如何计算电动机短路反馈电流
- 格式:pdf
- 大小:104.51 KB
- 文档页数:1
第三章电力系统三相短路电流的实用计算�实际工程中往往只关注短路电流周期分量的起始有效值(次暂态电流)或者任意时间的周期分量有效值的计算。
�求得周期分量的起始有效值后,可选取一个冲击系数,按无限大容量电源供电情况下的三相短路计算冲击电流的方法计算冲击电流和最大有效值电流短路电流计算方法�按计算方法分为:�直接计算法�叠加原理法�按计算手段分为:�手算:简单系统直接计算,复杂系统用叠加原理法,如果计算任意时间的周期分量有效值,用运算曲线;�计算机计算:都是复杂系统,都用叠加原理法。
第一节短路电流交流分量初始值计算�一、计算的条件和近似I′′�二、简单系统的计算�三、复杂系统计算一、计算的条件和近似-电源�(1)精确:依据正常运行时节点电压、电流求电源次暂态电势(包括调相机),并设各电势相位相同。
�(2)近似:令所有发电机电势=1=1。
̇′′Ė′′E一、计算的条件和近似-电网�忽略对地电容和变压器励磁回路;�高压电网忽略电阻;�计算时用标幺制,基准电压取电网平均额定电压,变压器变比取电网平均电压比一、计算的条件和近似-综合负荷�综合负荷对短路电流的影响很难准确计及;�粗略处理:无论是短路前还是短路后,都忽略不计,但对于计算远离短路点的支路负荷有较大影响。
�精确计算:用恒定阻抗来表示,这个阻抗用故障前的潮流计算结果求得。
一、计算的条件和近似-短路点附近电动机�发电厂内部短路,发电厂的厂用电动机倒送短路电流,有称为反馈电流的现象。
�若果在电动机端点发生短路,起反馈的短路电流初始值就等于启动电流标幺值。
电弧电阻�一般设短路处为直接短路,。
实际上短路处有电弧,电弧主要消耗有功功率,其等值电阻 与电弧的长度成比例。
0==f f R z f R叫次暂态短路电流周期分量初始值 次暂态:是只在发生短路过程中计及发电机阻尼的作用。
(1)直接法(2)叠加原理二、简单系统计算I ′′I ′′(1)直接法21311x x I +=′′假设条件:(1)不及负荷对短路电流的影响;(2)故障前空载,电源电压为1;(3)直接接地。
短路电流的计算方法短路电流是电力系统中的一种重要电气特性,在电路中出现故障时会产生短路电流,对设备、线路和人员等产生威胁。
因此,计算短路电流是电气系统设计和运行中必不可少的一项任务。
本文将介绍短路电流的计算方法。
1.短路电流的定义。
短路电流,也称为故障电流,是指在电路中发生短路时,电源输出电流超过额定电流的情况。
在电气系统设计时,短路电流是评估系统安全性的重要参数之一、计算短路电流的目的是为了保证系统能承受故障时的电流,从而达到系统安全运行的目的。
2.短路电流的计算方法。
(1)简单短路电流的计算方法。
简单短路电流指的是在发生短路时,电路中只有一个源和一个负载的情况。
在这种情况下,短路电流的计算方法如下:Isc = E / Z。
其中,Isc表示短路电流;E表示电源的电动势;Z表示短路阻抗。
在实际应用中,Z是根据电路的图纸和电气参数计算得出的。
因此,短路电流的计算只需知道电源电动势即可。
(2)对称分量法。
对称分量法是计算三相电路短路电流的常用方法。
它将三相电路分解为正序、负序和零序三部分,分别计算其短路电流,再根据三者合成得到总短路电流。
在正常情况下,三相电路中的电流包含正、负、零三种分量。
而在短路情况下,正、负分量的相位角发生变化,但其大小仍然相等,而零序分量则减小为0。
这些特点是对称分量法计算短路电流的基础。
对于一个三相电路,它的短路电流按对称分量法计算的步骤如下:1)分解正、负、零序。
三相电路中,正、负、零序分量的计算方法分别如下:正序分量:Ia0 = Ia, Ib0 = Ibe某p(-2π/3i), Ic0 = Ibe某p(2π/3i)。
负序分量:Ia2 = Ia, Ib2= Ibe某p(2π/3i), Ic2 = Ibe某p(-2π/3i)。
零序分量:I0=(Ia+Ib+Ic)/3。
其中,i为虚数单位。
2)计算短路电流。
在计算正、负、零序分量短路电流前,需先确定短路点的相序。
短路点的相序为零序时:I0sc = 3E / Z。
短路电流的计算方法短路电流是指电路中发生短路故障时的电流值。
短路故障指电路中两个或多个电气元件之间的绝缘失效或直接发生短路连接。
短路电流的计算方法需要考虑电源电压、电路阻抗、短路位置等因素。
下面将详细介绍短路电流的计算方法。
1.短路电流基本概念短路电流是指从电源到发生短路故障处的电流。
短路电流的大小直接取决于电源的供电能力和短路处的阻抗。
短路电流一般分为对称短路电流和非对称短路电流两种。
2.对称短路电流计算对称短路电流是指发生短路故障时,电流的各相之间的大小和相位差相同。
