三氟乙酸脱苄基O-debenzylation_of_ortho-substituted_phenols_with_trifluoroacetic_acid
- 格式:pdf
- 大小:176.37 KB
- 文档页数:3
离子色谱-抑制型电导检多肽中的三氟乙酸曾雪灵戴安中国有限公司,杭州,310028,zengxueling@摘要:在本文采用离子色谱抑制型电导快速测定多肽中的伊三氟乙酸及其它离子的含量。
采用Ionpac AG14+ AS14阴离子分析柱分离,以电导为检测器。
用去离子水提取多肽中的三氟乙酸及杂质离子。
实验结果表明,在一定的色谱条件下,三氟乙酸及其杂质离子具体很好的线性,和重现性,及较低的检出限。
最低检出量及样品的平均加标回收率均符合分析的要求。
关键词:离子色谱;多肽;三氟乙酸三氟乙酸(TFA)常用于制造过程中,从固相树脂洗脱出合成肽。
三氟乙酸或乙酸也被用于肽的反相高效液相色谱纯化过程。
三氟乙酸由乙酸和氟化物反应合成,因此三氟乙酸中存在乙酸和氟化物的残留。
残留的三氟乙酸,氟化物以及乙酸对人体有毒,因此不应存在于临床使用前后的肽中。
测定三氟乙酸,乙酸和氟化物对于肽的形成是合适的,这样能在制造过程中查证这三种阴离子是否已被消除掉。
在之前的文献报导中采用气相色谱1-5,GC-MS6,反相HPLC7,电泳8-10,红外11,滴定12-13,分光光度法14检测TFA。
在本文中采用离子色谱法检测肽样品中的三氟乙酸,氟化物以及乙酸。
实验结果表明,离子色谱方法具有简便,速度快以及灵敏度高的优点。
1.实验部分1.1 仪器DX-500包括:GP40梯度泵;CD20电导检测器或ED40电化学检测器;LC30或LC20;AS3500自动进样器。
1.2 试剂所有试剂均为分析纯。
标准溶液均由1000mg/L的贮备液(置于4℃冰箱中)稀释配制,溶液均用18.2MΩ.cm 的二次去离子水配制。
1.3 色谱条件柱:IonPac AS14(4mm),AG14(4mm);淋洗液:3.5mM Na2CO3/0.8 mM NaHCO3;流速:1.2mL/min;进样体积:10uL;检测器:抑制型电导检测,ASRS自动抑制循环模式和外加水模式。
三氟乙酸脱boc反应条件三氟乙酸脱BOC反应(BOC:全氟烷酸基)是一种常用的有机合成方法,用于将全氟烷酸基从有机化合物的碳链上分离出来。
它可以用于有机合成试剂的制备、多种天然产物的合成以及重要药物、医药中间体的制备等方面。
三氟乙酸脱BOC反应条件:此反应通常在80-90℃、有机溶剂(如甲醇或乙醇)和受体中进行,常使用双水乙酸铵、双水硝酸氢钠或三氟乙酸催化。
脱去的BOC基可存在乙醇溶液中,这也是有机多功能基团脱除的重要方法。
对于三氟乙酸让BOC基除去反应,有几点需要关注。
首先,反应温度应保持在80-90℃,过高的反应温度可能会导致反应不完全,反应体系被过度热量损伤;另一方面,使用双水乙酸铵、双水硝酸氢钠或三氟乙酸作为催化剂可有效提高反应速率,但有时可能对反应体系有一定的毒性。
此外,加入适量的双水乙酸钠并加入乙醇溶液中可有效除去水的存在,避免多余的水蒸气在反应中产生。
最后,反应应当在受体的缓冲溶液中进行,以有效改善反应体系的稳定性。
总之,三氟乙酸脱BOC反应条件是温度维持在80-90℃,加入双水乙酸铵、双水硝酸氢钠或三氟乙酸作为催化剂,加入适量的双水乙酸钞并加入乙醇溶液中可有效除去水的存在,最后,反应应当在受体的缓冲溶液中进行。
本方法可以应用于有机合成试剂的制备,多种天然产物的合成,以及重要药物、医药中间体的制备。
糖类化合物合成中常用保护基的脱除2008-12-04 17:00一、苄醚类除了极少情况下以外,苄基在寡糖合成中是作为永久性保护基的,最后可以催化氢化脱去。
而在苄基苯环的邻对位附加一些基团可以使其具有一定的选择性。
对氨基苄基类:对三甲基乙酰胺基苄基(PAB),酸稳定,用2,3-二氯-5,6-二氰-1,4-二苯醌氧化除去。
对叠氮基苄基(Azb)和对叠氮基间氯苄基(ClAzb):氧化断裂,在酸性环境下稳定,转化为氨基正离子后便可通过氧化选择性的离去。
对卤基苄基:与苄基一样稳定,经过钯催化氨化后很容易就被质子酸或路易斯酸除去,后来Wong 引入了纳米钯使得苄基从树脂上选择性的脱下成为可能。
改成卤素取代基,又可以增加此类基团的选择性。
以上所有新的苄基保护基,在寡糖合成中能作为临时保护基,被选择性脱除,它们也已经在固相合成复杂寡糖和和支链糖结构中,作为临时保护基得到应用二、碱不稳定保护基乙酰基(Ac),苯甲酰基(Bz)和三甲基乙酯(Piv)保护基:作为具有邻基参与基团功能的保护基,被广泛用于寡糖固相合成。
用过量的甲醇钠即可脱去,在很短时间内能定量地得到游离羟基.三甲基乙酯(Piv)作保护基偶联时没有酰基迁移和原酸酯现象,脱保护可以用甲醇钠。
在可溶性聚合物载体上,也有报道用1,5-二氮双环[5.4.0]-十一-5-烯(DBU)或Hünig碱的,还有用胍和盐酸的。
氯乙酰基(CA):可以在甲氧基乙醇中用硫脲脱去。
苯氧乙酰基:在CPG上合成寡糖时用过量的胍反复处理便可脱去乙酰丙酯(Lev):作为保护基可以促进a选择性,脱保护用甲醇钠,醋酸缓冲的肼也可以将其选择性脱去。
能和9-芴-甲氧基酰基(Fmoc)在固相合成上联用。
三氯乙氧基酰基(Troc):可用甲醇钠脱去。
在活化锌相对温和的条件下也可以脱去。
9-芴-甲氧基酰基(Fmoc):很早就在肽合成里作为氮保护基,最近在寡糖固相合成里也得到了广泛应用,可用20%三乙胺脱去,肼和醋酸的二氯甲烷/甲醇溶液也可以将其脱去,而对保护基乙酰丙酯(Lev)没有影响。
合成多肽药物中三氟乙酸检测方法研发表时间:2018-11-23T11:56:21.727Z 来源:《药物与人》2018年8月作者:张莲莲杜开峰[导读] 三氟乙酸(TFA)是多肽药物的一项重要控制项目,目前报道较多的检测方法是离子色谱法(IC)与高效液相色谱法(HPLC)。
摘要:三氟乙酸(TFA)是多肽药物的一项重要控制项目,目前报道较多的检测方法是离子色谱法(IC)与高效液相色谱法(HPLC)。
本文分别对 IC 及 HPLC 法进行研究:结果表明 IC 法 TFA 定量限为 2.4ng,推算检出限为 0.8ng,且在 0.12088μg/mL~6.044μg/mL 范围内呈良好的线性关系(r = 0.9999);HPLC 法定量限为 6ng,检出限为 1.5ng,且在 0.3023μg/mL~15.115μg/mL 范围内呈良好的线性关系(r = 0.9998),加标回收率为 99.3%~101.7%,精密度(n=6)为 0.192%~0.200%,RSD5=1.4%。
结论:IC 法与 HPLC 法相比,在灵敏度,线性及重复性等方面差异不大,均能满足准确检测相关多肽样品中 TFA 含量要求,但 HPLC 法适用范围更广,且能同时检测多肽药物中醋酸(HAC)及三氟醋酸(TFA)含量,达到简单易行、结果准确、灵敏度高、降低成本、提高效率的研究目的。
