利用双曲线的定义及其标准方程求曲线的轨迹方程
- 格式:ppt
- 大小:710.00 KB
- 文档页数:11
2.3.1双曲线及其标准方程学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单的问题.知识点一双曲线的定义思考若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?答案如图,曲线上的点满足条件:|MF1|-|MF2|=常数;如果改变一下笔尖位置,使|MF2|-|MF1|=常数,可得到另一条曲线.梳理(1)平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;(2)关于“小于|F1F2|”:①若将“小于|F1F2|”改为“等于|F1F2|”,其余条件不变,则动点轨迹是以F1,F2为端点的两条射线(包括端点);②若将“小于|F1F2|”改为“大于|F1F2|”,其余条件不变,则动点轨迹不存在;(3)若将“绝对值”去掉,其余条件不变,则动点的轨迹只有双曲线的一支;(4)若常数为零,其余条件不变,则点的轨迹是线段F1F2的中垂线.知识点二双曲线的标准方程思考1双曲线的标准方程的推导过程是什么?答案(1)建系:以直线F1F2为x轴,F1F2的中点为原点建立平面直角坐标系.(2)设点:设M(x,y)是双曲线上任意一点,且双曲线的焦点坐标为F1(-c,0),F2(c,0).(3)列式:由|MF1|-|MF2|=±2a,可得(x+c)2+y2-(x-c)2+y2=±2a.①(4)化简:移项,平方后可得(c2-a2)x2-a2y2=a2(c2-a2).令c2-a2=b2,得双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).②(5)验证:从上述过程可以看到,双曲线上任意一点的坐标都满足方程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c,0),(c,0)的距离之差的绝对值为2a,即以方程②的解为坐标的点都在双曲线上,这样,就把方程②叫做双曲线的标准方程.(此步骤可省略)思考2双曲线中a,b,c的关系如何?与椭圆中a、b、c的关系有何不同?答案双曲线标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线的定形条件,这里b2=c2-a2,即c2=a2+b2,其中c>a,c>b,a与b的大小关系不确定;而在椭圆中b2=a2-c2,即a2=b2+c2,其中a>b>0,a>c,c与b大小不确定.梳理(1)两种形式标准方程焦点所在的坐标轴x轴y轴标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)a、b、c的关系式a2+b2=c2(2)如果含x2项的系数为正数,那么焦点在x轴上,如果含y2项的系数是正数,那么焦点在y 轴上.对于双曲线,a与b无截然的大小关系,因而不能像椭圆那样,通过比较a与b的大小来确定其焦点位置.类型一双曲线定义的理解及应用例1(1)已知定点F1(-2,0),F2(2,0),在平面内满足下列条件的动点P的轨迹中为双曲线的是()A.|PF1|-|PF2|=±3 B.|PF1|-|PF2|=±4C.|PF1|-|PF2|=±5 D.|PF1|2-|PF2|2=±4(2)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为________________.答案(1)A(2)x2-y28=1(x≤-1)解析(1)当|PF1|-|PF2|=±3时,||PF1|-|PF2||=3<|F1F2|=4,满足双曲线定义,P点的轨迹是双曲线.(2)如图,设动圆M 与圆C 1及圆C 2分别外切于点A 和B ,根据两圆外切的条件 |MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=2,这表明动点M 与两定点C 2,C 1的距离的差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),其轨迹方程为x 2-y 28=1 (x ≤-1). 反思与感悟 双曲线定义的两种应用(1)根据双曲线的定义判断动点轨迹时,一定要注意双曲线定义中的各个条件,不要一看到动点到两个定点的距离之差的绝对值是常数,就认为其轨迹是双曲线,还要看该常数是否小于两个已知定点之间的距离且大于零,否则就不是双曲线.(2)巧妙利用双曲线的定义求曲线的轨迹方程,可以使运算量大大减小,同时提高解题速度和质量. 其基本步骤为:①寻求动点M 与定点F 1,F 2 之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程.跟踪训练1 若平面内一动点P (x ,y )到两定点F 1(-1,0),F 2(1,0)的距离的差的绝对值为定值a (a ≥0),讨论点P 的轨迹. 解 由题意可知|F 1F 2|=2,①当a =2时,P 点的轨迹是两条射线,方程为y =0(x ≥1)或y =0(x ≤-1); ②当a =0时,P 点的轨迹是线段F 1F 2的垂直平分线,轨迹方程为x =0; ③当0<a <2时,P 点的轨迹是以F 1,F 2为焦点的双曲线; ④当a >2时,P 点的轨迹不存在. 类型二 待定系数法求双曲线的标准方程例2 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.解 (1)由已知可设所求双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),则⎩⎨⎧32a 2-9b 2=1,25a 2-8116b 2=1,解得⎩⎪⎨⎪⎧a 2=16,b 2=9,∴双曲线的标准方程为y 216-x 29=1.(2)方法一 设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意易求得c =2 5. 又双曲线过点(32,2), ∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2, ∴a 2=12,b 2=8.故所求双曲线方程为x 212-y 28=1.方法二 设双曲线方程为x 216-k -y 24+k =1(-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.反思与感悟 待定系数法求方程的步骤(1)定型:即确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式,①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0).②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k -y 2b 2+k =1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程.跟踪训练2 根据条件求双曲线的标准方程. (1)c =6,经过点A (-5,2),焦点在x 轴上; (2)经过点P (3,154),Q (-163,5).解 (1)设双曲线标准方程为x 2a 2-y 2b2=1,∵c =6,∴b 2=c 2-a 2=6-a 2. 由题意知25a 2-4b 2=1,∴25a 2-46-a 2=1, 解得a 2=5或a 2=30(舍). ∴b 2=1.∴双曲线的标准方程为x 25-y 2=1. (2)设双曲线方程为mx 2+ny 2=1(mn <0), ∵P (3,154),Q (-163,5)均在双曲线上,∴⎩⎨⎧9m +22516n =1,2569m +25n =1,解得⎩⎨⎧m =-116,n =19.∴双曲线的标准方程为y 29-x 216=1.类型三 双曲线定义的综合应用例3 已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.解 如图,建立直角坐标系xOy ,使A ,B 两点在x 轴上,并且坐标原点O 与线段AB 的中点重合. 设爆炸点P 的坐标为(x ,y ), 则|P A |-|PB |=340×4=1 360. 即2a =1 360,a =680. 又|AB |=2 000,所以2c =2 000,c =1 000,b 2=c 2-a 2=537 600. 因为|P A |-|PB |=340×4=1 360>0,所以x >0.因此炮弹爆炸点的轨迹(双曲线)的方程为x 2462 400-y 2537 600=1(x >0).反思与感悟 结合双曲线的定义,解决综合问题,诸如:实际应用题,焦点三角形问题等,要充分利用双曲线的定义、正弦定理、余弦定理等,利用化归思想,重点考查综合运用能力与求解能力.跟踪训练3 如图所示,已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1的左,右焦点,点M 为双曲线上一点,并且∠F 1MF 2=θ,求△MF 1F 2的面积. 解 在△MF 1F 2中,由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|·cos θ.①∵|F 1F 2|2=4c 2,|MF 1|2+|MF 2|2=(|MF 1|-|MF 2|)2+2|MF 1|·|MF 2|=4a 2+2|MF 1|·|MF 2|, ∴①式化为4c 2=4a 2+2|MF 1|·|MF 2|(1-cos θ), ∴|MF 1|·|MF 2|=2b 21-cos θ,∴12MF F S =12|MF 1|·|MF 2|·sin θ=b 2sin θ1-cos θ=b 2·2sin θ2·cosθ21-(1-2sin 2θ2)=b 2tanθ2.1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A.x 216-y 29=1(x ≤-4) B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4) D.x 29-y 216=1(x ≥3) 答案 D解析 |PF 1|-|PF 2|=6<|F 1F 2|=10,根据双曲线的定义可得D 正确. 2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .1答案 D解析 由于a >0,0<a 2<4,且4-a 2=a +2,所以可解得a =1,故选D. 3.