位置,并记录检偏器所转动的角度.(4)继续将λ/2波片转150(即总转动角为30度),记录检偏器达到消光所转总角度.依次使λ/2波片总转角为450,600,750,900,分别记录检偏器消光时所转过的角度.(5)使起偏器和检偏器正交,中间插入λ/4波片,转动λ/4波片使消光.再将λ/4波片转动150,300,450,600,读出相应的光电流,并分析这时从λ/4波片出来光的偏振状态.3.平面偏振光通过λ/2波片时的现象4.平面偏振光通过λ/4波片时的现象1.仔细阅读偏振光实验指导及操作说明书,操作中注意首先做“消除暗电流记录”的测试前准备;每步实验前在光具座上用小孔屏调整光路共轴;2.检测光电流时必须确认表针基本停稳后才可以读数(或指针波动大时估读中间值).偏振光最普遍的来源之一是自然光经电介质表面反射这个无所不在的物理过程.人类生活中来自玻璃、水面等所有表面的反射光和散射光,一般都是部分偏振光.这个规律是马吕斯在1808年开始研究的.巴黎科学院悬赏征求双折射的数学理论,马吕斯就着手研究这个问题.一天傍晚,他站在家中的窗户旁边研究方解石晶体.当时夕阳西照,夕阳从离他家不远的卢森堡宫的窗户上反射到他这里来.他拿起了方解石晶体,通过它观察反射来的太阳的像.使他感到意外的是当转动方解石晶体时,双像中的一个像消失了.太阳下山之后,夜里他继续观察从水面上和玻璃面上反射回来的烛光来核实他的实验.≈56°时消光效果最显著.但在近用一支蜡烛和一片玻璃试一试,把玻璃放在θP掠入射时,两个像都很明亮,无论怎样转动晶体,哪个像都不会消失.马吕斯显然很幸运,站在对着宫殿窗户的一个恰当的角度上.致使他发现了偏振光的规律.普通非晶体材料受到应力时变成各向异性,有双折射.用偏振光的干涉条纹分布的疏密和走向来确定材料的内应力大小.电光开关是指电场使某些各向透明的介质变为各向异性,使光产生双折射,称kerr effect,用电信号控制光信号.光电偏振研究在光调制器、光开关、光学计量、光信息处理、光通信、激光和光电子学器件、晶体性质研究和实验应力分析等技术中有广泛的应用.中学物理课标对偏振及相关内容的要求是:1.通过实验认识光的干涉、衍射、偏振现象以及在生活、生产中的应用;2.用偏振片观察玻璃面反射光、天空散射光的偏振现象;3.用偏振片鉴别普通玻璃和天然水晶,探究这种技术的物理原理.本实验的构思亮点:因为不加布儒斯特窗的半导体激光器发出的光其振动方向与自然光相似,细光束的传播方向集中,使实验操作极大简化,物理思路更加清晰;光具座上可供选择的内容开放,可增加学生的动手动脑兴趣.(零点测量法)操作难点:微电流读数受环境和仪器的影响因素较多,难以准确读数,偏振元件旋转角度最小分度1°,组装粗糙,影响了测量精度.1.本实验为什么要用单色光源照明?根据什么选择单色光源的波长?若光波波长范围较宽,会给实验带来什么影响?2.在确定起偏角时,若找不到全消光的位置,根据实验条件分析原因.3 .三块外形相同的偏振片、1/2波片、1/4波片被弄混了,能否把它们区分开来?需要借助什么元件?若能,试写出分析步骤.4. 在透振方向互相垂直的起偏和检偏两片偏振片中插入1/2波片,使光轴和起偏器的透振方向平行,那么透过检偏器的光是亮还是暗?为什么?将检偏器旋转90度,透出的光亮暗是否变化?5.波片加工精度和激光波长漂移会对1/4波片产生的光程差带来误差.试根据波片对线偏振光产生的位相差和光程差公式,对波片厚度和激光波长作一个半定量的估计一般以1/2波长为限.6.已知什么量?哪个是待测量?如何控制变量?关注检流计的量程并做适当调节.按要求处理实验数据,完成实验报告.7.本实验还有哪些操作难点?针对操作难点,摸索并掌握正确的调节的方法.尝试设计实验,探究圆偏振光、椭圆偏振光的产生和检验方法,并完成实验.。
实验十一视力的测定视野的测定盲点的测定视觉调节反射和瞳孔对光反射声音的传导途径一、目的和要求1.学习测定视力的方法;2.掌握视敏度的概念;3.学习视野计的使用方法和视野的检查方法;4.证明盲点的存在,并计算盲点所在位置和范围;5.观察视觉调节反射和瞳孔对光反射。
6.了解骨传导和声音传导的途径,并了解两种传导的异同。
二、实验器材1.视力表(5m),指示棍,遮眼板,米尺;2.视野计,白、红、蓝、黄色标,视野图纸,铅笔;3.白纸,铅笔,黑色视标,尺,遮眼板;4.蜡烛、火柴5.音叉三、实验原理1.视力又称视敏度,是指眼分辨物体细微结构的能力,以能分辨空间两点的最小距离为衡量标准。
