数学建模微分方程建模
- 格式:ppt
- 大小:850.50 KB
- 文档页数:36
实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
电磁场的数学建模与解答技巧电磁场是电荷和电流所产生的相互作用效应,它在工程学、物理学以及计算机模拟中都扮演着重要角色。
为了更好地理解和分析电磁场,数学建模和解答技巧是必不可少的。
本文将从电磁场的数学建模入手,介绍几种常用的数学建模方法,并给出解答技巧的实例。
一、电磁场的数学建模方法之一:微分方程微分方程是描述电磁场的一种常用数学工具。
通常,通过麦克斯韦方程组可以得到电磁场满足的偏微分方程。
对于静电场,可以使用拉普拉斯方程描述,表示为:∇²ϕ = -ρ/ε₀其中ϕ是电势,ρ是电荷密度,ε₀是真空介电常数。
对于静磁场,则可以使用斯托克斯方程描述,表示为:∇×B = μ₀J其中B是磁感应强度,J是电流密度,μ₀是真空磁导率。
通过求解这些微分方程,可以得到电磁场的分布情况。
二、电磁场的数学建模方法之二:有限元法有限元法是一种常用的数值解法,可用于求解任意形状的电磁场问题。
该方法将电磁场区域划分为有限个小单元,并在每个小单元内以多项式函数逼近电磁场的分布。
通过建立离散的代数方程组,并求解该方程组,可以得到电磁场的近似解。
三、电磁场的数学建模方法之三:有限差分法有限差分法是一种离散方法,通过将连续的电磁场问题转化为离散的代数问题进行求解。
该方法将连续的电磁场区域划分为网格,并在每个网格节点上进行逼近。
通过近似微分算子,将偏微分方程转化为差分方程,并通过迭代求解差分方程得到电磁场的解。
四、电磁场解答技巧实例为了更好地展示电磁场解答技巧,以下给出一个实例。
考虑一个带有一根无限长直导线的无限大平面问题。
已知导线的电流密度为I,求解该情况下的磁场分布。
根据安培环路定理,可以得到这个问题的微分方程为:∇×B = μ₀Iδ(x)δ(y)ez其中δ表示狄拉克δ函数,ez表示z轴方向上的单位向量。
通过对微分方程进行求解,可以得到在导线周围的磁场强度为:B = μ₀I/2πr其中r表示距导线的径向距离。
常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
常微分方程数学建模案例分析假设我们要研究一个简单的生物系统:一种细菌的生长过程。
我们知道,细菌的生长通常可以描述为以指数速度增长的过程。
为了建立一个数学模型,我们首先需要确定一些基本假设和已知信息。
基本假设:1.我们假设细菌的生长速度与细菌的数量成正比。
2.我们假设细菌的死亡速率与细菌的数量成正比。
已知信息:1.我们已经知道在初始时刻,细菌的数量为N0个。
2.我们已经知道在初始时刻的细菌数量的增长速率为r个/单位时间。
3.我们已经知道在初始时刻的细菌数量的死亡速率为d个/单位时间。
接下来,我们将建立一个常微分方程模型来描述细菌数量的变化。
假设t表示时间,N(t)表示时间t时刻的细菌数量,则我们可以得到以下微分方程:dN/dt = rN - dN这个方程的含义是,细菌数量的变化率等于细菌的增长速率减去细菌的死亡速率。
如果我们将细菌的增长速率和死亡速率设为常数r和d,则上述方程可以进一步简化为:dN/dt = (r-d)N解这个微分方程,我们可以得到细菌数量随时间变化的函数N(t)。
根据初值条件N(0)=N0,我们可以求解该方程并得到解析解:N(t) = N0 * exp((r-d)t)上述解析解告诉我们,细菌数量随时间以指数速度增长。
这与我们的基本假设相符。
然而,对于复杂的系统,往往很难获得精确的解析解。
在这种情况下,我们可以使用数值方法来求解微分方程。
常见的数值方法包括欧拉法、改进的欧拉法和四阶龙格-库塔法等。
这些方法基于近似计算的原理,通过迭代逼近解。
在我们的细菌生长模型中,我们可以使用数值方法来计算细菌数量随时间的变化。
我们可以选择欧拉法,它是一种简单而直观的数值方法。
欧拉法的迭代公式为:N(t+h)=N(t)+h*(r-d)N(t)其中,N(t)是在时间t时刻的细菌数量,N(t+h)是在时间(t+h)时刻的细菌数量,h是时间间隔。
我们可以选择一个足够小的时间间隔h,并迭代使用欧拉法来计算细菌数量的近似解。
常微分方程在数学建模中的应用首先是物理方面。
在物理学中,常微分方程广泛应用于描述运动、波动、电磁学、量子力学等问题。
例如,牛顿第二定律可以用常微分方程的形式表示为:\[m \frac{{d^2x}}{{dt^2}} = F(x,t)\]其中m为质量,x为位置,t为时间,F(x,t)为力。
这个方程可以用来描述物体的运动。
另一个例子是振动方程,可以通过常微分方程来描述弹簧振子、简谐振动等。
生物方面是另一个常见的应用领域。
生物学中经常需要对生物体的增长、衰退、群体动态等问题进行建模。
而常微分方程可以很好地描述这些问题。
例如,布鲁塞尔方程是描述细菌群体增长的常微分方程模型。
该模型使用了增长速率与细菌种群密度之间的关系。
通过求解布鲁塞尔方程,我们可以预测细菌的增长趋势,并为控制细菌的增长提供依据。
此外,常微分方程还可以在生物学中应用于描述神经网络、生物化学反应等。
经济方面也是常微分方程的应用领域之一、经济学中的一些重要问题,如经济增长、通货膨胀、利率变动等,都可以通过常微分方程进行建模和分析。
例如,Solow增长模型是描述经济增长的常微分方程模型。
该模型考虑了资本积累和技术进步对经济增长的影响。
通过求解Solow增长模型,我们可以分析经济增长的稳定状态、长期趋势和影响经济增长的因素。
除了物理、生物和经济学,常微分方程还可以在其他领域中应用。
例如,环境科学中可以通过常微分方程描述污染物的传输和扩散过程;工程学中可以应用常微分方程来描述振动、控制系统等问题。
此外,计算机科学中的数值方法也广泛应用于求解常微分方程的数值解。