对称短路电流的计算一般通过复数法或者对称分量法来进行。
(1)复数法:首先需要获得正常工作条件下电路的电压和电流的复数表示形式,即用复数表示的幅值和相位。
然后根据发生短路故障时电路的分析,将短路电流的每一个分量都转换成复数,然后通过复数的叠加原理,将每个分量的复数相加得到短路电流的复数。
(2)对称分量法:对称分量法是将实际电流分解成对称分量和零序分量的和,其中对称分量包括正序、负序和零序的幅值,计算对称短路电流时只需要考虑对称分量。
对称分量法适用于计算对称短路电流较为复杂的电力系统。
3.非对称短路电流计算非对称短路电流是指发生短路故障时,电流的各相之间的大小和相位差不同。
非对称短路电流的计算需要考虑不同相电流的不同阻抗和各相电源之间的相位差。
非对称短路电流计算的方法有很多,比较常用的方法包括:(1)等效电路法:等效电路法是通过将非对称短路问题转化为等效电路的问题来进行计算。
首先根据故障点的实际情况,绘制等效电路图,然后根据等效电路的特性进行计算。
(2)解析法:解析法是通过对非对称电路进行解析计算,得到各相之间的电流和相位差。
这种方法一般适用于较为简单的电路。
(3)数值法:数值法是通过数值计算的方式来求解非对称短路电流。
数值法的计算过程较为繁琐,但是对于复杂的电路系统可以得到较为准确的结果。
总结:短路电流的计算方法需要根据具体的电路型号和故障情况进行选择。
第一章计算条件及初始资料工程:设计阶段:单位: SCYALIAN设计人: CCP计算时间: 2011年11月15日14时26分10秒第一节计算条件:基准容量 = 100MVA, 冲击系数Kch = 1.8计算相关公式:*注: ^2和^3分别表示平方和立方该短路电流计算不计周期分量的衰减(参考<<电力工程电气设计手册—电气一次系统>> P140) 全电流计算公式:Ich = I"(√(1 + 2 x (Kch - 1)^2)冲击电流计算公式:ich = √2 x Kch x I"Kch —冲击系数I"(短路总电流即有效值Iz)电源供给的短路电流有效值 I" = I*" x IeI"* — 0秒短路电流周期分量的标么值Ie —电源的额定电流(kA)注: 1.在电网中,如果接有同步调相机和同步电动机时,应将其视作附加电源,短路电流的计算方法与发电机相同。
(参考<<电力工程电气设计手册—电气一次系统>>中P135页)2.在作零序网络时,若发电机或变压器的中性点是经过阻抗接地的,则必须将该阻抗增加3倍后再列入零序网络。
(参考<<电力工程电气设计手册—电气一次系统>>中P142页)第二节电气元件初始数据1.双绕组变压器:阻抗标么值 = 变压器的电抗百分 x 基准容量 / 变压器容量编号:ZB2电压(kV):35/10.5型号:SZ11-(M)-8000/35容量(kVA):8000电抗Ud%:7.5标么值:0.93752.系统:阻抗标么值 = 系统基准容量 / 系统容量系统类型:无限大电源编号:C1容量(MVA):2000标么值:0.053.线路段:阻抗标么值 = 线路电抗(从数据库中查询取得) x 基准容量 / (1.05 x 额定电压)^2 x 长度编号:L1类型:架空线路线路零序与正序电抗比例系数X0/X1:3.5电压(kV):35型号:LGJ-95截面(mm2):95线路电抗%:0.508线路长度(km):10标么值X1:0.3761标么值X0:1.3165编号:L2类型:铜电缆电压(kV):10型号:通用截面(mm2):95线路电抗%:0.214线路长度(km):0.6标么值X1:0.1165标么值X0:0.0408编号:L3类型:铜电缆电压(kV):10型号:通用截面(mm2):95线路电抗%:0.214线路长度(km):0.4标么值X1:0.0776标么值X0:0.0272编号:L4类型:铜电缆电压(kV):10型号:通用截面(mm2):70线路电抗%:0.291 线路长度(km):0.3 标么值X1:0.0792 标么值X0:0.02774.电动机:编号:P01型号:Y5603-2额定功率(kW):1250 启动电流倍数:5.58 冲击系数Kch:1.6编号:P02型号:Y5603-2额定功率(kW):1250 启动电流倍数:5.58 冲击系数Kch:1.6编号:P03型号:YR6304-10额定功率(kW):710 启动电流倍数:5.58 冲击系数Kch:1.65.计算网络简图第二章系统等值简化阻抗图系统等值简化阻抗图1.正序阻抗图:2.负序阻抗图:3.零序阻抗图:第三章计算成果1.