《高等数学》同步练习册(上)新答案教学教材
- 格式:doc
- 大小:1.35 MB
- 文档页数:18
第一章函数与极限§1函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界.[√]2、函数x e x f ln )(=与函数x e x g ln )(=是表示同一函数.[╳]答:不是同一函数,因为)(x f 的定义域是)(∞+−∞,而)(x g 的定义域)0(∞+,3、函数212)cos 1()(x x f −=与函数x x g sin )(=是表示同一函数。
[╳]答:不是表示同一函数,因为两函数的对应规律不同.4、)1ln()1()(x x e x f xx −+⋅−=+函数,则既是奇函数又是偶函数)(x f .[√]答:是,[]0)(,01000)(,0)1ln(00==−=+<==−+=−≥+x f e x x x x f x x x x x x x 从而,,当从而,,当综上述,对任意,x f x ()≡0,,,故)(0)()(0)(x f x f x f x f −==−==−既是奇函数又是偶函数)(x f .5、的最大整数,表示不超过函数x x ][则.1][)(的周期为x x x −=ϕ[√]答:是,1+<≤∈n x n R x ,若任取,n x =][则, ϕ()x x n=−[)1)1(,1]1[)1(,211+++−=+++−=+++∈+x n x x x n n x ϕ,此时=−=x n x ϕ(),故是以为周期的周期函数ϕ()x 1。
二、单项选择题1、下面四个函数中,与y=|x |不同的是(A )(A )||ln xey =(B )2x y =(C )44xy =(D )xx y sgn =)上是(,在其定义域、B x x f )()3(cos )(22∞+−∞=非周期函数。
的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 最小正周期为)(32)(3)(3)(D C B A πππ3、是 函数)0(ln)(>+−=a xa xa x f (A ) 的值奇偶性决定于非奇非偶函数;偶函数; 奇函数; a D C B A )()()()(三、填空题1、=则时且当设 z x z y y x f y x z , , 0 , )(2==−++=.解:2 , 0 x z y ==时因 2)(x x f x =+∴ 故有xx x f −=2)()()()(2y x y x y x f −−−=−)()(2y x y x y x z −−−++=∴2)(2y x y −+=2、的定义域为,则设 )()65lg(56)(22x f x x x x x f +−+−+=解:由 解得 ,650162+−≥−≤≤x x x 由 解得 或x x x x 256023−+><>[)(]故函数的定义域是 ,,−1236∪.3、[]=则., ;,设)(0202)(x f f x x x x f ⎩⎨⎧≥<+=解:[]f f x x x x ()=+<−≥−⎧⎨⎩4222,;, 四、)()(42411)(2x x f x x x x x x f x φ的反函数求.,;,;,设⎪⎩⎪⎨⎧+∞<<≤≤<<∞−=.解:当时,,即−∞<<==x y x x y1−∞<<y 1当时,, .141162≤≤=∴=≤≤x y x x yy 当时,, .42162<<+∞=∴=>x y x y x ylog ⎪⎩⎪⎨⎧>≤≤<<∞−=φ.,;,;,的反函数故16log 1611)()(2x x x x x x x x f 五、12)1()(222++=+x xx x f x x f 设 ,)(x f 求。
同济大学第六版高等数学上下册课后习题答案8-6仅供学习与交流,如有侵权请联系网站删除 谢谢2习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12(-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2 π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为 0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为仅供学习与交流,如有侵权请联系网站删除 谢谢3 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为 0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 对x 求导得,仅供学习与交流,如有侵权请联系网站删除 谢谢4⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z -z +xy -3, 则仅供学习与交流,如有侵权请联系网站删除 谢谢5n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为 000000cz z z by y y ax x x -=-=-.仅供学习与交流,如有侵权请联系网站删除 谢谢68. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程. 解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z , 解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6).仅供学习与交流,如有侵权请联系网站删除 谢谢7 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为 a z y x a az ay ax =++=++)(000000.。
高等数学习题解答第一章(7-11) 第六节 极限存在准则 两个重要极限1.0;1;1;0;2;2/32. 1-e ;1432;0;;;--e e e e3. 证明:{n x }显然单调递增,1x 3≤,若31≤-n x ,则n x ≤33+≤3∴ {n x }单调有界,∴{n x }收敛,不妨设∞→n lim n x =a , 则有 a =3+a ,解得,a =(1+13)/2,2)131(-=a∴2)131(lim +=∞→n n x4. 解:1)12111(22222+≤++++++≤+n n nn n n n n n11limlim22=+=+∞→∞→n nn n n n n∴1)12111(lim 222=++++++∞→nn n n n第七节 无穷小的比较1.(B )2. (A )3. 证明: 令t x sin = , 1sin lim arcsin lim00==→→ttx x t x∴当0→x 时,x x ~arcsin 。
