五年级奥数一般应用题(三)
- 格式:doc
- 大小:24.50 KB
- 文档页数:4
第7周一般应用题(一)专题简析:一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。
因此,一般应用题没有明显的结构特征和解题规律可循。
解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。
在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。
在实际解时,可以根据题中的已知条件,灵活运用这两种方法。
例1 五年级有六个班,每班人数相等。
从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。
原来每班多少人分析与解答:从每班选16人参加少先队活动,6个班共选16×6=96(人)。
剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。
练习一1,五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。
原来每人存款多少2,把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。
这堆货物一共有多少箱3,老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。
这批树苗一共有多少棵例2 某车间按计划每天应加工50个零件,实际每天加工56个零件。
这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。
这个车间实际加工了多少个零件分析如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个)。
为什么会多加工288个呢是因为每天多加工了56-50=6(个)。
因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件。
练习二1,汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地。
第9讲一般应用题(三)一、知识要点解答一般应用题时,可以按下面的步骤进行:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
二、精讲精练【例题1】甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1:1.工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2.甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?【例题2】把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
练习2:1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?【例题3】将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?练习3:1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?【例题4】甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
工程问题(三)知识框架工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.(1) 熟练掌握工程问题的基本数量关系与一般解法;(2) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;(3) 根据题目中的实际情况能够正确进行单位“1”的统一和转换;(4) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.一、工程问题【例 1】 一些工人做一项工程,如果能调来16人,那么10天可以完成;如果只调来4人,就要20天才能完成,那么调走2人后,完成这项工程需要 天.【考点】工程问题 【难度】2星 【题型】解答【解析】 设1个人做1天的量为1,设原来有x 人在做这项工程,得:()()1610420x x +⨯=+⨯,解得:8x =.如果调走2人,需要()()816108240+⨯÷-=(天).【答案】40天【巩固】 工厂生产一批产品,原计划15天完成,实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的多10件,结果提前4天完成了生产任务,则这批产品有 件。
第9讲一般应用题(三)一、知识要点解答一般应用题时,可以按下面的步骤进行:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
二、精讲精练【例题1】甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1:1.工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2.甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?【例题2】把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