短路节点: (d1) 电压等级:36.75kV(1)三相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 0.426 3.687kA 3.687kA 3.687kA 短路总电流Iz: 3.687kA 3.687kA 3.687kA设备名称 Kch系统C1 1.8 5.567kA 5.567kA 5.567kA 全电流Ich: 5.567kA 5.567kA 5.567kA设备名称 Kch系统C1 1.8 9.386kA 9.386kA 9.386kA冲击电流ich: 9.386kA 9.386kA 9.386kA设备名称系统C1 234.688 234.688 234.688 短路容量MVA: 234.688 234.688 234.688设备名称: Ta系统C1 40 5.214kA 2.377kA 1.084kA 非周期分量ifz: 5.214kA 2.377kA 1.084kA(2)单相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 2.219 2.124kA 2.124kA 2.124kA 短路总电流Iz: 2.124kA 2.124kA 2.124kA设备名称 Kch系统C1 1.8 3.207kA 3.207kA 3.207kA 全电流Ich: 3.207kA 3.207kA 3.207kA设备名称 Kch系统C1 1.8 5.407kA 5.407kA 5.407kA 冲击电流ich: 5.407kA 5.407kA 5.407kA设备名称系统C1 135.199 135.199 135.199 短路容量MVA: 135.199 135.199 135.199设备名称: Ta系统C1 40 3.004kA 1.37kA 0.624kA 非周期分量ifz: 3.004kA 1.37kA 0.624kA(3)两相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 0.852 3.193kA 3.193kA 3.193kA 短路总电流Iz: 3.193kA 3.193kA 3.193kA设备名称 Kch系统C1 1.8 4.821kA 4.821kA 4.821kA 全电流Ich: 4.821kA 4.821kA 4.821kA设备名称 Kch系统C1 1.8 8.128kA 8.128kA 8.128kA 冲击电流ich: 8.128kA 8.128kA 8.128kA设备名称系统C1 203.244 203.244 203.244 短路容量MVA: 203.244 203.244 203.244设备名称: Ta系统C1 40 4.516kA 2.059kA 0.939kA 非周期分量ifz: 4.516kA 2.059kA 0.939kA(4)两相对地短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 0.751 3.279kA 3.279kA 3.279kA 短路总电流Iz: 3.279kA 3.279kA 3.279kA设备名称 Kch系统C1 1.8 4.951kA 4.951kA 4.951kA 全电流Ich: 4.951kA 4.951kA 4.951kA设备名称 Kch系统C1 1.8 8.347kA 8.347kA 8.347kA 冲击电流ich: 8.347kA 8.347kA 8.347kA设备名称系统C1 208.718 208.718 208.718 短路容量MVA: 208.718 208.718 208.718设备名称: Ta系统C1 40 4.637kA 2.114kA 0.964kA 非周期分量ifz: 4.637kA 2.114kA 0.964kA2.短路节点: (d2) 电压等级:10.5kV(1)三相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 1.364 4.032kA 4.032kA 4.032kA 电动机反馈电流: 1.293kA 0.258kA 0.051kA 短路总电流Iz: 5.325kA 4.29kA 4.084kA设备名称 Kch系统C1 1.8 6.088kA 6.088kA 6.088kA 电动机反馈电流: 1.695kA 0.338kA 0.067kA 全电流Ich: 7.783kA 6.426kA 6.155kA设备名称 Kch系统C1 1.8 10.264kA 10.264kA 10.264kA 电动机反馈电流: 3.217kA 0.641kA 0.128kA 冲击电流ich: 13.481kA 10.905kA 10.392kA设备名称系统C1 73.328 73.328 73.328 电动机反馈电流: 23.515 4.692 0.928 短路容量MVA: 