总而言之,常微分方程在数学建模中的应用非常广泛,涵盖了物理、生物、经济等多个领域。
通过对常微分方程的求解和分析,我们可以获得有关问题的定量结论,并为问题的解决和决策提供支持。
数学建模实验答案_微分⽅程模型实验07 微分⽅程模型(2学时)(第5章微分⽅程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt=-= 其中,i (t )是第t 天病⼈在总⼈数中所占的⽐例。
k 是每个病⼈每天有效接触的平均⼈数(⽇接触率)。
i 0是初始时刻(t =0)病⼈的⽐例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最⼤值,并在曲线图上标注。
提⽰:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图⽤fplot 函数,调⽤格式如下: fplot(fun,lims)fun 必须为⼀个M ⽂件的函数名或对变量x 的可执⾏字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可⽤fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最⼤值⽤求解边界约束条件下的⾮线性最⼩化函数fminbnd,调⽤格式如下:x=fminbnd('fun',x1,x2)fun必须为⼀个M⽂件的函数名或对变量x的可执⾏字符串。
返回⾃变量x在区间x1本题可⽤x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指⽰最⼤值坐标⽤线性绘图函数plot,调⽤格式如下:plot(x1,y1, '颜⾊线型数据点图标', x2,y2, '颜⾊线型数据点图标',…)本题可⽤hold on; %在上⾯的同⼀张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使⽤⽂本标注函数text,调⽤格式如下:格式1text(x,y,⽂本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注⽂本在图中添加的位置。
简述建立微分方程的一般步骤建立微分方程是研究数学建模和物理问题的重要方法,它能够描述自然现象、工程问题和经济现象等,通过数学模型的建立,可以求解相应的微分方程来获得问题的解析解或数值解。
下面将简要介绍建立微分方程的一般步骤。
一、问题的分析和建模:建立微分方程的第一步是对问题进行仔细的分析和审视,明确问题的性质、要求和约束条件等。
然后根据问题的特点,选择适当的数学模型进行建模。
数学模型分为确定性模型和随机模型,确定性模型基于确定性关系描述问题的行为,而随机模型则基于概率论描述问题的随机性行为。
二、定义变量和关系:在建立数学模型之前,需要定义所需的变量和它们之间的关系。
这些变量可以是时间、空间、强度、速度等物理量。
关系可以使用线性关系、非线性关系或微分关系来描述,并且可以是常微分方程或偏微分方程,具体取决于问题的性质和要求。
三、进行合理的假设:在建立数学模型时,通常需要进行一些合理的假设,以简化问题的复杂性。
假设可以是物理上的近似,也可以是数学上的简化。
合理的假设可以使问题的分析和求解更加容易和快速。
四、应用物理定律和数学关系:在数学建模的过程中,需要应用物理定律和数学关系来描述事物之间的相互作用和变化。
对于物理问题,常见的相关定律包括牛顿定律、欧姆定律、热传导定律等;对于数学关系,常见的包括导数、积分、微积分中的基本定理等。
根据问题的特点和要求,选择合适的物理定律和数学关系进行应用。
五、将现有的关系转化为微分方程:在应用物理定律和数学关系的基础上,将问题中已知的关系转化为微分方程。
这一过程涉及到微分运算、积分运算和代数运算。
通常需要使用导数或偏导数来表示物理变量的变化率,然后使用代数关系来将不同变量联系起来。
最终得到的微分方程称为问题的数学描述。
六、确定边界条件和初值条件:建立微分方程后,需要确定相应的边界条件和初值条件。
边界条件是在方程适用区域边界上给出的条件,用于限制解函数的取值;初值条件是在方程适用区域内某一点给出的条件,用于确定解函数的初始状态。
数学建模之微分方程建模与平衡点理论-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。
(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。
(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
一、模型的建立与求解1.1传染病模型(1)基础模型假设:t 时刻病人人数()x t 连续可微。
每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。
建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。
(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。
人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。
2.每位病人每天平均有效接触λ人,λ为日接触率。
有效接触后健康者变为病人。
依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:diNNsi dtλ= (4) 由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2~dii dt图形如下,结论:在不考虑治愈情况下①当12i =时di dt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。