练习2:1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?【例题3】将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?练习3:1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?【例题4】甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
人教版五年级奥数练习:一般应用题
例
有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中北京日报34份,江海晚报30份,电视报22份。
那么订江海晚报和电视报的共有多少家?
分析这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有86÷2=43家。
在这43家居民中,有34家订了北京日报,剩下的9家居民一定是订了江海晚报和电视报。
练习
1,五(1)班全体同学每人带2个不同的水果去慰问解放军叔叔,全班共带了三种水果,其中苹果40个,梨32个,桔子26个。
那么,带梨和桔子的有多少个同学?
2,在一次庆祝“六一”儿童节活动中,一个方队的同学每人手里都拿两种颜色的气球,共有红、黄、绿三种颜色。
其中红色有56只,黄色的有60只,绿色的有46只。
那么,手拿红、绿两种气球的有多少个同学?
3,学校开设了音乐、球类和美术三个兴趣小组,第一小队的同学们每人都参加了其中的两个小组,其中9人参加球类小组,6人参加美术小组,7人参加音乐小组的活动。
参加美术和音乐小组活动的有多少个同学?。
5-23 分数应用题(三)例1、一群猴子吃筐里的桃子,第一天吃了总数的1/2还多2个,第二天吃余下的1/3 少1个,第三天吃了这时余下的1/4还多1个,这样还剩下20个没有吃完,求筐里桃的总数。
例2、建筑工地需要一批水泥,从仓库第一次运走全部的2/5,第二次运走余下的1/3,第三次运走(前二次运后)又余下的3/4,这时还剩下15吨水泥没运走,这批水泥共有多少吨?例3、某建筑工地需要一批水泥,从仓库第一次运走全部的2/5,第二次运走余下的1/3多2吨,第三次运走又余下的3/4 少6吨,这时还剩12吨。
这批水泥共有多少吨?例4、甲、乙两班共84人,甲班人数的5/8与乙班人数的3/4共有58人,问两班各多少人?例5、有两块地共72亩,第一块地的2/5和第二块地的5/9种西红柿;两块地余下的共39亩种茄子,问第一块地是多少亩?例6、学校阅览室里有36名学生在看书,其中女生占4/9,后来又有几名女生来看书,这时女生人数占所有看书人数的9/19,问后来又有几名女生来看书?例7、李明到商店买一盒花球,一盒白球,两盒球的数量相等,花球原价是1元钱2个,白球原价是1元钱3个,节日降价,两种球的售价都是2元钱5个,结果李明少花了4元钱,问李明一共买了多少个球?例8、一只猴子摘了一堆桃子。
第一天吃了这堆桃子的七分之一;第二天它吃了余下桃子的六分之一;第三天它吃了余下桃子的五分之一;第四天它吃了余下桃子的四分之一;第五天它吃了余下桃子的三分之一;第六天它吃了余下桃子的二分之一;这时还剩下12只桃子,那么这堆桃子有多少个?例9、一筐鲜鱼连筐重122千克,卖出一半后,再卖出剩下鲜鱼的一半,这时剩下的鱼连筐重34千克。
原来这筐鲜鱼重多少千克?例10、甲、乙两个容器,甲里面装了1升水,乙是空的。
第一次把甲中的水倒入乙中1/2,第二次把乙中的水倒给甲1/3,第三次把甲中的水倒给乙1/4,第四次把乙中的水倒给甲1/5,照这样倒了101次以后,甲容器有多少升?例11、今有甲、乙、丙三堆棋子共98枚,先从甲堆中分棋子给另外两堆,使这两堆棋子数个增加一倍,再把乙堆棋子照这样分配一次,最后把丙堆棋子也这样分配一次。
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是整理的《五年级⼩学⽣奥数应⽤题三篇》,希望帮助到您。
五年级⼩学⽣奥数应⽤题篇⼀ 1、甲⼄两⼈同时分别从两地骑车相向⽽⾏,甲每⼩时⾏20千⽶,⼄每⼩时⾏18千⽶,两⼈相遇时距全程中点3千⽶,求全程长多少千⽶? 2、甲⼄两站相距3。
5千⽶,A车速为每分钟180⽶,B车速为分钟170⽶,A、B两车分别从甲、⼄两站相向开出,两车到站后都要停留7分钟,他们第⼀次相遇后要经过多少时间第⼆次相遇? 3、甲每分钟⾛50⽶,⼄每分钟⾛60⽶,丙每分钟⾛70⽶,甲、⼄两⼈从A地,丙从B地三⼈同时相向出发。
丙先遇⼄,再经过2分钟后遇到甲,问A,B两地相距多远? 4、果园⾥有梨树、苹果和桃树共1200棵,其中梨树的棵数是苹果树棵数的3倍,桃树的棵数是苹果棵数的2倍。
求梨树、苹果树和桃树各有的棵数。
5、两数相除商3余2,已知被除数、除数、商与余数的和是179,被除数是多少? 6、两艘渡船从南岸开往北岸,第⼀艘以每⼩时30千⽶的速度先开,第⼆艘船晚开12分钟,速度为每⼩时40千⽶,结果两船同时到达,求南北两岸相距多远? 7、甲、⼄两⼈环绕周长400⽶的跑道跑步,两⼈若同⼀地点背向⽽⾏,经2分钟迎⾯相遇,俩⼈若从同⼀地点同向⽽⾏,经20分钟追及相遇,求甲、⼄各⾃的速度? 8、龟兔赛跑,它们同时出发,全程7000⽶,乌龟以每分钟30⽶的速度爬⾏,兔⼦每分钟330⽶,兔⼦跑了10分钟就停下来睡了200分钟,醒来后发现龟已超过它,⽴即以原来速度向前追赶,当兔⼦追上乌龟,离终点多少⽶? 9、10元钱买1元的邮票和5⾓的邮票,共买了13张,问两种邮票各买了多少张? 10、松⿏妈妈采松⼦。