若方程x 210-k +y 25-k =1表示双曲线,则k 的取值范围是( )A .(5,10)B .(-∞,5)C .(10,+∞)D .(-∞,5)∪(10,+∞) 答案 A解析 由题意得(10-k )(5-k )<0,解得5<k <10.4.设m是常数,若点F(0,5)是双曲线y2m-x29=1的一个焦点,则m=________.答案16解析由已知条件知m+9=52,所以m=16.5.已知双曲线x29-y216=1上一点M的横坐标为5,则点M到左焦点的距离是________.答案343解析由于双曲线x29-y216=1的右焦点为F(5,0),将x M=5,代入双曲线方程可得|y M|=163,即为点M到右焦点的距离,由双曲线的定义知M到左焦点的距离为163+2×3=343.(1)椭圆、双曲线的标准方程以及它们之间的区别与联系:椭圆双曲线几何条件与两个定点的距离的和等于常数与两个定点的距离的差的绝对值等于常数标准方程x2a2+y2b2=1或y2a2+x2b2=1(a>b>0)x2a2-y2b2=1或y2a2-x2b2=1(a>0,b>0)焦点坐标(±c,0)或(0,±c) c=a2-b2(±c,0)或(0,±c),c=a2+b2再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a,b的值.一、选择题1.已知定点F1(-3,4),F2(5,4),动点M满足|MF1|-|MF2|=2a,当a=3和a=4时,点M的轨迹为()A.双曲线和一条直线B.双曲线的一支和一条直线C.双曲线和一条射线D .双曲线的一支和一条射线 答案 D解析 由已知,得|F 1F 2|=(-3-5)2+(4-4)2=8.当a =3时,|MF 1|-|MF 2|=6<|F 1F 2|,故点M 的轨迹是双曲线的一支;当a =4时,|MF 1|-|MF 2|=8=|F 1F 2|,故点M 的轨迹是一条射线.所以D 正确.2.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1 B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4) 答案 C解析 设内切圆与边AB 、边CA 、边CB 分别切于点D 、E 、F , 则D (3,0),又|CA |-|CB |=|AE |-|BF |=|AD |-|BD |=8-2=6<|AB |=10.∴C 的轨迹是以A ,B 为焦点,2a =6的双曲线的右支且除去x 轴上的点D (3,0). ∵a =3,c =5,∴b 2=16.∴C 的轨迹方程为x 29-y 216=1(x >3).故选C.3.焦点在坐标轴上,中心在原点,且经过点P (27,3)和Q (-7,-62)的双曲线方程是( ) A.x 225-y 275=1 B.x 275-y 225=1 C.x 2125-y 2175=1 D.x 2175-y 2125=1 答案 A解析 设双曲线的方程为mx 2-ny 2=1(mn >0)把P 、Q 两点坐标代入得⎩⎨⎧m ·(27)2-n ·32=1,m ·(-7)2-n ·(-62)2=1,解得⎩⎨⎧m =125,n =175,所以双曲线的标准方程是x 225-y 275=1.4.设θ是三角形的一个内角,且sin θ+cos θ=15,则方程x 2sin θ+y 2cos θ=1所表示的曲线为( )A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线 答案 C解析 由sin θ+cos θ=15得sin θ·cos θ<0,又∵θ为三角形的一个内角,∴sin θ>0,cos θ<0, ∴方程表示的是焦点在x 轴上的双曲线,故选C.5.已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A.14B.35C.34D.45 答案 C解析 由双曲线定义知, |PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=4 2.|F 1F 2|=2c =2 a 2+b 2=4.∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34.6.已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( ) A .8 B .9 C .16 D .20 答案 B解析 △ABF 2的周长=|AB |+|AF 2|+|BF 2|=20, ∵|AB |=4,∴|AF 2|+|BF 2|=16. 根据双曲线定义知,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|, ∴4a =(|AF 2|+|BF 2|)-(|AF 1|+|BF 1|) =16-4=12,∴a =3,∴m =a 2=9.故选B. 二、填空题7.与圆A :(x +5)2+y 2=49和圆B :(x -5)2+y 2=1都外切的圆的圆心P 的轨迹方程为________.答案 x 29-y 216=1(x >0)解析 设动圆P 的半径为R ,且P (x ,y ), 则|P A |=R +7,|PB |=R +1, ∴|P A |-|PB |=6<10=|AB |,∴点P 的轨迹是以A ,B 为焦点的双曲线的右支,这里a =3,c =5,∴b 2=16.故方程为x 29-y 216=1(x >0).8.已知双曲线x 24-y 2m =1的一个焦点坐标为(3,0),则m =________.答案 5解析 因为c =4+m =3,故解得m =5.9.已知双曲线x 24-y 25=1上一点P 到F (3,0)的距离为6,O 为坐标原点,若OQ →=12(OP →+OF →),则|OQ →|的值为________. 答案 1或5解析 由题意得Q 为PF 的中点, 设左焦点为F ′,其坐标为(-3,0), ∴|OQ |=12|PF ′|.若P 在双曲线的左支上, 则|OQ |=12|PF ′|=12(|PF |-2a )=12×(6-2×2)=1; 若P 在双曲线的右支上,则|OQ |=12|PF ′|=12(|PF |+2a ) =12(6+2×2)=5. 综上,|OQ →|=1或5.10.已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),点P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 答案 9解析 设右焦点为F 1,其坐标为(4,0), 依题意知,|PF |=|PF 1|+4,∴|PF |+|P A |=|PF 1|+4+|P A | =|PF 1|+|P A |+4≥|AF 1|+4 =(1-4)2+42+4 =5+4=9. 三、解答题11.如图所示,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1, ∴圆心F 1(-5,0),半径r 1=1. 圆F 2:(x -5)2+y 2=16, ∴圆心F 2(5,0),半径r 2=4.设动圆M 的半径为R ,则有|MF 1|=R +1, |MF 2|=R +4, ∴|MF 2|-|MF 1|=3.∴M 点的轨迹是以F 1、F 2为焦点的双曲线(左支), 且a =32,c =5,∴b 2=914,∴动圆圆心M 的轨迹方程为49x 2-491y 2=1(x <0).12.已知双曲线x 216-y 24=1的两焦点为F 1、F 2.(1)若点M 在双曲线上,且MF →1·MF →2=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程. 解 (1)如图所示,不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF →1·MF →2=0,则MF 1⊥MF 2, 设|MF 1|=m ,|MF 2|=n ,由双曲线定义知,m -n =2a =8,① 又m 2+n 2=(2c )2=80,② 由①②得m ·n =8,∴12mn =4=12|F 1F 2|·h ,∴h =255. (2)设所求双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16), 由于双曲线C 过点(32,2), ∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去). ∴所求双曲线C 的方程为x 212-y 28=1.2.3.1双曲线及其标准方程(学生版)学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单的问题.知识点一双曲线的定义思考若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?答案如图,曲线上的点满足条件:|MF1|-|MF2|=常数;如果改变一下笔尖位置,使|MF2|-|MF1|=常数,可得到另一条曲线.梳理(1)平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;(2)关于“小于|F1F2|”:①若将“小于|F1F2|”改为“等于|F1F2|”,其余条件不变,则动点轨迹是以F1,F2为端点的两条射线(包括端点);②若将“小于|F1F2|”改为“大于|F1F2|”,其余条件不变,则动点轨迹不存在;(3)若将“绝对值”去掉,其余条件不变,则动点的轨迹只有双曲线的一支;(4)若常数为零,其余条件不变,则点的轨迹是线段F1F2的中垂线.知识点二双曲线的标准方程思考1双曲线的标准方程的推导过程是什么?答案(1)建系:以直线F1F2为x轴,F1F2的中点为原点建立平面直角坐标系.