关键词:离子色谱法,高效液相色谱法,多肽,三氟乙酸,含量检测中图分类号:文献标识码:A Abstract:Trifluoroacetic acid (TFA) is an important control item of polypeptide drugs. Ion chromatography (IC) and high performance liquid chromatography (HPLC) are commonly used in the detection of TFA. In this paper, IC and HPLC methods are studied respectively.The results showed that the quantitative limit of TFA by IC method was 2.4 ng, the detection limit was 0.8 ng, and the linear relationship was good in the range of 0.12088 ug/mL to 6.044 ug/mL (r=0.9999);the quantitative limit of HPLC was 6 ng, the detection limit was 1.5 ng, and the linear relationship was good in the range of 0.3023 ug/mL to 15.115 ug/mL (r = 0.9998). The recovery was 99.3% ~ 101.7%, the precision (n = 6) was 0.192% ~ 0.200%, RSD5 = 1.4%.CONCLUSION: Compared with HPLC, IC method has little difference in sensitivity, linearity and repeatability, and can meet the requirement of accurate determination of TFA content in related polypeptide samples. However, HPLC method has a wider application range and can simultaneously detect the contents of HAC and TFA in polypeptide drugs.The HPLC method is simple, accurate, sensitive, low cost and efficient. Key words:Ion chromatography ;HPLC; Peptide ;Trifluoroacetic acid; Content determination 1 前言三氟乙酸(TFA)普遍用于合成多肽的工艺中作为切割剂及脱保护剂,临床使用存在毒性。
第一部分化学品及企业标识化学品中文名:2-(三氟甲氧基)苄基溴化学品英文名:2-(Trifluoromethoxy)benzyl BromideCASNo.:198649-68-2分子式:C8H6BrF3O产品推荐及限制用途:工业及科研用途。
第二部分危险性概述紧急情况概述造成严重皮肤灼伤和眼损伤。
GHS危险性类别无危害分类标签要素:象形图:警示词:警告危险性说明:H314 造成严重皮肤灼伤和眼损伤●预防措施:——P233 保持容器密闭。
●事故响应:——P303+P361+P353 如皮肤(或头发)沾染:立即脱掉所有沾染的衣服。
用水清洗皮肤/淋浴。
——P370+P378 火灾时:使用灭火器灭火。
●安全储存:——P405 存放处须加锁。
●废弃处置:——P501按当地法规处置内装物/容器。
物理和化学危险:无资料。
健康危害:造成严重皮肤灼伤和眼损伤。
环境危害:无资料。
第三部分成分/组成信息√物质混合物第四部分急救措施急救:吸入:如果吸入,请将患者移到新鲜空气处。
皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。
如有不适感,就医。
眼晴接触:分开眼睑,用流动清水或生理盐水冲洗。
如有不适感,就医。
食入:饮水,禁止催吐。
如有不适感,就医。
对保护施救者的忠告:将患者转移到安全的场所。
咨询医生。
出示此化学品安全技术说明书给到现场的医生看。
对医生的特别提示:无资料。
第五部分消防措施灭火剂:用水雾、干粉、泡沫或二氧化碳灭火剂灭火。
避免使用直流水灭火,直流水可能导致可燃性液体的飞溅,使火势扩散。
特别危险性:无资料。
灭火注意事项及防护措施:消防人员须佩戴携气式呼吸器,穿全身消防服,在上风向灭火。
尽可能将容器从火场移至空旷处。
处在火场中的容器若已变色或从安全泄压装置中发出声音,必须马上撤离。
隔离事故现场,禁止无关人员进入。
收容和处理消防水,防止污染环境。
第六部分泄漏应急处理作业人员防护措施、防护装备和应急处置程序:建议应急处理人员戴携气式呼吸器,穿防静电服,戴橡胶耐油手套。
三氟乙酸脱bn条件三氟乙酸脱碱(Base-induced elimination of benzylic alcohols)是一种常用的有机合成反应,可用于制备烯丙基化合物。
本文将介绍三氟乙酸脱碱的反应条件及其在有机合成中的应用。
1. 反应条件三氟乙酸脱碱是一种碱性条件下的消除反应,需要使用碱催化剂。
常用的碱催化剂有碱金属醇盐(如氢氧化钠、氢氧化钾)、碱金属醇(如乙醇钠、乙醇钾)以及有机胺(如三乙胺、吡啶等)。
反应溶剂一般选择极性较强的溶剂,如二甲基亚砜(DMSO)、二甲基甲酰胺(DMF)等。
2. 反应机理三氟乙酸脱碱是一种经历E1cB机理的消除反应。
首先,碱催化剂与活性氢原子形成氢键,使得氢离子易于被碱催化剂吸收。
然后,碱催化剂的负离子攻击位于α位的氢离子,形成碳负离子中间体。
最后,负离子中间体失去一个氢离子,并与碱催化剂中的阳离子结合,生成烯丙基化合物和相应的盐。
3. 应用领域三氟乙酸脱碱在有机合成中具有广泛的应用。
首先,它可以用于制备烯丙基化合物,如烯丙基醚、烯丙基酯等。
这些化合物在药物合成、天然产物合成以及功能材料的合成中具有重要作用。
其次,三氟乙酸脱碱还可以用于合成具有烯丙基结构的化合物,如烯丙基醛、烯丙基酮等。
这些化合物可以作为中间体用于合成其他有机化合物。
此外,三氟乙酸脱碱还可用于合成具有烯丙基结构的天然产物和药物分子。
4. 反应优势三氟乙酸脱碱作为一种消除反应,在有机合成中具有以下优势:首先,反应条件温和,反应时间较短,适用于多种底物。
其次,反应产率较高,反应选择性好。
再次,该反应具有较高的官能团兼容性,可以容忍多种官能团的存在。
此外,三氟乙酸脱碱是一种经济实惠的反应,催化剂易于获取且成本较低。
三氟乙酸脱碱是一种常用的碱性消除反应,可用于制备烯丙基化合物。
通过选择合适的反应条件和催化剂,可以实现高产率和高选择性的反应。
该反应在有机合成中具有广泛的应用前景,可用于合成多种功能材料和药物分子。
三氟乙酸酐关环机理三氟乙酸酐(TFSA)是一种常用的酰氟试剂,其关环机理被广泛研究和应用于有机合成反应中。
本文将通过深入探讨三氟乙酸酐的关环机理,从简单到复杂,逐步展开,以便读者更好地理解和应用该机理。
一、什么是三氟乙酸酐关环机理三氟乙酸酐是由三氟乙酸和酸氯化剂反应得到的酰氟试剂。
在有机合成中,TFSA常常用于进行脱保护反应或关环反应。
关环机理即指在关环反应中,TFSA与底物反应所产生的中间体及其生成路径。
二、三氟乙酸酐关环机理的基本步骤1. 激活:三氟乙酸酐与酸催化剂反应,生成酰氟离子,提供了一个活化的电荷中心。
2. 进攻:底物的亲核试剂攻击酰氟离子的电荷中心,形成一个新的化学键。
3. 解离:中间体发生酸解离,断裂TFSA的C-F键,生成相应的环状中间体。
4. 还原:中间体经过一个还原步骤,将环状结构还原为稳定的化合物。
三、三氟乙酸酐关环机理实例分析以合成杂环化合物为例,介绍三氟乙酸酐关环机理的应用。
考虑一个含有一个端基和一个选择性保护基的底物。
初始步骤中,选择性保护基与三氟乙酸酐反应,酸解离生成中间体。