96.843 78.02 74.256设备名称: Ta系统C1 40 5.702kA 2.6kA 1.185kA 电动机反馈电流: 40 1.829kA 0.834kA 0.38kA 非周期分量ifz: 7.531kA 3.434kA 1.565kA(2)两相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 2.727 3.492kA 3.492kA 3.492kA 短路总电流Iz: 3.492kA 3.492kA 3.492kA设备名称 Kch系统C1 1.8 5.273kA 5.273kA 5.273kA 全电流Ich: 5.273kA 5.273kA 5.273kA设备名称 Kch系统C1 1.8 8.889kA 8.889kA 8.889kA 冲击电流ich: 8.889kA 8.889kA 8.889kA设备名称系统C1 63.507 63.507 63.507 短路容量MVA: 63.507 63.507 63.507设备名称: Ta系统C1 40 4.938kA 2.252kA 1.027kA 非周期分量ifz: 4.938kA 2.252kA 1.027kA3.短路节点: (d3) 电压等级:10.5kV(1)三相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 1.48 3.715kA 3.715kA 3.715kA 电动机反馈电流: 1.293kA 0.258kA 0.051kA 短路总电流Iz: 5.008kA 3.973kA 3.766kA设备名称 Kch系统C1 1.8 5.61kA 5.61kA 5.61kA 电动机反馈电流: 1.695kA 0.338kA 0.067kA 全电流Ich: 7.305kA 5.948kA 5.677kA设备名称 Kch系统C1 1.8 9.457kA 9.457kA 9.457kA 电动机反馈电流: 3.217kA 0.641kA 0.128kA 冲击电流ich: 12.674kA 10.098kA 9.585kA设备名称系统C1 67.563 67.563 67.563 电动机反馈电流: 23.515 4.692 0.928 短路容量MVA: 91.078 72.255 68.491设备名称: Ta系统C1 40 5.254kA 2.395kA 1.092kA 电动机反馈电流: 40 1.829kA 0.834kA 0.38kA 非周期分量ifz: 7.083kA 3.229kA 1.472kA(2)两相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 2.96 3.217kA 3.217kA 3.217kA 短路总电流Iz: 3.217kA 3.217kA 3.217kA设备名称 Kch系统C1 1.8 4.858kA 4.858kA 4.858kA 全电流Ich: 4.858kA 4.858kA 4.858kA设备名称 Kch系统C1 1.8 8.189kA 8.189kA 8.189kA 冲击电流ich: 8.189kA 8.189kA 8.189kA设备名称系统C1 58.506 58.506 58.506 短路容量MVA: 58.506 58.506 58.506设备名称: Ta系统C1 40 4.55kA 2.074kA 0.946kA 非周期分量ifz: 4.55kA 2.074kA 0.946kA4.短路节点: (d4) 电压等级:10.5kV(1)三相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 1.441 3.815kA 3.815kA 3.815kA 电动机反馈电流: 1.293kA 0.258kA 0.051kA 短路总电流Iz: 5.108kA 4.073kA 3.866kA设备名称 Kch系统C1 1.8 5.761kA 5.761kA 5.761kA 电动机反馈电流: 1.695kA 0.338kA 0.067kA 全电流Ich: 7.456kA 6.099kA 5.828kA设备名称 Kch系统C1 1.8 9.711kA 9.711kA 9.711kA 电动机反馈电流: 3.217kA 0.641kA 0.128kA 冲击电流ich: 12.928kA 10.352kA 9.839kA设备名称系统C1 69.382 69.382 69.382 电动机反馈电流: 23.515 4.692 0.928 短路容量MVA: 92.897 74.074 70.31设备名称: Ta系统C1 40 5.395kA 2.46kA 1.122kA 