(2)设点:设M(x,y)是双曲线上任意一点,且双曲线的焦点坐标为F1(-c,0),F2(c,0).(3)列式:由|MF1|-|MF2|=±2a,可得(x+c)2+y2-(x-c)2+y2=±2a.①(4)化简:移项,平方后可得(c2-a2)x2-a2y2=a2(c2-a2).令c2-a2=b2,得双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).②(5)验证:从上述过程可以看到,双曲线上任意一点的坐标都满足方程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c,0),(c,0)的距离之差的绝对值为2a,即以方程②的解为坐标的点都在双曲线上,这样,就把方程②叫做双曲线的标准方程.(此步骤可省略)思考2双曲线中a,b,c的关系如何?与椭圆中a、b、c的关系有何不同?答案双曲线标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线的定形条件,这里b2=c2-a2,即c2=a2+b2,其中c>a,c>b,a与b的大小关系不确定;而在椭圆中b2=a2-c2,即a2=b2+c2,其中a>b>0,a>c,c与b大小不确定.梳理(1)两种形式标准方程焦点所在的坐标轴x轴y轴标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)a、b、c的关系式a2+b2=c2(2)如果含x2项的系数为正数,那么焦点在x轴上,如果含y2项的系数是正数,那么焦点在y 轴上.对于双曲线,a与b无截然的大小关系,因而不能像椭圆那样,通过比较a与b的大小来确定其焦点位置.类型一双曲线定义的理解及应用例1(1)已知定点F1(-2,0),F2(2,0),在平面内满足下列条件的动点P的轨迹中为双曲线的是()A.|PF1|-|PF2|=±3 B.|PF1|-|PF2|=±4C.|PF1|-|PF2|=±5 D.|PF1|2-|PF2|2=±4(2)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为________________.反思与感悟 双曲线定义的两种应用(1)根据双曲线的定义判断动点轨迹时,一定要注意双曲线定义中的各个条件,不要一看到动点到两个定点的距离之差的绝对值是常数,就认为其轨迹是双曲线,还要看该常数是否小于两个已知定点之间的距离且大于零,否则就不是双曲线.(2)巧妙利用双曲线的定义求曲线的轨迹方程,可以使运算量大大减小,同时提高解题速度和质量. 其基本步骤为:①寻求动点M 与定点F 1,F 2 之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程.跟踪训练1 若平面内一动点P (x ,y )到两定点F 1(-1,0),F 2(1,0)的距离的差的绝对值为定值a (a ≥0),讨论点P 的轨迹.类型二 待定系数法求双曲线的标准方程例2 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.反思与感悟 待定系数法求方程的步骤(1)定型:即确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式,①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0).②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k -y 2b 2+k =1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程.跟踪训练2 根据条件求双曲线的标准方程. (1)c =6,经过点A (-5,2),焦点在x 轴上; (2)经过点P (3,154),Q (-163,5).类型三双曲线定义的综合应用例3已知A,B两地相距2 000 m,在A地听到炮弹爆炸声比在B地晚4 s,且声速为340 m/s,求炮弹爆炸点的轨迹方程.反思与感悟结合双曲线的定义,解决综合问题,诸如:实际应用题,焦点三角形问题等,要充分利用双曲线的定义、正弦定理、余弦定理等,利用化归思想,重点考查综合运用能力与求解能力.跟踪训练3 如图所示,已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1的左,右焦点,点M 为双曲线上一点,并且∠F 1MF 2=θ,求△MF 1F 2的面积.1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A.x 216-y 29=1(x ≤-4) B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4) D.x 29-y 216=1(x ≥3)2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .13.若方程x 210-k +y 25-k =1表示双曲线,则k 的取值范围是( )A .(5,10)B .(-∞,5)C .(10,+∞)D .(-∞,5)∪(10,+∞)4.设m是常数,若点F(0,5)是双曲线y2m-x29=1的一个焦点,则m=________.5.已知双曲线x29-y216=1上一点M的横坐标为5,则点M到左焦点的距离是________.(1)椭圆、双曲线的标准方程以及它们之间的区别与联系:椭圆双曲线几何条件与两个定点的距离的和等于常数与两个定点的距离的差的绝对值等于常数标准方程x2a2+y2b2=1或y2a2+x2b2=1(a>b>0)x2a2-y2b2=1或y2a2-x2b2=1(a>0,b>0)焦点坐标(±c,0)或(0,±c) c=a2-b2(±c,0)或(0,±c),c=a2+b2再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a,b的值.一、选择题1.已知定点F1(-3,4),F2(5,4),动点M满足|MF1|-|MF2|=2a,当a=3和a=4时,点M的轨迹为()A.双曲线和一条直线B.双曲线的一支和一条直线C.双曲线和一条射线D.双曲线的一支和一条射线2.△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29-y216=1B.x216-y29=1C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4) 3.焦点在坐标轴上,中心在原点,且经过点P (27,3)和Q (-7,-62)的双曲线方程是( ) A.x 225-y 275=1 B.x 275-y 225=1 C.x 2125-y 2175=1 D.x 2175-y 2125=1 4.设θ是三角形的一个内角,且sin θ+cos θ=15,则方程x 2sin θ+y 2cos θ=1所表示的曲线为( )A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线5.已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A.14B.35C.34D.456.已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( ) A .8 B .9 C .16 D .20 二、填空题7.与圆A :(x +5)2+y 2=49和圆B :(x -5)2+y 2=1都外切的圆的圆心P 的轨迹方程为________.8.已知双曲线x 24-y 2m=1的一个焦点坐标为(3,0),则m =________.9.已知双曲线x 24-y 25=1上一点P 到F (3,0)的距离为6,O 为坐标原点,若OQ →=12(OP →+OF →),则|OQ →|的值为________.10.已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),点P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.三、解答题11.如图所示,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.12.已知双曲线x 216-y 24=1的两焦点为F 1、F 2.(1)若点M 在双曲线上,且MF →1·MF →2=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.。
解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。
4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