随后,亲核试剂进攻中间体上的电荷中心,形成新的化学键。
在还原步骤中,将中间体还原为稳定的化合物。
通过这一系列反应,成功完成了杂环的关环。
四、三氟乙酸酐关环机理的优点和应用三氟乙酸酐关环机理具有几点独特和重要的优点。
关环反应通常能够在温和的条件下进行,且具有较高的产率。
关环机理适用于各种底物和试剂的反应,可用于合成多种有机杂环化合物。
关环反应具有广泛的应用领域,包括药物合成、天然产物合成等。
个人观点:我认为三氟乙酸酐关环机理在有机合成中具有极大的应用潜力。
其简单的反应步骤和高效的关环能力,为合成复杂有机分子提供了一种有效的方法。
值得注意的是,关环反应是一项细致而复杂的工作,需要合适的环境和条件来实现预期的结果。
另外,随着对三氟乙酸酐关环机理的深入研究,相信将会有更多的新发现和改进,进一步拓展其应用领域。
三氟乙酸钠与叔丁醇的分离-概述说明以及解释1.引言1.1 概述概述三氟乙酸钠和叔丁醇是两种常见的化学物质,在许多领域都有广泛的应用。
然而,由于它们的性质和用途的差异,有时需要将它们分离开来以满足特定的需求。
本文旨在介绍三氟乙酸钠和叔丁醇的性质和用途,以及分离这两个化合物的方法。
首先将对三氟乙酸钠和叔丁醇进行简要的介绍,包括其化学性质、物理性质和常见的应用领域。
然后,我们将探讨分离这两种化学物质的不同方法,并讨论选择适当的分离方法的因素。
实验结果和讨论部分将涉及我们在实验中使用的具体方法和技术,以及我们观察到的结果。
我们将对实验结果进行分析,并讨论可能的原因和解释。
此外,我们还将探讨这些分离方法的效率和可行性,以及它们在工业和实际应用中的潜在价值。
通过本文的研究和讨论,我们希望能够提供有关分离三氟乙酸钠和叔丁醇的有效方法和技术的有用信息。
这将为相关领域的研究人员和工程师提供有关这两种化合物的更深入的了解,并为他们在实际应用中做出明智的选择提供参考依据。
1.2 文章结构文章结构:本文主要包括引言、正文和结论三个部分。
引言部分主要包括概述、文章结构和目的三个内容。
概述部分介绍了本文要研究的主题——三氟乙酸钠与叔丁醇的分离问题。
三氟乙酸钠是一种重要的有机合成原料,而叔丁醇则常用作溶剂和化学反应的试剂。
然而,由于它们在物理和化学性质上的相似性,使得它们的分离变得具有一定的挑战性。
文章结构部分说明了本文的结构和主要内容。
本文将首先介绍三氟乙酸钠的性质和用途,包括它的化学结构、物理性质和主要应用领域。
接着,将介绍叔丁醇的性质和用途,包括它的结构、化学性质和常见应用。
最后,将对分离方法进行选择,并进行实验结果与讨论,给出结论。
目的部分明确了本文的目标。
本文旨在深入了解三氟乙酸钠和叔丁醇的性质和用途,通过选择适当的分离方法,实现它们的有效分离。
通过以上结构的安排,本文将全面详细地介绍三氟乙酸钠和叔丁醇的性质和用途,并通过实验结果与讨论部分验证所选择的分离方法的可行性和有效性,最终得出结论。
N-苄基脱除方法汇总氨基的保护和脱除是有机合成中常用的策略, 在药物、天然产物等研究中屡见不鲜. 氨基的常见保护基团主要有三类: 烷氧羰基保护、酰基保护、烷基保护. 苄基作为一种烷基保护基, 可通过适当的卤代物在碱性条件下引入. 苄基的脱除也相对容易, 可通过催化氢解、液氨和钠或锂、氧化脱苄、酸解脱苄等方法脱保护. 除此之外, 苄基保护的有机胺能在强碱、亲核试剂、有机金属试剂的存在下保持稳定, 因此苄基成为氨基保护最常用的基团之一。
1.还原脱苄催化氢解在多官能团的氮杂环脱苄研究中优势明显, Yoshida等使用Pd(OH)2/C为催化剂在室温下快速氢解N-苄基胺生成脱苄产物 2 (Eq. 1), 而底物中叔丁基二甲基硅烷基、四氢吡喃基和三甲基硅烷基等对酸敏感的基团在该脱苄反应过程中也未被破坏. 反应以强极性的甲醇作溶剂, 在101 kPa的氢气压力下氢解, 数小时就能以较高的产率(81%~99%)反应完全. 该方法快速、高效、温和, 尤其适宜于含有敏感基团的底物脱苄.2.氧化脱苄目前, CAN 和DDQ已被广泛用作含苄基保护基团脱保护, 如醇和胺的脱保护. 传统脱苄方法可以容易地实现杂原子苄基脱保护, 但是仅有少数化合物在多官能团存在下能实现化学选择性脱苄. Bull 等以不同底物来进行CAN氧化脱苄反应, 详细研究了该脱苄试剂的反应特点. 研究发现, CAN 和DDQ虽然均能选择性脱除苄基, 但两者的脱苄效果存在一定差距, 前者优先脱除41中未取代的苄基得到42, 后者则更适用于对含给电子基团的苄基脱除。
3.强碱条件下脱苄Rao等在合成atorvastatin过程中, 以催化氢解、催化氢转移、叔丁醇钾氧化体系等不同方法均不能成功脱苄. 最终, 他们发现了将金属钠溶解在液态氨中, 并以t-BuOH为质子供体, 在-78 ℃低温下能脱去芳香杂环66上的氮苄基. 该方法虽反应条件苛刻, 并涉及危险试剂和药品, 但对于传统方法较难脱除的N-酰基-N-苄基衍生物和芳香杂环化合物来说不失为一种较好的脱苄方法.4.酸解脱苄三氟乙酸不仅能脱去苄基, 对于取代苄基如对甲氧基苄基也有不错的脱苄效果. 吲哚环是许多天然产物和药物的主要骨架, 具有一定替代模式的吲哚的高效构建具有挑战. 2014 年, Lam等[91]在研究高效构建吲哚环时, 需对重要中间体5-丁基-2-碘-3-[N-(4-甲氧基苄基)-N-(对甲苯磺酰)氨基]苯基甲磺酸(82)脱保护. 他们使用三氟乙酸为脱苄试剂, 在室温环境中搅拌3 h即可脱去对甲氧基苄基, 产率达94%~99%. 该方法既不用使用耐压的设备, 又不需要昂贵的催化剂, 在温和的条件下就可实现脱苄, 极大降低了合成吲哚的成本.5.其他方法脱苄1993年Yang等利用氯甲酸氯乙酯取代叔胺90上的苄基, 而后经CH3OH回流得到仲胺的盐酸盐. 在反应中, 氯甲酸氯乙酯与叔胺形成季铵盐, 随后分子内脱去一分子氯苄得到化合物91, 化合物91 与甲醇加成脱羧后制得仲胺盐酸盐92. 氯甲酸酯脱苄也是一类重要的脱保护方法, 它适用于多种含氮五元及六元杂环叔胺, 氯甲酸酯的毒性限制了该方法的使用.6.结论与展望脱苄的方法有很多, 各有特点. 催化氢解和催化氢转移氢解脱苄是使用最广泛的方法, 其优点是反应温和, 产率高, 但也存在选择性差、成本高, 往往不适用于含不饱和键底物的缺点. 催化氢解一般需要在加压环境中进行, 对反应设备要求高. 催化氢转移氢解过程中使用的氢供体, 不利于产物的分离提纯. 对于在反应条件下不稳定的化合物, 可通过预先成盐或是用其他试剂及时捕捉脱苄产物的方法实现脱保护. 碱金属脱苄反应活性高, 产率好, 可用于底物结构稳定、苄基不易脱除的转化; 但其反应条件苛刻, 涉及有毒危险试剂, 严重制约了其使用范围. 取代脱苄将苄基转换为易脱除的基团, 大大降低了脱苄过程的难度, 但不足之处是增加了转化的步骤. 氧化脱苄虽然操作方便, 后处理简单, 且具备一定的化学选择性, 但在氧化过程中往往会发生一些副反应, 给脱苄产物的分离、提纯带来了一定的困难, 同时也对底物的稳定性提出了特殊要求. 硝解脱苄得到特定的硝基或亚硝基化合物, 可直接用来制备含能材料, 因此在含能材料领域应用较多. 其他脱苄方法虽然效率高, 但仅针对特定的反应底物, 适应性小. 酶催化脱苄是目前兼具高效、选择性、环保等特点且前景较好的脱苄方法, 值得进行深入研究. 但在前期研究中需进行酶活性筛选, 筛选难度大, 强度较高, 严重制约了其应用. 因此, N-苄基脱除方法要根据具体反应底物的结构进行合理选择, 选用不同的脱苄策略.参考文献:节选自Chin. J. Org. Chem. 2019,39, 2428~2442,周光伟,张莉珠薛亚涵,李加荣;仅供交流学习。