电动机反馈电流: 40 1.829kA 0.834kA 0.38kA 非周期分量ifz: 7.224kA 3.294kA 1.502kA(2)两相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 2.883 3.304kA 3.304kA 3.304kA 短路总电流Iz: 3.304kA 3.304kA 3.304kA设备名称 Kch系统C1 1.8 4.989kA 4.989kA 4.989kA 全电流Ich: 4.989kA 4.989kA 4.989kA设备名称 Kch系统C1 1.8 8.411kA 8.411kA 8.411kA 冲击电流ich: 8.411kA 8.411kA 8.411kA设备名称系统C1 60.088 60.088 60.088 短路容量MVA: 60.088 60.088 60.088设备名称: Ta系统C1 40 4.673kA 2.13kA 0.971kA 非周期分量ifz: 4.673kA 2.13kA 0.971kA5.短路节点: (d5) 电压等级:10.5kV(1)三相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 1.443 3.811kA 3.811kA 3.811kA 电动机反馈电流: 1.293kA 0.258kA 0.051kA 短路总电流Iz: 5.104kA 4.069kA 3.862kA设备名称 Kch系统C1 1.8 5.754kA 5.754kA 5.754kA 电动机反馈电流: 1.695kA 0.338kA 0.067kA 全电流Ich: 7.449kA 6.092kA 5.821kA设备名称 Kch系统C1 1.8 9.701kA 9.701kA 9.701kA 电动机反馈电流: 3.217kA 0.641kA 0.128kA 冲击电流ich: 12.918kA 10.342kA 9.829kA设备名称系统C1 69.309 69.309 69.309 电动机反馈电流: 23.515 4.692 0.928 短路容量MVA: 92.824 74.001 70.237设备名称: Ta系统C1 40 5.39kA 2.457kA 1.12kA 电动机反馈电流: 40 1.829kA 0.834kA 0.38kA 非周期分量ifz: 7.219kA 3.291kA 1.5kA(2)两相短路:设备名称 Xjs 0秒 0.1秒 0.2秒系统C1 2.886 3.3kA 3.3kA 3.3kA 短路总电流Iz: 3.3kA 3.3kA 3.3kA设备名称 Kch系统C1 1.8 4.983kA 4.983kA 4.983kA 全电流Ich: 4.983kA 4.983kA 4.983kA设备名称 Kch系统C1 1.8 8.4kA 8.4kA 8.4kA 冲击电流ich: 8.4kA 8.4kA 8.4kA设备名称系统C1 60.016 60.016 60.016 短路容量MVA: 60.016 60.016 60.016设备名称: Ta系统C1 40 4.667kA 2.128kA 0.97kA 非周期分量ifz: 4.667kA 2.128kA 0.97kA。
1、短路电流的计算方法:1.1、两相短路电流计算公式:I=∑R=R1/K+Rb+R2∑X=Xx+X1/K+Xb+X2式中:I——两相短路电流,A∑R、∑X——短路回路内一相电阻、电抗值的总和,ΩXx——根据三相短路容量计算的系统电抗值,ΩR1、X1——高压电缆的电阻、电抗值,ΩKb——变压器变压比Rb、Xb——变压器的电阻、电抗值,ΩR2、X2——低压电缆的电阻、电抗值,ΩUe——变压器二次侧额定电压,V1.2、三相短路电流计算公式:I=1.15 I2、电缆线路短路保护2.1、1200V及以下电网中电磁式过电流继电器的整定2.1.1、保护干线装置公式:Iz≥IQe+Kx∑Ie式中:IQe——最大容量电动机额定起动电流,A,为电动机额定电流的6.0~7.0倍。
∑Ie——其余电动机额定电流之和,AKx——需用系数,取0.5~1.0,一般取1.0。
2.1.2、校验公式:≥1.5若线路上串联两台以上开关(其间无分支线路),则上一级开关整定值,也应按下一级开关保护范围最远点的两相短路电流来校验,校验灵敏度应满足1.2~1.5的要求,以保证双重保护的可靠性。
若校验不满足时,应采取以下措施:1.加大干线或支线电缆截面。
2.设法减少低压电缆线路的长度。
3.采用相敏保护器或软起动等新技术提高灵敏度。
4.更换大容量变压器或采取变压器并联。
5.增设分段保护开关。
6.采用移动变电站或移动变压器。