数学复习:双曲线及其标准方程学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.导语同学们,有没有听过《悲伤的双曲线》这首歌,这首歌是王渊超于1995年读高中时创作的.创作灵感来源于一堂解析几何课,当时老师正在论证讲解“双曲线与渐近线只能无限接近,但不能相交”,而正是这点给王渊超带来了创作动机,并在笔记本上把歌词一挥而就.课后,他在家中,拨动着吉他,旋律顺着六弦琴的和弦转换畅然而出,《悲伤的双曲线》就此诞生.一、双曲线的定义问题1如图,在直线l上取两个定点A,B,P是直线l上的动点.在平面内,取定点F1,F2,以点F1为圆心、线段PA为半径作圆,再以F2为圆心、线段PB为半径作圆.我们知道,当点P在线段AB上运动时,如果||PA|-|PB||<|F1F2|<|AB|,那么两圆相交,其交点的轨迹是椭圆;如果|F1F2|>|AB|,两圆不相交,不存在交点轨迹.如图,在|PA|+|PB|>|F1F2|>|AB|的条件下,让P点在线段AB外运动,这时动点M满足什么几何条件?提示如题图,曲线上的点满足条件:|MF1|-|MF2|=常数.知识梳理一般地,把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.注意点:(1)常数要小于两个定点的距离.(2)如果没有绝对值,点的轨迹表示双曲线的一支.(3)当2a=|F1F2|时,动点的轨迹是以F1,F2为端点的两条方向相反的射线(包括端点).(4)当2a>|F1F2|时,动点的轨迹不存在.(5)当2a=0时,动点的轨迹为线段F1F2的垂直平分线.例1已知A(0,-5),B(0,5),|PA|-|PB|=2a,当a=3或5时,P点的轨迹为() A.双曲线或一条直线B.双曲线或两条直线C.双曲线一支或一条直线D.双曲线一支或一条射线答案D解析当a=3时,2a=6,此时|AB|=10,∴点P的轨迹为双曲线的一支(靠近点B).当a=5时,2a=10,此时|AB|=10,∴点P的轨迹为射线,且是以B为端点的一条射线.反思感悟判断点的轨迹是否为双曲线时,要根据双曲线的定义成立的充要条件.跟踪训练1已知F1(-8,3),F2(2,3),动点P满足|PF1|-|PF2|=10,则P点的轨迹是() A.双曲线B.双曲线的一支C.直线D.一条射线答案D解析F1,F2是定点,且|F1F2|=10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应为一条射线.二、双曲线的标准方程及其推导过程问题2类比求椭圆标准方程的过程.如何建立适当的坐标系,求出双曲线的标准方程?提示观察我们画出的双曲线,发现它也具有对称性,而且直线F1F2是它的一条对称轴,所以以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系Oxy,此时双曲线的焦点分别为F1(-c,0),F2(c,0),焦距为2c,c>0.设P(x,y)是双曲线上一点,则||PF1|-|PF2||=2a(a为大于0的常数),因为|PF1|=(x+c)2+y2,|PF2|=(x-c)2+y2,所以(x +c )2+y 2-(x -c )2+y 2=±2a ,①类比椭圆标准方程的化简过程,化简①,得(c 2-a 2)·x 2-a 2y 2=a 2(c 2-a 2),两边同除以a 2(c 2-a 2),得x 2a 2-y 2c 2-a 2=1.由双曲线的定义知,2c >2a ,即c >a ,所以c 2-a 2>0,类比椭圆标准方程的建立过程,令b 2=c 2-a 2,其中b >0,代入上式,得x 2a 2-y 2b2=1(a >0,b >0).问题3设双曲线的焦点为F 1和F 2,焦距为2c ,而且双曲线上的动点P 满足||PF 1|-|PF 2||=2a ,其中c >a >0,以F 1,F 2所在直线为y 轴,线段F 1F 2的垂直平分线为x 轴,建立平面直角坐标系,如图所示,此时,双曲线的标准方程是什么?提示y 2a 2-x 2b 2=1(a >0,b >0).知识梳理双曲线的标准方程焦点位置焦点在x 轴上焦点在y 轴上图形标准方程x 2a 2-y 2b 2=1_(a >0,b >0)y 2a 2-x 2b 2=1_(a >0,b >0)焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c ),F 2(0,c )a ,b ,c 的关系b 2=c 2-a 2注意点:(1)若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(2)a 与b 没有大小关系.(3)a ,b ,c 的关系满足c 2=a 2+b 2.例2(1)以椭圆x 28+y 25=1长轴的端点为焦点,且经过点(3,10)的双曲线的标准方程为________________.答案x23-y25=1解析由题意得,双曲线的焦点在x轴上,且c=2 2.设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),则有a2+b2=c2=8,9a2-10b2=1,解得a2=3,b2=5.故所求双曲线的标准方程为x23-y25=1.(2)焦距为26,且经过点M(0,12)的双曲线的标准方程是__________.答案y2144-x225=1解析∵双曲线经过点M(0,12),∴M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a=12.又2c=26,∴c=13,∴b2=c2-a2=25.∴双曲线的标准方程为y2144-x225=1.反思感悟双曲线的标准方程用待定系数法求双曲线的标准方程时,若焦点位置不确定,可按焦点在x轴和y轴上两种情况讨论求解.跟踪训练2焦点在x轴上,经过点P(4,-2)和点Q(26,22)的双曲线的标准方程为________.答案x28-y24=1解析设双曲线方程为x2a2-y2b2=1(a>0,b>0),将点(4,-2)和(26,22)代入方程得-4b2=1,①-8b2=1,②解得a2=8,b2=4,所以双曲线的标准方程为x28-y24=1.三、双曲线定义的简单应用例3(1)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于()A .11B .9C .5D .3答案B解析由题意得||PF 1|-|PF 2||=6,∴|PF 2|=|PF 1|±6,∴|PF 2|=9或-3(舍去).(2)已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2.若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解由x 29-y 216=1得,a =3,b =4,c =5.由双曲线的定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=64,所以12F PF S △=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.反思感悟双曲线定义的应用(1)已知双曲线上一点的坐标,可以求得该点到某一焦点的距离,进而根据定义求该点到另一焦点的距离.(2)双曲线中与焦点三角形有关的问题可以根据定义结合余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的灵活运用.(3)若双曲线中焦点三角形的顶角∠F 1PF 2=θ,则焦点三角形的面积S =b 2tanθ2.跟踪训练3设F 1,F 2分别是双曲线x 2-y 224=1的左、右焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于()A .42B .83C .24D .48答案C解析1|-|PF 2|=2,PF 1|=4|PF 2|,解得|PF 1|=8,|PF 2|=6.在△PF 1F 2中,|PF 1|=8,|PF 2|=6,|F 1F 2|=10,∴△PF 1F 2为直角三角形,∴12PF F S △=12|PF 1||PF 2|=24.1.知识清单:(1)双曲线的定义.(2)双曲线的标准方程及其推导过程.(3)双曲线定义的简单应用.2.方法归纳:待定系数法、分类讨论.3.常见误区:双曲线焦点位置的判断,忽略双曲线成立的必要条件.1.已知点P (x ,y )的坐标满足(x -1)2+y 2-(x +1)2+y 2=±2,则动点P 的轨迹是()A .椭圆B .双曲线C .两条射线D .双曲线的一支答案B解析设A (1,0),B (-1,0),则由已知得||PA -|PB ||=2,即动点P 到两个定点A ,B 的距离之差的绝对值等于常数2,又|AB |=2,且2<2,所以根据双曲线的定义知,动点P 的轨迹是双曲线.2.方程x 22+m -y 22-m =1表示双曲线,则m 的取值范围是()A .-2<m <2B .m >0C .m ≥0D .|m |≥2答案A解析∵已知方程表示双曲线,∴(2+m )(2-m )>0.∴-2<m <2.3.若椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为()A .1B .1或-2C .1或12 D.12答案A解析>0,a 2<4,-a 2=a +2,解得a =1.4.以椭圆x 29+y 28=1______________.答案x 214-y 234=1解析由椭圆的标准方程可知,椭圆的焦点在x 轴上.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).b 2=1,-454b 2=1,2=14,2=342=16,2=-15(不符合题意,舍去),所以双曲线的标准方程为x 214-y 234=1.练习1.双曲线C 的两焦点分别为(-6,0),(6,0),且经过点(-5,2),则双曲线的标准方程为()A.x 220-y 24=1 B.x 220-y 216=1C.y 220-x 216=1 D.y 220-x 24=1答案B解析2a =|(-5+6)2+22-(-5-6)2+22|=45,所以a =25,又c =6,所以b 2=c 2-a 2=36-20=16.所以双曲线的标准方程为x 220-y 216=1.2.已知定点F 1(-2,0),F 2(2,0),则在平面内满足下列条件的动点P 的轨迹中为双曲线的是()A .|PF 1|-|PF 2|=±3B .|PF 1|-|PF 2|=±4C .|PF 1|-|PF 2|=±5D .|PF 1|2-|PF 2|2=±4答案A解析当|PF 1|-|PF 2|=±3时,||PF 1|-|PF 2||=3<|F 1F 2|=4,满足双曲线的定义,所以选项A中P 点的轨迹是双曲线.3.若双曲线方程为x 2-2y 2=1,则它的右焦点坐标为()D .(3,0)答案B解析将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62,4.(多选)双曲线x 225-y 29=1上的点到一个焦点的距离为12,则到另一个焦点的距离为()A .17B .7C .22D .2答案CD 解析设双曲线x 225-y 29=1的左、右焦点分别为F 1,F 2,则a =5,b =3,c =34,设P 为双曲线上一点,不妨令|PF 1|=12(12>a +c =5+34),∴点P 可能在左支,也可能在右支,由||PF 1|-|PF 2||=2a =10,得|12-|PF 2||=10,∴|PF 2|=22或2.