晴天每天可以采20个,⾬天每天只能采12个,它⼀连采了112个松⼦,平均每天采14个,问这⼏天中有⼏个⾬天?五年级⼩学⽣奥数应⽤题篇⼆ 1、甲、⼄两个⼈从A、B两地步⾏相向⽽⾏,甲每⼩时⾛3千⽶,⼄每⼩时⾛2千⽶,两⼈相遇时距离中点3千⽶,问A、B 两地相距多远? 2、甲、⼄两⼈从A、B两地相向骑车⽽⾏,2⼩时后相遇,相遇后,⼄继续向A地前进,⽽甲则返回,当甲到达A地时,⼄距离A地还有4千⽶,已知A。
小学五年级奥数列方程解应用题练习题小学五年级奥数列方程解应用题练习题篇一例题:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。
如两人相向而行,经过3分钟两人相遇。
已知乙每分钟行25千米,问AB两地相距多少米?小学五年级奥数列方程解应用题练习题篇二例题:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?小学五年级奥数列方程解应用题练习题篇三例题:一个两位数,十位数是个位数字的2倍,如果把十位数上的数字与个位上的数字对调,那么所得的两位数比原两位数小27,原两位数是多少?①一个两位数,个位数是十位上的数的3倍,若把这个十位上的数与个位上的数对调,那么所得的两位数比原来的大54,求原两位数。
②一个两位数,个位上的数字与十位上的数字和为10,如果把十位的数字与个位上数字对调,新数就比原数少36,求原来的两位数?③有一个三位数,其各位数字之和是16,十位数字是个位数字与百位数字之和,若把百位数字与个位数字对调,那么新数比原数在594,求原数?小学五年级奥数列方程解应用题练习题篇四例题:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。
已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。
例1:甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙。
求:甲、乙二人的速度各是多少?解答:甲、乙两人的速度差:40÷20=2(米/秒)(乙速:2×9÷6=3(米/秒)甲速:3+2=5(米/秒)。
答:甲、乙二人的速度分别为5米/秒和3米/秒。
解析:如果甲让乙先跑40米,然后甲出发追乙,这40米就是二人间的路程差,甲用20秒追上乙是追及时间,根据速度差=路程差÷追及时间,可求甲、乙二人的速度差,即40÷20=2(米/秒)。
如果甲让乙先跑6秒,则甲需要9秒追上乙,这一过程中追及时间是9秒,由上一过程的结论可求路程差: 2X9=18(米),这18米就是乙先跑6秒所跑过的路程,所以可求出乙的速度是18÷6=3(米/秒),那么甲速可求。
例2:把一块棱长12分米的正方体钢坯,熔铸成截面是9平方分米的长方体钢材,铸成的钢材长度是多少?解答:12×12×12÷9=1728÷9=192(分米)答;铸成的钢材长度是192分米。
解析:钢材从正方体变成长方体,体积保持不变。
正方体的体积是1728立方分米,那么长方体的体积也是1728立方分米。
又知道长方体的截面积,则可求出长度。
例3:3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。
每头牛、每只羊每天各吃草多少千克?解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)(77-8×4)÷3=45÷3=15(千克)答:每头牛每天吃草15千克,每只羊每天吃草8千克解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。
我们观察比较发现,后面条件中的6头牛是前面条件中3头牛的两倍。
把前面的牛的头数和羊的只数各扩大2倍得6头牛和8只羊,吃的草也扩大2倍是154千克。
5-23 分数应用题(三)例1、一群猴子吃筐里的桃子,第一天吃了总数的1/2还多2个,第二天吃余下的1/3 少1个,第三天吃了这时余下的1/4还多1个,这样还剩下20个没有吃完,求筐里桃的总数。
例2、建筑工地需要一批水泥,从仓库第一次运走全部的2/5,第二次运走余下的1/3,第三次运走(前二次运后)又余下的3/4,这时还剩下15吨水泥没运走,这批水泥共有多少吨?例3、某建筑工地需要一批水泥,从仓库第一次运走全部的2/5,第二次运走余下的1/3多2吨,第三次运走又余下的3/4 少6吨,这时还剩12吨。
这批水泥共有多少吨?例4、甲、乙两班共84人,甲班人数的5/8与乙班人数的3/4共有58人,问两班各多少人?例5、有两块地共72亩,第一块地的2/5和第二块地的5/9种西红柿;两块地余下的共39亩种茄子,问第一块地是多少亩?例6、学校阅览室里有36名学生在看书,其中女生占4/9,后来又有几名女生来看书,这时女生人数占所有看书人数的9/19,问后来又有几名女生来看书?例7、李明到商店买一盒花球,一盒白球,两盒球的数量相等,花球原价是1元钱2个,白球原价是1元钱3个,节日降价,两种球的售价都是2元钱5个,结果李明少花了4元钱,问李明一共买了多少个球?例8、一只猴子摘了一堆桃子。
第一天吃了这堆桃子的七分之一;第二天它吃了余下桃子的六分之一;第三天它吃了余下桃子的五分之一;第四天它吃了余下桃子的四分之一;第五天它吃了余下桃子的三分之一;第六天它吃了余下桃子的二分之一;这时还剩下12只桃子,那么这堆桃子有多少个?例9、一筐鲜鱼连筐重122千克,卖出一半后,再卖出剩下鲜鱼的一半,这时剩下的鱼连筐重34千克。
原来这筐鲜鱼重多少千克?例10、甲、乙两个容器,甲里面装了1升水,乙是空的。