4. 解:(1)0lim →x x x 25tan =0lim →x x x 25=25(2)0lim →x ())cos 1(arcsin 2x x x -=0lim →x 222x x x =∞(3)0lim →x x x )sin 21ln(-=0lim→x 2sin 2-=-xx(4)0lim →x =-+1)21ln(3x e x 3232lim 0=→x x x(5)0lim→x x x x 3sin sin tan -=0lim →x =-xx x x cos )cos 1(sin 30lim →x 322xx x=1/2(6)0lim →x ⎪⎭⎫ ⎝⎛-x x tan 1sin 1=0lim →x x x sin cos 1-=0lim →x 022=x x (7)431)3tan arctan (lim 220=+=+++→nn n n n a n n第八节 函数的连续性与间断点1. 0 ;2. 充要;3. 2;4. D5. B6. C7. 解:12121lim 1212lim )(lim0=+-=+-=--+∞→+∞→→+t tt t t t x x f1)(lim 0-=-→x f x ∴ )(x f 在x=0 不连续,且x=0 为函数)(x f 的第一类间断点。
第一章函数的极限与连续【基本要求】1、熟练掌握基本初等函数的表达式、图形及主要性质;2、了解初等函数的概念,了解极限的直观概念(一种变化趋势),无穷小量、无穷大量的概念;3、熟练掌握函数极限四则运算法则和无穷小量的性质,掌握求极限的各种方法;4、掌握两个重要极限,会用它求有关极限问题;5、理解函数的连续性和连续函数的概念,会判断一、二类间断点,知道闭区间上连续函数的性质.第一节函数【知识要点】邻域、函数、基本初等函数、初等函数、复合函数、分段函数的概念;求定义域、值域的方法;建立函数关系.【基本训练】x+<的中心是2吗?1、邻域21答案:-22、确定函数的两要素是定义域和值域吗?答案:不是。
确定函数的两要素是定义域和对应法则。
3、函数有哪几种表示方法?答案:解析法、图示法、表格法。
4、我们常用什么方法研究函数?答案:图示法。
f x=?5、函数()答案:是y=是否为初等函数?6、函数x答案:是。
7、你能举出一个既是奇函数又是偶函数的函数吗? 答案:()0f x =.8、奇函数的图形以( )对称;偶函数的图形以( )对称. 答案:原点;y 轴. 【能力提高】 一、单项选择题:1、C2、C3、B4、C5、D 二、确定下列函数的定义域:(1)y = (2) lg(1)y x =-+答案:[)(]2112,,- 答案:()11,- (3) x y cos = (4)21arcsin 5x y +=答案:2222k ,k ,k Z ππππ⎡⎤-+∈⎢⎥⎣⎦答案:[]22,- (5)ln(sin )y x = (6) ⎩⎨⎧<<-<≤--=20301x x x x y ,,答案:()2(21)k ,k ,k Z ππ+∈ 答案:[)()1002,,- 三、下列各题中()f x 和()g x 是否相同?(1) 3223()()()f x x ,g x x == (2) 2()()f x x,g x == 答案:不同 答案:不同(3) 22()1()sin cos f x ,g x x x ==+ (4) ()()f x x ==答案:相同 答案:相同四、已知()210201113x x f x x x x -≤<⎧⎪=≤<⎨⎪-≤≤⎩,求:(05)(0)(2)f .,f ,f -. 答案:(05)1(0)2(2)1f .,f ,f -=-==五、已知1(1f x x ⎛⎫= ⎪⎝⎭,0x >,求()f x . 答案:令1u x =,1x u=. ()1111f u u u ⎛⎛=+=+ ⎝⎝= ()f x =六、已知()f x =[]1()f ,f f x x ⎛⎫⎪⎝⎭.答案:11f x ⎛⎫=⎪⎝⎭;[]()f f x ==.七、确定下列函数的奇偶性:(判定奇偶性,先要求定义域) (1) ()4cos f x x x = (2) ()1cos xf x e=答案:偶函数 答案:偶函数 (3) ()1lg1xf x x-=+ (4) ()ln f x x = 答案:奇函数 答案:非奇非偶函数八、下列各题的函数是由哪些简单函数复合而成的? (1) ()21sin 2xf x =答案:21()2,sin u f u u v ,v w,w x==== (2) ()2sin (cos3)f x x =答案:()2,sin cos ,3f u u u v,v w w x ====(3) ()f x =答案:()21ln(sin 1)2f x x =+,()21ln 1sin 2f u u,u v ,v x ==+=(4) arctan y =答案:22,arctan 1y u u v,v x ===-九、在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: D A R O h EBC设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R直角三角形AOE 中,利用勾股定理得AE =则上底=2AE =故((22hS R h R =+=+第二节 数列的极限【知识要点】数列概念、数列极限存在的定义. 【基本训练】 1、数列是函数吗? 答案:是2、如何在数轴上和平面直角坐标系上表示数列?3、下列做法是否改变数列的敛散性?(1)任意改变数列的有限项; 不会 (2)各项同取绝对值;会 (3)各项乘以同一常数k ; 会 (4)去掉所有偶数项.会 4、如果数列{}n x 极限存在,lim n n x a →∞=,lim n n x b →∞=,则a 与b 相等吗?答案:是5、收敛的数列一定有界吗? 答案:是6、无界的数列会收敛吗? 答案:否7、有界的数列一定收敛吗? 答案:不一定 【能力提高】观察下列数列的变化趋势,对存在极限的数列,写出它的极限:(1)1(1)nn x n+-= 答案:0(2)(1)nn x n =+- 答案:不存在(3)1sinn x n = 答案:0 (4)sin n nx n= 答案:0(5)sin n x n π= 答案:0 (6)sin(2)2n x n ππ=+ 答案:1(7) cos n x n π= 答案:不存在 (8)1n x = 答案:不存在(9)2121n n nx n n-⎧⎪⎪=⎨+⎪⎪⎩ 答案:2第三节 函数的极限【知识要点】函数极限、左右极限的概念、函数极限存在与左右极限的关系. 【基本训练】1、在讨论函数极限时自变量x 的变化趋势大体分为哪两种情况? 答案:0x ,x x →∞→2、数列极限和函数极限的区别是什么?3、函数()f x 在点0x 处无定义,则函数()f x 在点0x 处一定无极限吗? 