2.2、电子保护器的整定:2.2.1、电磁起动器中电子保护器过流整定公式:Iz≤Ie当运行中电流超过Iz时视为过载,电子保护器延时动作;当运行中电流达到8Iz时视为短路,电子保护器瞬时动作。
2.2.2、校验公式:≥1.2若校验不满足时,应采取以下措施:1.加大干线或支线电缆截面。
2.设法减少低压电缆线路的长度。
3.采用相敏保护器或软起动等新技术提高灵敏度。
4.更换大容量变压器或采取变压器并联。
5.增设分段保护开关。
6.采用移动变电站或移动变压器。
短路电流的简便估算法沈 坚在工程设计中,我们经常需要确定变压器的阻抗值是否满足电气设备的开断水平,这就需要进行短路电流计算。
《电力工程电气设计手册》中叙述的计算方法虽然计算结果比较准确,但是计算过程比较复杂。
我们可以通过变压器、发电机的额定电流除以短路电压百分值或次暂态电抗百分值,快速得到短路电流的估算值。
以下分三种情况介绍计算方法和算例。
一.由发电机提供的短路电流I"I"X √(Ue为额定电压,X’’d为发电机次暂态电抗值)将X d X/、S Pe/cos 和S √3UeIe 代入上式,经化简可得:I Ie/X(Ie为额定电流,X为发电机电抗百分值)算例:某600MW发电机的额定电流为18525A,X为20.49%,求发电机供的短路电流值。
解:I Ie/X=18525/0.2049=90.41kA二.双卷变压器低压侧的短路电流I"I"X √(Ue为额定电压,X’’d为变压器电抗值)将Xd和Se √ 代入上式,经化简可得:I Ie/(Ie为额定电流,为变压器短路电压百分值)算例:某双卷变压器容量为2500KVA, 变比为10/0.4‐0.23kV, 短路电压百分值为10%,变压器低压侧额定电流为3798A。
求变压器低压侧的短路电流。
解:I Ie/ =3798/0.10=37.98 kA对于380V系统,当考虑电动机反馈电流时,计算结果应乘以1.3的修正系数;对于10KV或6KV系统,不用乘以修正系数。
即:37.98X1.3=49.374 kA。
若按《火力发电厂厂用电设计技术规定》附录N的计算方法,短路电流计算值为48.8 kA。
由此看出,用估算法计算出的短路电流值比较接近真实值。
三.分裂变压器低压侧的短路电流I"先按高低压绕组容量的比例,把以高压绕组额定容量为基准的半穿越短路电抗折算为低压分裂绕组的电抗值,再根据上述双卷变压器的短路电流的估算法。
短路电流计算方法短路电流是指在电路中出现短路时所产生的电流。
短路电流的计算对于电路的设计和保护具有重要意义。
正确计算短路电流可以帮助我们选择合适的电器设备和保护装置,从而确保电路的安全运行。
下面将介绍一些常见的短路电流计算方法。
首先,我们需要了解短路电流的定义。
短路电流是指在电路中出现短路时,电流突然增大的现象。
短路电流的大小取决于电路的阻抗、电压和负载等因素。
在进行短路电流计算时,我们需要考虑这些因素,并采用适当的方法进行计算。
一种常见的短路电流计算方法是采用对称分量法。
对称分量法是一种基于对称分量理论的电路分析方法,通过将三相电路中的不对称系统转化为对称系统,简化了电路的分析和计算过程。
在使用对称分量法进行短路电流计算时,我们需要先将电路转化为正序、负序和零序对称分量,然后分别计算它们的短路电流,最后将它们合成为总的短路电流。
另一种常用的短路电流计算方法是采用复功率法。
复功率法是一种基于复功率理论的电路分析方法,通过将电路中的各个元件的功率表示为复数形式,简化了电路的分析和计算过程。
在使用复功率法进行短路电流计算时,我们需要先将电路中各个元件的复功率表示出来,然后利用复功率的运算规则进行计算,最终得到短路电流的大小和相位。
除了对称分量法和复功率法,还有一些其他的短路电流计算方法,如有限元法、潮流法等。
这些方法各有特点,适用于不同类型的电路和不同的计算要求。
在实际工程中,我们可以根据具体的情况选择合适的方法进行短路电流计算。
总的来说,短路电流的计算对于电路的设计和保护具有重要意义。
正确计算短路电流可以帮助我们选择合适的电器设备和保护装置,从而确保电路的安全运行。
在进行短路电流计算时,我们可以采用对称分量法、复功率法等不同的方法,根据具体的情况选择合适的方法进行计算。
希望本文介绍的短路电流计算方法对大家有所帮助。
表1 常用基准值表(S = 100MVA)3短路电流计算3.1基本假定3.1.1系统运行方式为最大运行方式。
3.1.2磁路饱和、磁滞忽略不计。
即系统中各元件呈线性,参数恒定, 可以运用叠加原理。
3.1.3在系统中三相除不对称故障处以外,都认为是三相对称的。
3.1.4忽略对计算结果影响较小的参数,如元件的电阻、线路的电容 以及网内的电容器、感性调和及高压电机向主电网的电能反馈 等。
3.1.5短路性质为金属性短路,过渡电阻忽略不计。