∴点P 到另一个焦点的距离是22或2.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),F 1,F 2为其两个焦点,若过焦点F 1的直线与双曲线的同一支相交,且所得弦长|AB |=m ,则△ABF 2的周长为()A .4aB .4a -mC .4a +2mD .4a -2m答案C解析由双曲线的定义,知|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a ,所以|AF 2|+|BF 2|=(|AF 1|+|BF 1|)+4a =m +4a ,于是△ABF 2的周长l =|AF 2|+|BF 2|+|AB |=4a +2m .6.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O的距离为()A .3或7B .6或14C .3D .7答案A解析设F 2是双曲线的右焦点,连接ON (图略),ON 是△PF 1F 2的中位线,∴|ON |=12|PF 2|,∵||PF 1|-|PF 2||=4,|PF 1|=10,∴|PF 2|=14或6,∴|ON |=12|PF 2|=7或3.7.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为________.答案x 216-y 29=1解析设焦点为F 1(-c ,0),F 2(c ,0)(c >0),则由QF 1⊥QF 2,得12QF QF k k =-1,∴5c ·5-c1,∴c =5.设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),∵双曲线过点P (42,-3),∴32a 2-9b 2=1,又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9.∴双曲线的标准方程为x 216-y 29=1.8.若点P 在双曲线x 216-y 212=1上,且点P 的横坐标与双曲线的右焦点的横坐标相同,则点P 的纵坐标为________.点P 与双曲线的左焦点间的距离为________.答案±311解析记双曲线的左、右焦点分别为F 1,F 2,设P (x P ,y P ).因为点P 的横坐标与双曲线的右焦点的横坐标相同,所以x P =16+12=27,所以2816-y 2P12=1,解得y P =±3,所以|PF 2|=3.由双曲线定义可得|PF 1|-|PF 2|=2a =8,所以|PF 1|=11.9.在周长为48的Rt △MPN 中,∠MPN =90°,tan ∠PMN =34,求以M ,N 为焦点,且过点P 的双曲线方程.解因为△MPN 的周长为48,且tan ∠PMN =34,所以设|PN |=3k ,|PM |=4k ,则|MN |=5k .由3k +4k +5k =48,得k =4.所以|PN |=12,|PM |=16,|MN |=20.以MN 所在直线为x 轴,以MN 的中点O 为原点建立直角坐标系,如图所示.设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).由|PM |-|PN |=4,得2a =4,a =2,a 2=4.由|MN |=20,得2c =20,c =10,c 2=100,所以b 2=c 2-a 2=100-4=96,故所求方程为x 24-y 296=1.10.如图,设F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解(1)F 1,F 2是双曲线x 29-y 216=1的两个焦点,则a =3,b =4,c =5,设点M 到另一个焦点的距离为m ,由双曲线定义可知|m -16|=2a =6,解得m =10或m =22,即点M 到另一个焦点的距离为10或22.(2)P 是双曲线左支上的点,|PF 2|-|PF 1|=2a =6,则|PF 2|2-2|PF 1|·|PF 2|+|PF 1|2=36,代入|PF 1|·|PF 2|=32,可得|PF 1|2+|PF 2|2=36+2×32=100,即|PF 1|2+|PF 2|2=|F 1F 2|2=100,所以△F 1PF 2为直角三角形,所以12F PF S △=12|PF 1|·|PF 2|=12×32=16.11.设椭圆x 26+y 22=1和双曲线x 23-y 2=1的公共焦点为F 1,F 2,P 是两曲线的一个公共点,则cos ∠F 1PF 2等于()A.14 B.13C.19D.35答案B解析设|PF 1|=d 1,|PF 2|=d 2,则d 1+d 2=26,①|d 1-d 2|=23,②①2+②2,得d 21+d 22=18.①2-②2,得2d 1d 2=6.而c =2,∴cos ∠F 1PF 2=13.12.双曲线x 2-y 2=1的左、右焦点分别为F 1,F 2,双曲线上的点P 满足∠F 1PF 2=60°,则|PF 1|·|PF 2|等于()A .1B .4C .7D .9答案B 解析在双曲线x 2-y 2=1中,a =b =1,c =2,设P 在右支上,则|PF 1|-|PF 2|=2a =2,∵∠F 1PF 2=60°,在△PF 1F 2中,由余弦定理可得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|-|PF 1|·|PF 2|,即4c 2=4a 2+|PF 1|·|PF 2|,即|PF 1|·|PF 2∣=4c 2-4a 2=4b 2=4.13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是()A .双曲线的一支B .圆C .椭圆D .双曲线答案A 解析设动圆的圆心为M ,半径为r ,圆x 2+y 2=1与x 2+y 2-8x +12=0的圆心分别为O 1和O 2,半径分别为1和2,由两圆外切的充要条件,得|MO 1|=r +1,|MO 2|=r +2.∴|MO 2|-|MO 1|=1,又|O 1O 2|=4,∴动点M 的轨迹是双曲线的一支(靠近O 1).14.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若P 在双曲线上,且PF 1—→·PF 2—→=0,则|PF 1—→+PF 2—→|的值为________.答案210解析由题意,知双曲线两个焦点的坐标分别为F 1(-10,0),F 2(10,0).设点P (x ,y ),则PF 1—→=(-10-x ,-y ),PF 2—→=(10-x ,-y ).∵PF 1—→·PF 2—→=0,∴x 2+y 2-10=0,即x 2+y 2=10.∴|PF 1—→+PF 2—→|=|PF 1—→|2+|PF 2—→|2+2PF 1—→·PF 2—→=2(x 2+y 2)+20=210.15.已知P 为双曲线x 216-y 29=1右支上一点,F 1,F 2分别为双曲线的左、右焦点,M 为△PF 1F 2的内心.若12PMF PMF S S △△=+8,则△MF 1F 2的面积为()A .27B .10C .8D .6答案B 解析设△PF 1F 2的内切圆的半径为R ,由双曲线的标准方程可知a =4,b =3,c =5.因为12PMF PMF S S △△=+8,所以12(|PF 1|-|PF 2|)R =8,即aR =8,所以R =2,所以12MF F S △=12·2c ·R =10.16.如图所示,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)中,c =2a ,F 1,F 2分别为左、右焦点,P 为双曲线上的点,∠F 1PF 2=60°,12F PF S △=123,求双曲线的标准方程.解由题意得||PF 1|-|PF 2||=2a ,在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1-|PF 2|)2+2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|,∴|PF 1|·|PF 2|=4(c 2-a 2)=4b 2.∴12F PF S △=12|PF 1||PF 2|·sin 60°=2b 2·32=3b 2.∴3b 2=123,b 2=12.由c =2a ,c 2=a 2+b 2,得a 2=4.∴双曲线的标准方程为x 24-y 212=1.。
2.3双曲线2.3.1双曲线及其标准方程1.了解双曲线的定义,几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.(2)符号表示:||MF1|-|MF2||=2a(常数)(0<2a<|F1F2|).(3)焦点:两个定点F1、F2.(4)焦距:两焦点间的距离,表示为|F1F2|.2.双曲线的标准方程1.判断(正确的打“√”,错误的打“×”)(1)在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()(2)点A(1,0),B(-1,0),若|AC|-|BC|=2,则点C的轨迹是双曲线.()(3)在双曲线标准方程x2a2-y2b2=1中,a>0,b>0且a≠b.()答案:(1)×(2)×(3)×2.已知双曲线x216-y29=1,则双曲线的焦点坐标为()A.(-7,0),(7,0)B.(-5,0),(5,0) C.(0,-5),(0,5) D.(0,-7),(0,7)答案:B3.在双曲线的标准方程中,若a=6,b=8,则其标准方程是()A.y236-x264=1B.x264-y236=1C.x236-y264=1D.x236-y264=1或y236-x264=1答案:D4.设双曲线x216-y29=1的右支上一点P到左焦点F1的距离是15,则P到右焦点F2的距离是________.答案:7探究点一 求双曲线的标准方程求适合下列条件的双曲线的标准方程.(1)a =25,经过点A (2,-5),焦点在y 轴上;(2)与双曲线x 216-y 24=1有相同的焦点,且经过点(32,2);[解] (1)因为双曲线的焦点在y 轴上,所以可设双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0).