第一次把甲中的水倒入乙中1/2,第二次把乙中的水倒给甲1/3,第三次把甲中的水倒给乙1/4,第四次把乙中的水倒给甲1/5,照这样倒了101次以后,甲容器有多少升?例11、今有甲、乙、丙三堆棋子共98枚,先从甲堆中分棋子给另外两堆,使这两堆棋子数个增加一倍,再把乙堆棋子照这样分配一次,最后把丙堆棋子也这样分配一次。
小学五年级奥数列方程解应用题(三篇)小学五年级奥数列方程解应用题篇一1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。
天安门广场的面积多少万平方米?3、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米?4、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。
大象最快能达到每小时多少千米?5、世界上的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米。
大洋洲的面积是多少万平方千米?6、大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。
住宅每层高多少米?7、太阳系的九大行星中,离太阳最近的是水星。
地球绕太阳一周是365天,比水星绕太阳一周所用时间的4倍还多13天,水星绕太阳一周是多少天?8、地球的表面积为5。
1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。
地球上的海洋面积和陆地面积分别是多少亿平方千米?9、6个易拉缺罐,9个饮料瓶,每个的价钱都一样,一共是1.5元。
每个多少钱?10、两个相邻自然数的和是97,这两个自然分别是多少?小学五年级奥数列方程解应用题篇二1、数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?2、一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1。
用这个整数除以60,余数是多少?3、少先队员在校园里栽的苹果树苗是梨树苗的2倍。
如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵。
问共有多少名少先队员?苹果和梨树苗共有多少棵?4、某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A城多少千米?5、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离。
第九节一般应用题(三)例一甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于技术改进,甲每天多生产100个,乙的日产量提高了一倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1、工厂里有两个锅炉,原来每月烧煤5.6吨,进行技术改造后,1号炉每月节约1吨煤,2号炉每月烧煤量减少一半,现在每月共烧煤3.5吨。
原来两台锅炉每月各烧煤多少吨?2、甲乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?3、甲乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比计划少挖15米,而乙队由于增加了人,每天挖的是原计划的2倍,这样两队每天一共挖150米。
求两队原计划每天各挖多少米?例二把一根竹竿插入水中,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米,求竹竿的长度是多少厘米?练习1、有一根铁丝,截去了一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2、有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?3、两根电线一样长,第一根剪去80米,第二根剪去320米,剩下的部分第一根是第二根长度的四倍。
这两根电线原来各长多少米?例三将一根铁丝截成15段。
一部分每段长8米,另一部分每段长5米。
每段长8米的总长度比每段长5米的总长度多3米。
这根铁丝全长多少米?(两种方法解答)练习1、某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米,这段小山坡全长多少米?2、食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回的大米、面粉各多少千克?3、老师买回两种笔共16支奖给三好学生,其中,铅笔每支0.4元,圆珠笔每支1.2元,买圆珠笔比买铅笔多用了1.6元,求买这些笔共用去多少钱?例四甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件,又同时加工4小时后,甲总共加工零件反而比乙多4200个。
1.五年级奥数分数应用题(三)教师版2.准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁知识点拨教学目标分数应用题(三)的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
五年级下期奥数专题三倍数的应用在解答有关倍数应用题时,往往要找准“1”倍数,在根据“差不变”或“和不变”或“倍数和、倍数差所对应的数量”进行求解。
也可以把“1”倍数量设为X,列出方程进行求解。