答案:不一定4、函数()f x 在点0x 处有定义,且函数()f x 在0x 处极限存在,则极限值一定为0()f x 吗? 答案:不一定5、函数()f x 在点0x 处左右极限一定相等吗?如果函数()f x 在点0x 处极限存在,它在点0x 处左右极限一定相等吗?答案:不一定;是6、如果函数()f x 在点0x 处左右极限存在且相等,函数()f x 在点0x 处极限存在吗? 答案:存在n 为奇数n 为偶数【能力提高】一、从函数的图形观察极限是否存在,若有极限等于多少? (1) 0lim cos x x →=( 1 ), 2l i m c o s x x π→=( 0 ), lim cos x x →+∞=( 不存在 ), l i m c o s x x →-∞=(不存在 );(2)0lim arctan x x →=( 0 ), 1l i m a r c t a n x x →=(4π), lim arctan x x →+∞=(2π ), l i m a r c t a n x x →-∞=(2π- ),l i m a r c t a n x x →∞=(不存在 );(3)()x f x a = (1)a >当03x ,x ,x ,x →→→+∞→-∞时; 答案:0lim 1xx a →=,33lim xx a a →=,lim xx a →+∞=+∞,lim 0xx a →-∞=.(4)当111x ,x ,x -+→→→时,2211()311x x f x x x ⎧-<=⎨+≥⎩ 的极限.答案:21lim (21)1x x -→-=,1lim (31)4x x +→+=,11lim ()14lim ()x x f x f x -+→→=≠=,1lim ()x f x →不存在.二、单项选择题: 1、C 2、D 3、B三、设函数20()0x x a x f x ex ⎧+<=⎨>⎩ 在0x →时极限存在,求常数a 的值.答案:2lim ()lim 1xx x x a a,e -+→→+==,因为函数在0x →极限存在,故左极限和右极限相等,得1a =.四、设函数1121()21xxf x -=+,讨论函数在0x →时极限是否存在.答案:11112121lim 1lim 12121xxx x xx,-+→→--=-=++,0lim ()x f x →不存在.第四节 无穷小量与无穷大量【知识要点】无穷小量、无穷大量的概念与性质、无穷小量与无穷大量的关系. 【基本训练】 1、零是无穷小量吗? 答案:是2、若lim ()x af x A →=,则在x a →时,()f x A -是无穷小量吗?答案:是3、有限个无穷小量的和、差、积仍然为无穷小量吗? 答案:是4、无穷小量的商一定是无穷小量吗? 答案:不一定5、无穷小量与有界函数之积仍然为无穷小量吗? 答案:是6、无穷大量乘任意常数一定是无穷大量吗? 答案:不一定7、无穷大量与无穷大量之差一定是无穷小量吗? 答案:不一定8、当2x →时,下列函数中不是无穷小量的是( C ). A. 38x -B. 2sin(4)x -C. 2x e- D. ln(3)x -【能力提高】一、下列函数在什么情况下是无穷小量?什么情况下是无穷大量? (1)xe -; (2)ln x ; 答案:x →+∞,xe -为无穷小; 答案:1x →,ln x 为无穷小;x →-∞,xe -是无穷大 0x +→,x →+∞,ln x 为无穷小(3)21x x +-; (4)23x x-; 答案:2x →-,21x x +-为无穷小 答案:3x →,23x x-为无穷小1x →,21x x +-为无穷大 0x →,23x x-为无穷大(5)51x -; (6)115x -. 答案:0x →,51x -为无穷小 答案:0x →,115x -为无穷小 x →+∞,51x -为无穷大x →-∞,115x -为无穷大二、当x →∞时,将()f x 表示为一个常数与无穷小量之和.(1)3321()1x f x x -=+;答案:3321lim 21x x x →∞-=+,33()21f x x =-+,在x →∞,331x -+为无穷小(2) 21()31x f x x -=+. 答案:212lim313x x x →∞-=+,25()33(31)f x x =-+,在x →∞,53(31)x -+为无穷小第五节 函数极限的运算【知识要点】函数极限的四则运算法则、两个重要极限及应用、无穷小量的比较. 【基本训练】1、下面的解法对吗?为什么?0011lim sinlim limsin 0x x x x x x x→→→=⋅= 答案:错2、下面的解法对吗?为什么?221111212lim lim lim 01111x x x ()x x x x→→→-=-=∞-∞=---- 答案:错3、当0x →时,22x x -与23x x -哪一个是更高阶的无穷小量? 答案:当0x →时,23x x -是比22x x -更高阶的无穷小量4、当1x →时,无穷小量1x -与(1)31x -,(2)21(1)2x -是否同阶?是否等价? 答案:3111lim13x x x →-=-,当1x →时,无穷小量1x -与31x -是同阶无穷小量。
同济大学第六版高等数学上下册课后习题答案5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 20)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt ept ptωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx . (7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x .(8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102x x x dx x ,所以反常积分⎰-202)1(x dx发散.(9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x .(10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k kk x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令kk k x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点, 同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx x x x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.。