由题设知,a =25,且点A (2,-5)在双曲线上,所以⎩⎪⎨⎪⎧a =25,25a 2-4b 2=1,解得a 2=20,b 2=16. 故所求双曲线的标准方程为y 220-x 216=1.(2)因为焦点相同,所以设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), 所以c 2=16+4=20,即a 2+b 2=20.①因为双曲线经过点(32,2),所以18a 2-4b 2=1.②由①②得a 2=12,b 2=8,所以双曲线的标准方程为x 212-y 28=1.求双曲线的标准方程的步骤求双曲线的标准方程通常采用待定系数法,步骤归结如下:1.根据下列条件,求双曲线的标准方程.(1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)经过点(3,0),(-6,-3).解:(1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0).由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a 2-(15)2b 2=1,解得⎩⎨⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)设双曲线的方程为mx 2+ny 2=1(mn <0),因为双曲线经过点(3,0),(-6,-3),所以⎩⎨⎧9m +0=1,36m +9n =1,解得⎩⎪⎨⎪⎧m =19,n =-13,所以所求双曲线的标准方程为x 29-y 23=1.探究点二 双曲线定义的应用设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,求△PF 1F 2的面积.[解] 由已知得2a =2,又由双曲线的定义得|PF 1|-|PF 2|=2,因为|PF 1|∶|PF 2|=3∶2,所以|PF 1|=6,|PF 2|=4.又|F 1F 2|=2c =213,由余弦定理,得cos ∠F 1PF 2=62+42-522×6×4=0, 所以△F 1PF 2为直角三角形.S △PF 1F 2=12×6×4=12.若将“|PF 1|∶|PF 2|=3∶2”改为“|PF 1|·|PF 2|=24”,求△PF 1F 2的面积.解:由双曲线方程为x 2-y 212=1,可知a =1,b =23,c =1+12=13.因为|PF 1|·|PF 2|=24,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-4c 22×24=4+2×24-4×1348=0 所以△PF 1F 2为直角三角形.所以S △PF 1F 2=12|PF 1|·|PF 2|=12.双曲线的定义是解决与双曲线有关的问题的主要依据,在应用时,一是注意条件||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)的使用,二是注意与三角形知识相结合,经常利用正、余弦定理,同时要注意整体运算思想的应用.2.(1)若双曲线x 24-y 212=1上的一点P 到它的右焦点F 2的距离为8,则点P 到它的左焦点F 1的距离是( )A .4B .12C .4或12D .6(2)已知双曲线x 24-y 29=1,F 1、F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,求△F 1MF 2的面积.解:(1)选C.由双曲线的定义得||PF 1|-|PF 2||=2a =4, 所以||PF 1|-8|=4,所以|PF 1|=4或12.(2)由双曲线方程知a=2,b=3,c=13,不妨设|MF1|=r1,|MF2|=r2(r1>r2).由双曲线定义得r1-r2=2a=4.两边平方得r21+r22-2r1·r2=16,即|F1F2|2-4 S△F1MF2=16,即4 S△F1MF2=52-16,所以S△F1MF2=9.探究点三利用双曲线的定义求轨迹问题动圆M与圆C1:(x+3)2+y2=9外切,且与圆C2:(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.[解]设动圆半径为R,因为圆M与圆C1外切,且与圆C2内切,所以|MC1|=R+3,|MC2|=R-1,所以|MC1|-|MC2|=4.所以点M的轨迹是以C1、C2为焦点的双曲线的右支,且有a=2,c=3,b2=c2-a2=5,所以所求轨迹方程为x24-y25=1(x≥2).本例中圆的方程不变,若动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.解:如图,设动圆半径为R,根据两圆外切的条件,得|MC2|=R +1,|MC1|=R+3,则|MC 1|-|MC 2|=2.这表明动点M 与两定点C 1,C 2的距离的差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的右支(点M 与C 1的距离大,与C 2的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),则其轨迹方程为x 2-y 28=1(x >0).用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位).(2)根据已知条件确定参数a ,b 的值(定参).(3)写出轨迹方程并下结论(定论).3.(1)若动点M 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1C.x 29-y 216=1(x <0)D.x 29-y 216=1(x >0)(2) 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解:(1)选D.由双曲线的定义得,P 点的轨迹是双曲线的一支.由已知得⎩⎨⎧2c =10,2a =6,所以a =3,c =5,b =4.故P 点的轨迹方程为x 29-y 216=1(x >0),因此选D.(2)以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c 2R (R 为△ABC 的外接圆半径).因为2sin A +sin C =2sin B ,所以2a +c =2b ,即b -a =c 2,从而有|CA |-|CB |=12|AB |=22<|AB |.所以a =2,c =22,b 2=6,所以顶点C 的轨迹方程为x 22-y 26=1(x >0,y ≠0).1.对双曲线标准方程的三点说明(1)标准方程中两个参数a 和b ,是双曲线的定形条件,确定了其值,方程也即确定.并且有b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别.(2)焦点F 1,F 2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型,若x 2的系数为正,则焦点在x 轴上,若y 2的系数为正,则焦点在y 轴上.(3)在双曲线的标准方程中,因为a ,b ,c 三个量满足c 2=a 2+b 2,所以长度分别为a ,b ,c 的三条线段恰好构成一个直角三角形,且长度为c 的线段是斜边,如图所示.2.对双曲线定义的理解设M (x ,y )为双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的任意一点,左、右焦点分别为F 1,F 2.若点M 在双曲线的右支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若点M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a .因此得到|MF 1|-|MF 2|=±2a ,这与椭圆的定义中|MF 1|+|MF 2|=2a 是不同的.[注意] 双曲线定义中||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.3.双曲线方程的其他形式(1)当双曲线的焦点所在坐标轴不易确定时可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B =1.因此,当A >0时,。
双曲线及其标准方程教学目标:1. 了解双曲线的定义和性质。
2. 学会如何求解双曲线的标准方程。
3. 能够运用双曲线的性质和标准方程解决实际问题。
教学内容:第一章:双曲线的定义与性质1.1 双曲线的定义1.2 双曲线的性质第二章:双曲线的标准方程2.1 双曲线的标准方程2.2 双曲线标准方程的求解方法第三章:双曲线的渐近线3.1 渐近线的定义3.2 渐近线与双曲线的关系第四章:双曲线的焦点和顶点4.1 焦点的定义和性质4.2 顶点的定义和性质第五章:双曲线的参数方程5.1 参数方程的定义5.2 双曲线的参数方程求解方法教学过程:第一章:双曲线的定义与性质1.1 双曲线的定义【讲解】双曲线是平面上到两个定点(焦点)距离之差等于常数的点的轨迹。
【例题】求点P(x, y)到两个定点F1(-3, 0)和F2(3, 0)距离之差等于4的点的轨迹方程。
1.2 双曲线的性质【讲解】1. 双曲线的中心在原点。
2. 双曲线的焦点在x轴上。
3. 双曲线的实轴是连接两个焦点的线段。
4. 双曲线的渐近线是y=±(b/a)x。
【练习】判断双曲线的焦点位置和渐近线方程。
第二章:双曲线的标准方程2.1 双曲线的标准方程【讲解】双曲线的标准方程为:x^2/a^2 y^2/b^2 = 1。
【例题】求双曲线的标准方程,已知焦点在x轴上,实轴长为2a,焦距为2c。
2.2 双曲线标准方程的求解方法【讲解】求解双曲线标准方程的方法有:1. 直接法:根据双曲线的定义和性质,列出方程。
2. 代换法:将双曲线的参数方程代入标准方程求解。
【练习】求解双曲线的标准方程,给定焦点和实轴长。
第三章:双曲线的渐近线3.1 渐近线的定义【讲解】双曲线的渐近线是y=±(b/a)x。