tfa脱dmb机理
TFA脱DMB的机理主要涉及有机化学中的亲核取代反应。
在这个反应中,TFA(三氟乙酸)作为亲核试剂,攻击DMB(二甲基甲氧基苯并二氢吡喃)的碳-氧键,将其中的甲氧基(-OCH3)替换为三氟甲基(CF3)。
这种替换过程伴随着质子的转移和电子的重新分布,最终生成一个新的化合物。
这种反应通常在酸性条件下进行,因为TFA在酸性环境中可以有效地转化为亲核性的负离子。
这个负离子作为亲核试剂,具有很强的反应活性,能够进攻DMB中的碳-氧键。
此外,酸性条件也有助于维持反应体系的稳定性,防止其他副反应的发生。
需要注意的是,这种反应是一个典型的有机化学反应,需要在特定的实验条件下进行,以确保反应的顺利进行和产物的纯度。
同时,由于涉及化学品的操作,实验人员需要具备相应的专业知识和安全意识,以防止意外事故的发生。
Mild,efficient and rapid O-debenzylation of ortho -substituted phenols with trifluoroacetic acidSteven Fletcher *,Patrick T.Gunning *Department of Chemistry,University of Toronto,Mississauga,ON L5L 1C6,Canadaa r t i c l e i n f o Article history:Received 21May 2008Revised 2June 2008Accepted 4June 2008Available online 10June 2008a b s t r a c tThe mild and efficient deblocking of aryl benzyl ethers with TFA is reported.Cleavage was fastest with ortho -electron-withdrawing groups on the phenolic ring,which we have attributed to a proton chelation effect,furnishing the deprotected phenols in excellent yields.The corresponding para -methoxybenzyl,allyl and iso -propyl ethers were also cleanly removed under these conditions.In addition,the selective aryl benzyl ether debenzylation in the presence of benzyl ester,Cbz carbamate and Boc carbamate func-tionalities was also observed.Crown Copyright Ó2008Published by Elsevier Ltd.All rights reserved.Phosphotyrosines feature in the design of inhibitors of several protein targets,including protein tyrosine phosphatase 1B (PTP1B).1However,these moieties suffer from hydrolytic lability to cellular phosphatases and poor cell penetration due to the asso-ciated dianionic charge.1To address these issues,salicylic acid derivatives (and closely-related analogues)have become popular mimetics of phosphotyrosine in small molecule inhibitors.1–5Turk-son et al.have recently reported on NSC74859(1),a potent,sali-cylic acid-based inhibitor of the oncogenic protein Stat3.6As part of our structure–activity relationship (SAR)studies on NSC74859(1),we sought to debenzylate both the phenol ether and benzoate ester in 2without reducing the aryl-bromide bond,a common undesired side reaction that occurs with hydrogen gas and Pd/C catalyst.7O -Benzyl-protected phenols are known to undergo debenzyla-tion with trifluoroacetic acid (TFA)8by an initial protonation of the weakly basic phenol oxygen,although additives such as strongorganic acids (e.g.,trifluoromethanesulfonic acid 9)or a large excess of nucleophilic scavenger (e.g.,thioanisole,which accelerates the reaction by a ‘push–pull’mechanism 10)are typically required.Re-cent work by Ploypradith et al.describes the mild deprotection of aromatic ethers with sub-stoichiometric para -toluenesulfonic acid on solid support.11In a special case,O -benzyl-protected ortho -nitrophenol was cleaved rapidly (<5min)with neat TFA,12which we considered was due to the ability of the substrate to chelate a proton since the structurally-similar ortho -hydroxybenzoates (salicylates)are well-known to chelate copper ions and iron ions.We reasoned that 2(and indeed 3)may similarly undergo acceler-ated debenzylation with TFA.In fact,as shown in Scheme 1,treat-ment of 2(or 3)with a 1:1mixture of TFA/toluene led to rapid debenzylation (5min for 2;1h for 3)in 91%yield for 2(or 85%yield for 3).In this Letter,we will explore the structural require-ments of the phenol component that increase the lability of the O -benzyl phenol ether bond in the presence of TFA.In addition,0040-4039/$-see front matter Crown Copyright Ó2008Published by Elsevier Ltd.All rights reserved.