3.1.6系统中的同步和异步电机均为理想电机。
3.2基准值的选择为了计算方便,通常取基准容量 S = 100MV ;基准电压U 取各级电压的平均电压,即 U = U P =1.05U e ;常用基准值如表1所示基准电流I j 基准电抗X j3.3各元件参数标么值的计算电路元件的标么值为有名值与基准值之比,计算公式如下:采用标么值后,相电压和线电压的标么值是相同的, 单相功率和 三相功率的标么值也是相同的,某些物理量还可以用标么值相等的另 一些物理量来代替,如I *=S 。
电抗标么值和有名值的变换公式如表 2所示。
表2中各元件的标么值可由表1中查得。
表2各电气元件电抗标么值计算公式 U *I *I ■. 3U jI -X *— X-^2X jU j 2短路冲击电流峰值:i ch2K ch I d其中线路电抗值的计算中,X 。
为:6〜220kV 架空线 35kV 三芯电缆6〜10kV 三芯电缆3.4短路电流的计算 3.4.1网络变换计算公式串联阻抗合成:X X i X 2 1 1 1 1X iX 2X n3.4.2短路电流计算公式短路全电流最大有效值:I I d 1 2 K ch 1取 0.4 Q /kM 取 0.12 Q /kM 取 0.08 Q /kM表2中S 、S 单位为MVA U N 、 U b 单位为kV ,I N 、I b 单位为kA并联阻抗合成:X当只有两支时XX 1X X 1X 2短路电流周期分量有效值:I dLj X *式中K ch为冲击系统,可按表3选用。
有阻尼同步发电机短路,短路全电流公式在阻尼同步发电机的短路情况下,短路电流可以通过以下公式来计算:
Isc = (E' - V) / Zs
其中,Isc 是短路电流(瞬时值);E' 是发电机的终端电压(瞬时值); V 是发电机的内部电压(瞬时值); Zs 是发电机的同步阻抗。
需要注意的是,上述公式是一个简化的表达式,仅适用于短时间内瞬态电流的计算,不考虑电机和短路电流的动态特性。
在实际应用中,需要更详细的模型和计算方法来考虑绕组电阻、感抗和电动势的变化等因素,以得到更精确的短路电流估计。
另外,短路电流的幅值和特性可能会受到发电机的设计参数、电网条件以及故障类型和位置的影响。
因此,在实际工程中,通常会使用电力系统分析软件或进行详细的电气计算来获得更准确的短路电流数值。
各种电机电流计算方法一、直流电机电流计算方法:直流电机的电流计算可以通过欧姆定律和电机特性参数来实现。
以下是两种常见的计算方法:1.欧姆定律计算:欧姆定律可以用于计算直流电机的电流。
根据欧姆定律,电流(I)等于电压(V)除以电阻(R)。
公式:I=V/R2.电机工作特性计算:直流电机的工作特性可以通过下面的方程来计算:公式:Ia=(V-Ea)/Ra其中,Ia是电机的输入电流,V是电机的输入电压,Ea是电机的电势反电动势(一种类似于电压的量),Ra是电机的电阻。
二、交流电机电流计算方法:交流电机的电流计算需要考虑相位差和功率因数等因素。
下面是两种常见的计算方法:1.功率因数法:交流电机电流的计算可以通过功率因数来实现。
功率因数是电动机输入有功功率与视在功率之比。
公式:I = P / (√3 × V × Cosθ)其中,I是电流,P是有功功率,V是电压,θ是电动机的功率因数。
2.估算法:交流电机的电流还可以通过排除法来估算。
首先,确定功率因数范围,然后根据一些已知参数,如电压、功率、效率等,通过估算代入公式计算电流。
三、步进电机电流计算方法:由于步进电机是一种开关电机,根据输入信号的脉冲数可以确定旋转角度,所以电流的计算方法与直流电机和交流电机有所不同。
1.齿槽计算法:步进电机的电流计算可以通过齿槽数来实现。
齿槽数是指电机的每一个完整转动周期中齿轮上的齿的数量。
电流的大小直接与齿槽数成正比。
公式:I=n×K其中,n是齿槽数,K是电机的基准电流。
2.驱动方式计算法:根据电机所采用的驱动方式不同,电流的计算方法也有差异。
比如,对于全步进电机的步进角度,可以通过输入脉冲数和驱动方式来计算电机的电流。
四、无刷直流电机电流计算方法:无刷直流电机是一种通过电子换向器决定输入电流的电机。
其电流计算方法如下:1.电子换向器计算法:无刷直流电机的电流可以通过电子换向器电流控制器的设置来实现。
有阻尼同步发电机短路,短路全电流公式-回复摘要:1.阻尼同步发电机短路的概念2.短路全电流公式的推导3.阻尼同步发电机短路时的影响4.应用实例与分析正文:一、阻尼同步发电机短路的概念阻尼同步发电机是指在发电机转子绕组上设置有阻尼绕组,以减小发电机运行过程中可能出现的过电压。
短路是指发电机定子绕组与转子绕组之间出现电气连接,导致电流突然增大的情况。