【例题】求双曲线的渐近线方程,已知双曲线的标准方程为x^2/4 y^2/3 = 1。
3.2 渐近线与双曲线的关系【讲解】渐近线与双曲线相交于两个点,这两个点的坐标满足双曲线的方程。
2.2 双曲线2.2.1 双曲线及其标准方程【课标要求】1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点)自学导引1.双曲线的定义把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示.(2)若“常数大于|F 1F 2|”,此时动点轨迹不存在.(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1 (a >0,b >0) y 2a 2-x 2b 2=1 (a >0,b >0)焦点坐标 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )a ,b ,c 的关系c 2=a 2+b 2想一想:如何判断方程x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)所表示双曲线的焦点的位置?提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上.名师点睛1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.题型一 求双曲线的标准方程 【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.[思路探索] 由于(1)无法确定双曲线焦点的位置,可设x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b2=1(a >0,b >0)两种情况,分别求解.另外也可以设双曲线方程为mx 2+ny 2=1(mn <0)或x 2m +y 2n=1(mn <0),直接代入两点坐标求解.对于(2)可设其方程为x 2a 2-y 2b 2=1(a >0,b >0)或x 2λ-y 26-λ=1(0<λ<6).解 (1)法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由于点P ⎝⎛⎭⎫3,154和Q ⎝⎛⎭⎫-163,5在双曲线上, 所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.法二 设双曲线方程为x 2m +y 2n=1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n=1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一 依题意,可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法.【变式1】 求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6). 解 (1)由题设知,a =3,c =4,由c 2=a 2+b 2,得b 2=c 2-a 2=42-32=7.因为双曲线的焦点在x 轴上,所以所求双曲线的标准方程为x 29-x 27=1.(2)由已知得c =6,且焦点在y 轴上.因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=|13-5|=8,则a =4,b 2=c 2-a 2=62-42=20.因此,所求双曲线的标准方程是y 216-x 220=1.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2D .m -bA 解析:设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m . 由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a . ∴|PF 1|·|PF 2|=m -a .题型二 双曲线定义的应用【例2】如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2[思路探索] (1)由双曲线的定义,得||MF 1|-|MF 2||=2a ,则点M 到另一焦点的距离易得; (2)结合已知条件及余弦定理即可求得面积.解 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义,得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为6 或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方,得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, ∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|= 36+2×32=100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°, ∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.【变式2】1.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).1.解:连接ON ,ON 是△PF 1F 2的中位线,所以|ON |=12|PF 2|.因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,|ON |=12|PF 2|=1或9.2.设P 为双曲线x 216-y29=1上一点,F 1,F 2是该双曲线的两个焦点,若∠F 1PF 2=60°,求△PF 1F 2的面积.解:由方程x 216-y 29=1,得a =4,b =3,故c =16+9=5,所以|F 1F 2|=2c =10.又由双曲线的定义,得||PF 1|-|PF 2||=8,两边平方,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|=64.①在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=100.② ①-②,得|PF 1||PF 2|=36,所以12PF F S ∆=12|PF 1||PF 2|sin 60°=12×36×32=93.3.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理,得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.误区警示 忽略双曲线焦点位置致误【示例】 方程x 22-m +y 2|m |-3=1表示双曲线,那么m 的取值范围是________.[错解] 由⎩⎪⎨⎪⎧2-m >0,|m |-3<0解得-3<m <2,∴m 的取值范围是{m |-3<m <2}.只考虑焦点在x 轴上,忽视了焦点在y 轴上的情况.[正解] 依题意有⎩⎪⎨⎪⎧ 2-m >0|m |-3<0或⎩⎪⎨⎪⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.∴m 的取值范围是{m |-3<m <2或m >3}. 答案 {m |-3<m <2或m >3}方程x 2m +y 2n=1既可以表示椭圆又可以表示双曲线.当方程表示椭圆时,m 、n 应满足m >n >0或n >m >0,当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.当方程表示双曲线时,m 、n 应满足mn <0,当m >0,n <0时,方程表示焦点在x 轴上的双曲线;当m <0,n >0时,方程表示焦点在y 轴上的双曲线. 当堂检测1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A .22=1169x y -(x ≤-4) B .22=1916x y -(x ≤-3) C .22=1169x y -(x ≥4) D .22=1916x y -(x ≥3) 答案:D 解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c =5,b 2=c 2-a 2=16,∴所求轨迹方程为22=1916x y -(x ≥3). 2.已知双曲线为22=12x y λ+,则此双曲线的焦距为( ) AB.CD.答案:D 解析:由已知λ<0,a 2=2,b 2=-λ,c 2=2-λ,∴焦距2c = 3.已知双曲线22=1169x y -上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或23 答案:D 解析:设F 1(-5,0),F 2(5,0), 则由双曲线的定义知:||PF 1|-|PF 2||=2a =8,而|PF 2|=15,解得|PF 1|=7或23.4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),顶点B 在双曲线22=12511x y -的左支上,则sin sin sin A C B-=______. 答案:56解析:如图,||||sin sin ||||210522||sin ||21262BC AB A C BC AB a RR AC B AC c R---=====.5.在平面直角坐标系xOy 中,已知双曲线22=1412x y-上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为__________.答案:4 解析:设右焦点为F ,则点F 的坐标为(4,0).把x =3代入双曲线方程得y =±15,即M 点的坐标为(3,±15).由两点间距离公式得|MF|=(3-4)2+(±15-0)2=4.。