例1火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯?例2甲乙两数的和与商都是15,那么甲乙两数的差是多少?例3 甲数比乙数大32.4,把甲数的小数点向左移动一位就是乙数,甲数是。
例3甲池有水7.4立方米,乙池有水2.2立方米,把甲池水流入乙池,每分钟流0.35立方米,多少分钟后,乙池的水是甲池的两倍?例5妈妈今年28岁,女儿今年4岁,多少年后,妈妈的年龄是女儿的4倍?例6某校五年级有13个课外兴趣小组,每组人数依次是:2、3、5、7、9、10、11、13、14、17、21、22、24人,一天下午,学校同时举办语文、数学两个讲座,已知有12个小组去听讲座,其中听语文讲座的人数是听数学讲座的6倍,还剩下一个小组在教室里讨论,剩下的是哪一个小组?例7 五辆自行车由八个人来骑,一共骑了4小时,平均每人骑了小时。
练习:1、甲乙两数的和是41.36,如果甲数的小数点向右移动一位,就等于乙数,则乙数是多少?2、大小两数的差是12.276,若小数的小数点向右移动两位就与大数一样大,则大数是多少?小数是多少?3、已知甲乙两个数的商与差都是5,那么两数的和是多少?4、甲乙两数的和与商都是9,那么甲乙两数的差是多少?5、甲仓有粮食150吨,乙仓有粮食60吨,要从甲仓运多少吨粮食到乙仓,才能使乙仓的粮食是甲仓的3倍?6、已知一个四位数的后两位数是34,前两位数比后两位数的2倍少7,那么这个四位数是多少?7、老师今年25岁,小乐今年9岁,多少年前老师的年龄是小乐的5倍?8、今年李叔叔的年龄正好是小芳的9倍,几年后小芳上学了,李叔叔年龄又正好是小芳的4倍,问今年李叔叔多少岁?小芳多少岁?9、有六个玻璃瓶,分别装着白糖水、盐水、自来水。
一般应用题(三)
解答一般应用题时,可以按下面的步骤进行:
1、弄清题意,找出已知条件和所求问题;
2、分析已知条件和所求问题之间的关系,找出解题的途径;
3、拟定解答计划,列出算式,算出得数;
4、检验解答方法是否合理,结果是否正确,最后写答案。
类型一:
1、甲乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍。
这样二人一天一共生产1020个。
甲乙原计划每天各生产多少个零件?
2、工厂里有2个锅炉,原来每月烧煤5.6吨,进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?
3、甲乙两人生产同样多的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲乙原计划每天各生产零件多少个?
4、甲乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比原计划少挖15米,而乙队由于增加了人员,每天挖的是原计划的2倍。
这样两队每天一共挖了150米。
求两队原计划每天各挖多少米?
类型二:
1、把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时竹竿湿的部分比它的一半长13厘米,求竹竿的长度。
2、有一根铁丝,截去一半多10厘米,剩下部分正好做一个长8厘米,宽6厘米的长方形框架。
着根铁丝原来长多少厘米?
3、有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米,着根竹竿原来长多少厘米?
4、两根电线一样长,第一根剪去80米,第二根剪去320米,剩下部分第一根是第二根长度的4倍。
这两根电线原来各长多少米?
类型三:
1、将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?
2、某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小山坡路全长多少米?
3、食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米和面粉各多少千克?
4、老师买回两种笔共16支奖给三好学生,其中铅笔每支0.4元,圆珠笔每支1.2元,买圆珠笔比买铅笔共多用了1.6元。
求买这些比共用去多少钱?
类型四:
1、工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件,又同时加工4小时后,甲总共加工的零件反而比乙多4200个。
甲乙每小时各加工多少零件多少个?
2、甲乙二人同时从A地去B地,前3小时内,甲因修车1小时,因此乙领先于甲4千米。
又经过3小时,甲反而领先了乙17千米。
求二人的速度。
3、师徒二人生产同一种零件,徒弟比师傅早2小时开工,当师傅生产了2小时后,发现自己比徒弟少做20个零件,二人又生产了2小时,师傅反而比徒弟多生产了10个。
师傅每小时生产多少个零件?
4、甲每小时生产12个零件,乙每小时生产8个零件。
一次,甲、乙同时生产同
样多的零件,结果甲比乙提前5小时完成了任务。
问:甲一共生产了多少个零件?
类型五:
1、有苹果、梨、橘子和桃各一箱。
已知苹果和梨共重55千克;梨和橘子共重45千克,橘子和桃共重35千克;而且桃比梨少5千克。
求每箱水果各重多少千克?
2、一所小学五年级有四个班,其中一班和二班共99人,二班和三班共101人,三班和四班共100人。
一班比二班多2人。
问这四个班各有多少人?
3、甲乙丙丁四人做花,其中甲和乙共做81朵,乙和丙共做83朵,丙和丁共做86朵,甲比丁多做2朵。
这四人各做花多少朵?
4、某校五年级有甲乙丙丁四个班。
不算甲班,其余三班共有131人,不算丁班,其余三班共有134人,已知乙丙两个班的总人数比甲丁两个班的总人数少1人。
求四个班共有多少人?。