当阻尼同步发电机发生短路时,定子绕组和转子绕组之间的电流将发生显著变化。
二、短路全电流公式的推导在阻尼同步发电机短路时,需要分析定子绕组和转子绕组中的电流分量。
根据暂态过程理论,短路电流可以分解为周期分量和非周期分量。
其中,周期分量属于强制电流,其幅值在暂态过程中保持不变;非周期分量是由于电路中存在电感,根据楞茨定律,电流是不能突变的。
短路全电流公式可以表示为:I = I_d + I_q其中,I 为短路电流,I_d 为定子绕组电流,I_q 为转子绕组电流。
三、阻尼同步发电机短路时的影响阻尼同步发电机短路时,定子绕组电流会变得非常大,可能导致定子绕组扭曲。
而转子绕组电流相对较小,因为转子受到惯性作用,转速不能突变。
阻尼绕组的存在可以改善转子绕组的过电压,对绝缘有利,但同时也使设备复杂化,短路时瞬时电流增大。
四、应用实例与分析假设有一台阻尼同步发电机,在运行过程中突然发生三相短路,需要分析此时定子和转子绕组中的电流分量。
根据短路全电流公式,可以得出定子绕组电流和转子绕组电流的大小。
然后,通过分析这些电流分量,可以了解短路对发电机的影响,如定子绕组是否扭曲、转子绕组过电压情况等。
此外,还可以根据短路电流的大小,选择合适的短路保护装置,以确保发电机的安全运行。
电机电流计算公式电机的电流计算与电源电压、电机功率、电机效率以及电机的电阻等因素有关。
下面将详细介绍电机电流计算的公式。
一、直流电机电流计算公式:直流电机的电流计算公式比较简单,可以使用以下公式进行计算:I=P/V其中,I表示电机的电流,单位为安培(A);P表示电机的功率,单位为瓦特(W);V表示电机的电压,单位为伏特(V)。
二、异步电机电流计算公式:异步电机的电流计算公式相对复杂一些。
根据电机的额定功率、额定电压、功率因数以及额定效率,可以计算出电机的额定电流,然后根据电机的负载率来计算实际的工作电流。
1.计算电机的额定电流:Irat = Prot × 10^3 / (√3 × Un × ηn × cosφn)其中,Irat表示电机的额定电流,单位为安培(A);Prot表示电机的额定功率,单位为千瓦(kW);Un表示电机的额定电压,单位为伏特(V);ηn表示电机的额定效率(通常以百分数表示);cosφn表示电机的功率因数(通常取为0.85)。
2.计算电机的工作电流:Iact = Irat × k其中,Iact表示电机的工作电流,单位为安培(A);k表示电机的负载率。
三、同步电机电流计算公式:同步电机的电流计算相对复杂一些,需要考虑电机功率、电压、功率因数、效率以及转子电阻等因素。
1.计算电机的额定电流:Irat = Prot × 10^3 / (√3 × Un × ηn × cosφn)其中,Irat表示电机的额定电流,单位为安培(A);Prot表示电机的额定功率,单位为千瓦(kW);Un表示电机的额定电压,单位为伏特(V);ηn表示电机的额定效率(通常以百分数表示);cosφn表示电机的功率因数(通常取为0.85)。
2.计算电机的实际电流:Iact = η × Irat其中,Iact表示电机的实际电流,单位为安培(A);η表示电机的实际效率(通常以百分数表示)。
电动机电流计算方法1.计算理论电流电动机的理论电流可以使用以下公式计算:理论电流(A)=功率(W)/电压(V)/3/功率因数其中,功率指的是电动机的额定功率,电压是供电电压,3表示三相电路,功率因数是指电动机的功率因数。
2.计算负载电流电动机在工作过程中会存在负载。
负载电流可以使用以下公式计算:负载电流(A)=理论电流x负载系数负载系数是一个表示电动机实际负载与额定负载之间关系的数字。
通常情况下,负载系数介于0.8到1之间。
对于高效率的电动机,负载系数可能更低。
3.考虑起动电流电动机起动时会产生较大的起动电流,通常为额定电流的2到7倍。
起动电流的大小与电动机的类型、负载、启动方式等因素有关。
起动电流的计算可以使用以下公式:起动电流(A)=额定电流(A)x起动电流倍数4.实际测量电流除了理论计算以外,还可以通过实际测量的方法获取电动机的电流值。
测量电流的方法有多种,最常用的是采用电流表或电流夹子进行测量。
在测量电流时需要注意选择合适的测量范围,以免电流超过测量范围导致测量不准确或对仪器产生损坏。
5.额定电流和过载能力额定电流是指电动机在额定工作条件下所允许的最大电流值。
通常情况下,额定电流是根据电动机的额定功率和电压来计算的。
过载能力是电动机承受过载运行的能力,通常以电动机的额定电流为基准进行计算。
总结:电动机电流的计算方法涵盖了理论计算、负载计算、起动电流计算、实际测量等多个方面。
根据电动机的功率、电压、效率、负载等因素来计算电流,可以帮助我们了解电动机的工作状态和负载情况,从而进行安全、有效的运行控制和管理。