*Tel.:+19058285354;fax:+19058285425(P.T.G.).E-mail addresses:steven.fletcher@utoronto.ca (S.Fletcher),patrick.gunning@utoronto.ca (P.T.Gunning).Tetrahedron Letters 49(2008)4817–4819Contents lists available at ScienceDirectTetrahedron Lettersj o ur na l h om e pa ge :w w w.e ls e v ie r.c o m/lo c at e/t et l e twe will explore the selectivity of this mild debenzylation tech-nique with respect to other aromatic ethers and examine the sta-bility of other benzyl-based protecting groups to these reaction conditions.A series of 12O -benzyl-protected phenols was prepared by standard procedures in near quantitative yields.Each of these ethers was then deprotected with a 1:1mixture of TFA/toluene;our observations are summarized in Table 1.In certain cases,O ?C benzyl migration (Friedel–Crafts reaction)by-products (610%)were occasionally inseparable from the product by silica gel flash column chromatography.Thus,several benzyl cation cap-tors were investigated for their abilities to improve yields and puri-ties of the debenzylation reactions.Three to ten equivalents of p -cresol,anisole and triethylsilane were employed,but these exerted little effects on reducing by-product formation.Conversely,we dis-covered that including the more nucleophilic scavenger thioanisole as an additive to the co-solvent toluene typically,after silica gel flash column chromatography,furnished products in P 95%puri-ties (and higher yields),as judged by 1H NMR.Nevertheless,we envisaged any Friedel–Crafts impurities would be more readily separable on slightly more complex aryl benzyl ethers,as we ob-served with the substrates shown in Scheme 1and Tables 3and 4(>99%purities (1H NMR)in each case).Whilst likely leading to even higher yields and purities,large excesses of thioanisole (50equiv)are also known to accelerate TFA-mediated debenzyla-tion.10However,in our hands just 3equiv of thioanisole had little effect on the rate of debenzylation,allowing us to attribute the deprotection rates solely to the structure of the phenol.Electron-rich phenols are good scavengers of benzyl cations,13and since preliminary experiments with electron-rich phenols generated complex mixtures of Friedel–Crafts by-products under these deb-enzylation conditions,we chose to investigate only electron-poor phenols in this study.O -Benzyl-protected phenols with p -ortho -electron-withdraw-ing groups (6a ,6b ,6d ,6f )were swiftly (several in less than 3h cf.24h for unsubstituted phenol 6l )and cleanly debenzylated,with less than 5%of the undesired C-benzylated phenol by-prod-ucts.In contrast,meta -and para -electron-withdrawing groups slo-wed down the debenzylation (e.g.,entries 6g and 6h ),relative to the control compound 6l ,which itself could only be obtained in moderate purity by this method.The r -withdrawing (and p -donating)bromophenols 6i –k were insufficiently deactivated to benzyl cation scavenging and were contaminated with several by-products.Importantly,n -butyl benzyl ether 8was unaffected by TFA under the reaction conditions,indicating this procedure is selective for aryl benzyl ethers.In addition,the results in Table 1suggest that this procedure is suitable only for phenols substituted with p -electron-withdrawing groups.Since the debenzylation mechanism with TFA proceeds via an initial protonation of the phenol ether oxygen,the more available the ether oxygen lone pairs are,the faster the reaction will be.Hence,the slower reaction times for the phenols bearing meta -and para -electron-withdrawing groups make sense,although this is not true for the ortho -functionalized aryl benzyl ethers.As hypothesized for the bis-benzyl salicylate derivative 2earlier,we considered these ortho -substituted phenols were capable of chelat-ing the acidic hydrogen atom from TFA which therein facilitated the acid-mediated debenzylation via a six-membered cyclic inter-mediate,as proposed in Scheme 2.A similar chelation intermediate has been put forward by Baldwin and Haraldsson to account for the Lewis acid MgBr 2-mediated debenzylation of aromatic benzyl ethers ortho to an aldehyde group.14Accordingly,to test this hypothesis we expanded this series of ortho -substituted aryl benzyl ethers,and the results from their deb-enzylation reactions with TFA are summarized in Table 2.These substrates have been listed in order of increasing approximateTable 1TFA-mediated debenzylation of O -benzyl-protected phenols aTFAtolueneOBnROHR67Substrate RTime (h)b Yield c (%)6a o -CO 2Me,m d -NHAc 5min 936b o -CO 2Me 5min 946c p -CO 2Me 36e 63(85f )6d o -CO 2Bn 5min 936e p -CO 2Bn 36e 58(79f )6f o -NO 23976g m -NO 236e 75(98f )6h p -NO 236e 66(98f )6i o -Br 16—g 6j m -Br 30—g 6k p -Br 36—g 6lH 24—gn -BuOBn (8)—24No reactionaThe reaction was carried out with 6(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt,with 3equiv of thioanisole.bTime taken for all starting material to be consumed.cIsolated yield after silica gel flash column chromatography.dmeta to phenol oxygen AND para to ester.eReaction was slow and incomplete after 3days.fYield based on recovered starting material.gComplex mixture of products.Table 2TFA-mediated debenzylation of O -benzyl-protected,ortho -substituted phenols aTFA tolueneOBnOH67RRSubstrate R p K aH b Time c (h)Yield d (%)Relative rate 6m CO 2NH 2À2248316n CHO À7 3.594e 6.96o CO 2H À8191246b CO 2Me À8.55min 942886d CO 2Bn À8.55min 932886p CN À10>4851(95f )—6f NO 2À1239786i Br —16—g 1.56lH—24—g1aThe reaction was carried out with 6(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt,with 3equiv of thioanisole.bApproximate p K aH of conjugate acid of R group.15cTime taken for all starting material to be consumed.dIsolated yield after silica gel flash column chromatography.eIncluding thioanisole in the deprotection of 6n led to further by-products,thus no scavenger was used and compound 7n could be obtained in only 90%purity.fYield based on recovered starting material.gComplex mixture of products.4818S.Fletcher,P.T.Gunning /Tetrahedron Letters 49(2008)4817–4819acidity of the conjugate acid (decreasing p K aH )of the ortho -elec-tron-withdrawing substituent.15There appears to be an optimal p K aH of around À8.5,that is exhibited by carboxylic