对人来说,实用来检查视网膜中央凹精细视觉的分辨能力。
临床规定,当能分辨两点间的最小视角为一分时(指这两点与相距5m远的眼所形成的视角),视力为1.0。
这两点间的距离约为1.5mm,相当于视力表第十行的每一笔所间隔的距离。
因此,在距视力表5m处能分辨第十行字,为正常视力。
可按下面公式计算:受试者视力=其辨认某字的最远距离/正常视力辨认该字的最远距离2.视野式单眼固定注视正前方一点时所能看到的空间范围,借此可以了解整个视网膜的感光功能,并有助于判断视觉传导通路及视觉中枢的机能。
正常人的视野范围鼻侧和额侧较窄,颞侧与下侧较宽。
在相同亮度下,白色视野最大,红色次之,绿色最小。
3.视神经离开视网膜的部位没有视觉感受细胞,外来光线成像于此不能产生视觉,故称为盲点。
由于盲点的存在,视野中也必然存在盲点的投射区域。
根据物体成像规律,通过测定盲点投射区域的位置和范围,可以依据相似三角形个对应边成正比的定律,计算出盲点所在的位置和范围。
4.人眼看近物时能反射性地引起眼球睫状肌状肌、虹膜括约肌及眼外肌的活动,使晶状体曲率增加、瞳孔的直径缩小和两眼球会聚,从而保证物体在两眼视网膜的相称部位形成清晰的图像,这称之为视觉调节反射。
射入眼内光线强度的变化也能反射地引起瞳孔直径的变比,从而控制射人眼内的光量,称为对光反射。
实验十一光栅位移传感器性能实验
一、实验目的
了解光栅传感器基本原理及其应用
二、实验原理
光栅传感器的基本元件是主光栅和指示光栅,他们是在一块长条形的光学玻璃板上,均匀地刻上许多明暗相同、宽度相等的刻线。
光栅传感器中一般在10-100 线/毫米。
当指示光栅置于主光栅上面,并且使指示光栅和主光栅的刻线之间有一很小的偏角θ。
在光线照过光栅时,由于遮光效应,在指示光栅上就会产生若干条明暗的条纹。
这些条纹称之为莫尔条纹。
当主光栅和指示光栅在左右方向做相对移动时,莫尔条纹也相应地等量作上下移动,通过光敏元件测量莫尔条纹的移动数量,就能测量指示光栅的微小移动量。
为了提高光栅传感器的分辨率,通常对光栅传感器输出方波进行四倍频细分,使光栅计数分辨率提高四倍。
本实验用传感器的显示分辨率为0.005mm(5um)。
本实验附上光栅和指示光栅各一块可以进行莫尔条纹演示。
三、实验器械
光栅传感器位移演示装置、光栅传感器实验模板、主光栅和指示光栅各一块(玻璃片)四、实验接线图
五、实验数据记录和数据处理
实验数据如下:
实验数据拟合图像如下。
实验十一绘制具有多个初像的迭代图形绘制
实验目的:理解迭代有关功能,掌握具有多个初像的迭代图形与递推数列图形的绘制
实验内容:
1.绘制二叉树(加上树叶与果实)
2.绘制勾股树.
3.制作课件帮助理解曲线定积分的定义
4*.绘制正方形的展开图。
实验步骤:
1.绘制二叉树(加上树叶与果实)
①构造线段BC,CA,标记角度∠BCA,以A为中心旋转AC,标记比AC:CB,选中线段AC’,缩放得到AC’’。
做射线BC,在AC上任选一点,过该点与AC做垂线交射线于一点,以这点为中心到直线AC的距离为半径做圆,并构造内部。
②选择AC上任意一点,在该点做出两个如图所示的椭圆。
选择AC,AC’’,以BC为对称轴选择反射。
③选择点B、C、A,进行迭代,初象为C、A、C’’,构造新映射,初象为C、A’、C’’’,增加迭代次数。
2.绘制勾股树.
①构造线段AB,以A为中心,将AB旋转90°得到AB′,以B′为中心,将AB′旋转90°得到A′B′,连接A′B。
构造正方形内部。
②构造B′A′的中点C,选中点C、A′、B′构造弧,在弧上选择一点D,连接DB′、DA′,度量DA′的长度,选中度量值及四边形内部,在颜色里选中参数设置为0-0.3。
③选择A、B,选择迭代,初象为F、B,构造新映射,初象为F、C。
迭代8次即可。
3.制作课件帮助理解曲线定积分的定义
①定义坐标系,绘制函数(
)g x =x 轴正半轴去两点A 和B ,并度量A 和B 的横坐标A B x x 与,再计算当x 取A B x x 与时,()g x 的函数值,并绘制图像上对应的函数值;
②设置参数t ,并计算1t -,1t
; ③标记比值1t
,双击点A ,缩放点B 得到点B ′,再度量B ′的横坐标,计算()B g x ,绘制对应的函数值点;
④选择点A 、t 与1t -,同时按住shift 键进行深度迭代即可;
⑤将t 依次增加,即可发现t 越大所分的区间越小,且面积越接近于曲边梯形的面积。