§2.3双曲线2.3.1双曲线及其标准方程学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单问题.知识点一双曲线的定义1.定义:平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹.2.定义的集合表示:{M|||MF1|-|MF2||=2a,0<2a<|F1F2|}.3.焦点:两个定点F1,F2.4.焦距:两焦点间的距离,表示为|F1F2|.知识点二双曲线标准方程焦点位置焦点在x轴上焦点在y轴上图形标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点(-c,0),(c,0)(0,-c),(0,c)a,b,c的关系c2=a2+b21.平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.() 2.平面内到点F1(0,4),F2(0,-4)的距离之差等于6的点的轨迹是双曲线.()3.平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.() 4.在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()题型一 求双曲线的标准方程例1 根据下列条件,求双曲线的标准方程:(1)a =4,经过点A ⎝⎛⎭⎫1,-4103;(2)焦点在x 轴上,经过点P (4,-2)和点Q (26,22); (3)过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5且焦点在坐标轴上.反思感悟 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m ,n ,避免了讨论,从而简化求解过程.跟踪训练1 求适合下列条件的双曲线的标准方程:(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8; (2)以椭圆x 28+y 25=1长轴的端点为焦点,且经过点(3,10).题型二 双曲线定义的应用命题角度1 双曲线中的焦点三角形问题 例2 若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)如图,若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. 引申探究将本例(2)中的条件“|PF 1|·|PF 2|=32”改为“∠F 1PF 2=60°”,求△F 1PF 2的面积.反思感悟 求双曲线中焦点三角形面积的方法 (1)方法一:①根据双曲线的定义求出||PF 1|-|PF 2||=2a ;②利用余弦定理表示出|PF 1|,|PF 2|,|F 1F 2|之间满足的关系式; ③通过配方,利用整体的思想求出|PF 1|·|PF 2|的值; ④利用公式12PF F S △=12×|PF 1|·|PF 2|sin ∠F 1PF 2求得面积.(2)方法二:利用公式12PF F S △=12×|F 1F 2|×|y P |(y P 为P 点的纵坐标)求得面积.跟踪训练2 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.命题角度2 利用定义确定与双曲线有关的轨迹方程例3 在△ABC 中,已知|AB |=42,A (-22,0),B (22,0),且内角A ,B ,C 满足sin B -sin A =12sin C ,求顶点C 的轨迹方程.反思感悟(1)求解与双曲线有关的点的轨迹问题,常见的方法有两种:①列出等量关系,化简得到方程;②寻找几何关系,由双曲线的定义,得出对应的方程.(2)求解双曲线的轨迹问题时要特别注意:①双曲线的焦点所在的坐标轴;②检验所求的轨迹对应的是双曲线的一支还是两支.跟踪训练3 如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.双曲线在生活中的应用典例 “神舟”九号飞船返回仓顺利到达地球后,为了及时将航天员安全救出,地面指挥中心在返回仓预计到达区域安排了三个救援中心(记A ,B ,C ),A 在B 的正东方向,相距6千米,C 在B 的北偏西30°方向,相距4千米,P 为航天员着陆点.某一时刻,A 接收到P 的求救信号,由于B ,C 两地比A 距P 远,在此4秒后,B ,C 两个救援中心才同时接收到这一信号.已知该信号的传播速度为1千米/秒,求在A 处发现P 的方位角.[素养评析] 利用双曲线解决实际问题的基本步骤如下:(1)建立适当的坐标系; (2)求出双曲线的标准方程;(3)根据双曲线的方程及定义解决实际应用问题. 注意:①解答与双曲线有关的应用问题时,除要准确把握题意,了解一些实际问题的相关概念,同时还要注意双曲线的定义及性质的灵活应用.②实际应用问题要注意其实际意义以及在该意义下隐藏着的变量范围.1.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( )A .双曲线B .双曲线的一支C .直线D .一条射线2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A .1B .1或-2C .1或12D.123.过点(1,1),且ba=2的双曲线的标准方程是( )A.x 212-y 2=1 B.y 212-x 2=1 C .x 2-y 212=1 D.x 212-y 2=1或y 212-x 2=1 4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),F 1,F 2为其两个焦点,若过焦点F 1的直线与双曲线的同一支相交,且所得弦长|AB |=m ,则△ABF 2的周长为( )A .4aB .4a -mC .4a +2mD .4a -2m5.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是________________.1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出关于a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1(mn <0)的形式求解.一、选择题1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫62,0 C.⎝⎛⎭⎫52,0 D .(3,0) 2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=b ,且双曲线的焦距为25,则该双曲线的方程为( )A.x 24-y 2=1 B.x 23-y 22=1 C .x 2-y 24=1 D.x 22-y 23=1 3.已知双曲线x 2a -3+y 22-a=1,焦点在y 轴上,若焦距为4,则a 等于( )A.32 B .5 C .7 D.124.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( )A .3或7B .6或14C .3D .75.“mn <0”是方程“mx 2+ny 2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( )A.x 216-y 29=1 B.x 216-y 29=1(x ≥4) C.x 29-y 216=1 D.x 29-y 216=1(x ≥3) 7.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )A .双曲线的一支B .圆C .椭圆D .双曲线8.若双曲线x 2n -y 2=1(n >1)的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积为( )A .1 B.12 C .2 D .4二、填空题9.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是________.10.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为________.11.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为______________. 三、解答题12.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程.13.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.14.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.3215.已知△OFQ 的面积为26,且OF →·FQ →=m ,其中O 为坐标原点. (1)设6<m <46,求OF →与FQ →的夹角θ的正切值的取值范围;(2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF →|=c ,m =⎝⎛⎭⎫64-1c 2,当|OQ →|取得最小值时,求此双曲线的标准方程.。
双曲线的定义及其标准方程
双曲线是一个平面曲线,其形状类似于两个向外开口的抛物线。
它的定义是:点F(称为焦点)到平面上任意一点P的距离与点P到一条直线L(称为准线)的距离之差为定值e(称为离心率)的点P的轨迹。
双曲线的离心率e大于1。
双曲线的标准方程是:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$
其中,a是双曲线的横轴长度的一半,b是双曲线的纵轴长度的一半。
焦点到准线的距离为c,有以下关系式:$$c=\sqrt{a^2+b^2}$$
双曲线有两条渐近线,分别是直线y=±b/a×x。
双曲线的形状和位置可以通过a、b和c的值来确定。
当a>b时,双曲线开口方向沿着横轴;当b>a时,双曲线开口方向沿着纵轴。
双曲线在数学和物理学中都有广泛的应用。
在数学中,双曲线是一种基本的曲线形式,被广泛用于微积分、代数和几何学中;在物理学中,双曲线的形状出现在许多问题中,如天体力学和电磁学中的场线。