esters,which lead to the fastest rate of debenzylation with TFA.In an approxi-mate bell-shaped distribution of reaction rate versus ortho -substi-tuent p K aH —that was interrupted only by ortho -cyanophenol 6p —protonatable groups with p K aH ’s <À8.5or >À8.5were less effective at accelerating the TFA-mediated debenzylation.These data concur with our chelation hypothesis:groups that are too ba-sic bind more strongly to the TFA proton making it less available for sharing with,and ultimately releasing to,the phenol ether oxygen;groups that are weakly basic do not bind the TFA proton as well,leading to reduced chelation and hence less rate enhancement.The anomalous result for ortho -cyanophenol 6p was anticipated since this compound was selected as a negative control.Phenol 6p is geometrically incapable of chelating a proton,because the lin-ear,sp -hybridized nitrile functionality directs its basic nitrogen atom (p K aH %À10)away from the phenol oxygen.As predicted,there was no rate enhancement for the TFA-mediated debenzyla-tion of 6p relative to phenol 6l .In fact,6p was only slowly deben-zylated,at a rate that was comparable with the m -nitro and p -nitro derivatives 6g and 6h ,respectively.We next wanted to investigate the selectivity for the deprotec-tion of the benzyl group over other phenol protecting groups.Accordingly,the benzyl group in salicylate derivative 9a was varied with para -methoxybenzyl (PMB;9b ),methyl (9c ),allyl (9d )and iso -propyl (i -Pr;9e ).These substrates were then debenzylated with a 1:1mixture of TFA/toluene;our findings are reported in Table 3.Any impurities this time were minor and readily separable from the products,eliminating the need for the additive thioanisole.The relative rates at which these protecting groups were removed was para -methoxybenzyl >benzyl >allyl >iso -propyl )methyl,which reflects the stability of the carbocations.These data suggest that in salicylates such as 9,the benzyl phenol protecting group (R =Bn)can be removed with TFA in the presence of the corres-ponding allyl,iso -propyl and methyl ethers.Finally,we explored the selectivity of this mild debenzylation technique over other benzyl-based protecting groups,as shown in Table 4.As the results demonstrate,it was possible to deblock the O -benzyl ether in the presence of a benzyl ester (6d )and in the presence of a benzyl carbamate (11b ),thereby increasing the orthogonality of O -benzyl phenol ethers of salicylate derivatives.Interestingly,it was even possible to cleave the benzyl group in 11c with TFA in the presence of an N -Boc-protected aniline.In summary,we have presented the mild,efficient and rapid deblocking of ortho -substituted aryl benzyl ethers with TFA.Deb-enzylation was fastest when the ortho group was a carboxylic ester,which we have attributed to a proton chelation effect.Other ortho groups that accelerated the TFA-mediated debenzylation included carboxylic acid,aldehyde and nitro.In addition,we have shown that in such ortho -functionalized phenols,benzyl could be removed in the presence of the corresponding iso -propyl,allyl and methyl ethers.Moreover,the benzyl ether could be selectively cleaved in the presence of benzyl ester,Cbz carbamate and Boc carbamate functionalities.AcknowledgementsThe authors gratefully acknowledge financial support for this work from the Canadian Foundation of Innovation and the Univer-sity of Toronto (Connaught Foundation).References and notes1.Zhang,S.;Zhang,Z.-Y.Drug Discov.Today 2007,12,373–381.2.(a)Pei,Z.;Li,X.;Liu,G.;Abad-Zapatero,C.;Lubben,T.;Zhang,T.;Ballaron,S.J.;Hutchins,C.W.;Trevillyana,J.M.;Jirouseka,M.R.Bioorg.Med.Chem.Lett.2003,13,3129–3132;(b)Xin,Z.;Liu,G.;Abad-Zapatero,C.;Pei,Z.;Szczepankiewicz,B.G.;Li,X.;Zhang,T.;Hutchins,C.W.;Hajduk,P.J.;Ballaron,S.J.;Stashko,M.A.;Lubben,T.H.;Trevillyana,J.M.;Jirouseka,M.R.Bioorg.Med.Chem.Lett.2003,13,3947–3950.3.Tautz,L.;Bruckner,S.;Sareth,S.;Alonso,A.;Bogetz,J.;Bottini,N.;Pellecchia,M.;Mustelin,T.J.Biol.Chem.2005,280,9400–9408.4.Shrestha,S.;Bhattarai,B.R.;Chang,K.J.;Leea,K.-H.;Choa,H.Bioorg.Med.Chem.Lett.2007,17,2760–2764.5.Liljebris,C.;Larsen,S.D.;Ogg,D.;Palazuk,B.J.;Bleasdale,J.E.J.Med.Chem.2002,45,1785–1798.6.Siddiquee,K.;Zhang,S.;Guida,W.C.;Blaskovich,M.A.;Greedy,B.;Lawrence,H.R.;Yip,M.L.R.;Jove,R.;Laughlin,M.M.;Lawrence,N.J.;Sebti,S.M.;Turkson,J.Proc.Natl.Acad.Sci.U.S.A.2007,104,7391–7396.7.Pandey,P.N.;Purkayastha,M.L.Synthesis 1982,876–878.8.(a)Greene,T.W.;Wuts,P.G.M.Protective Groups in Organic Synthesis ,3rd ed.;John Wiley &Sons:New York,1999;(b)Kocienski,P.J.Protecting Groups ,3rd ed.;Georg Thieme:Stuttgart,Germany,2003.9.Kiso,Y.;Isawa,H.;Kitagawa,K.;Akita,T.Chem.Pharm.Bull.1978,26,2562–2564.10.Kiso,Y.;Ukawa,K.;Nakamura,S.;Ito,K.;Akita,T.Chem.Pharm.Bull.1980,28,673–676.11.Ploypradith,P.;Cheryklin,P.;Niyomtham,N.;Bertoni,D.R.;Ruchirawat,.Lett.2007,9,2637–2640.12.Marsh,J.P.,Jr.;Goodman,.Chem.1965,30,2491–2492.13.(a)Eberle,A.N.J.Chem.Soc.,Perkin Trans.11986,361–367;(b)Bodanszky,M.;Tolle,J.C.;Deshmane,S.S.;Bodanszky,A.Int.J.Pept.Protein Res.1978,12,57–68.14.Haraldsson,G.G.;Baldwin,J.E.Tetrahedron 1997,53,215–224.15.(a)Ionization Constants of Organic Acids in Solution ;Serjeant,E.P.,Dempsey,B.,Eds.IUPAC Chemical Data Series No.23;Pergamon Press:Oxford,UK,1979;(b)see also:/labs/evans/pdf/evans_pKa_table.pdf .Table 3TFA-mediated deprotection of O-blocked phenol ether derivatives of methyl 4-acetamidosalicylate aTFAtolueneNHAcNHAcORO OMeOH OMeO 910Substrate R Time b (h)Yield c (%)9a Bn 5min 919b PMB 2min 909c Me 480d 9d Allyl 20919ei -Pr3692aThe reaction was carried out with 9(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt.bTime taken for all starting material to be consumed.cIsolated yield after silica gel flash column chromatography.dOnly starting material remained after 48h,at which point the reaction was aborted.Table 4Selectivity investigation into the TFA-mediated debenzylation of aryl benzyl ethers aTFA tolueneOBnOH2Bn2Bn1112RRSubstrate R Yield b (%)6d c H 9311a NHAc 9211b NHCbz 9311c dNHBoc54aThe reaction was carried out with 11(0.5mmol)in a 1:1mixture of TFA/toluene (5ml)at rt for 5min,then all solvents were evaporated.bIsolated yield after silica gel flash column chromatography.cFor compound 6d ,3equiv of thioanisole were also used.dAfter 5min,the reaction mixture was diluted with CH 2Cl 2and then immedi-ately neutralized with 1M NaOH.The organic layer was then separated and evaporated.S.Fletcher,P.T.Gunning /Tetrahedron Letters 49(2008)4817–48194819。