2022高一数学同步练习册参考答案大全高中,是高级中学的简称,全中国的中学分为初级中学与高级中学(普遍简称初中和高中),两者同属于中等教育的范围。
下面是小编为大家整理的关于高一数学同步练习册参考答案大全,希望对您有所帮助!高一数学练习册答案1.1集合111集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.112集合间的基本关系1.D.2.A.3.D.4.,{-1},{1},{-1,1}.5..6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={,{1},{2},{1,2}},B∈A.11.a=b=1.113集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22113集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6綂UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2綂UB,与条件A∩綂UB={2}矛盾.1.2函数及其表示121函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.121函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).122函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.122函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(02.4(203.6(404.8(601.3函数的基本性质131单调性与(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.131单调性与(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(011.日均利润,则总利润就.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12132奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<32b-32b<00单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f1217.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有的实数解,即xax+b=x(_)只有实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2_+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(_)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1. 3+1×3.9+0.5×65=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(56.5x-28.6(622.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).高一数学练习参考答案2.1指数函数211指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.211指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.211指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.47288,00885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.212指数函数及其性质(一)1.D.2.C.3.B.4.AB.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0212指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.212指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数221对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-310.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.221对数与对数运算(二)1.C.2.A.3.A.4.03980.5.2lo_-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.221对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.25.10.a=log34+log37=log328∈(3,4).11.1.222对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.222对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log2047.logbab0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0222对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x 对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.23幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x 对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.258.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-117.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y 有值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当020.(1)F(x)=lg1-_+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)。
高等数学同步练习册下课后练习题含答案前言高等数学同步练习册下课后练习题含答案是一本旨在帮助学生巩固和提高高等数学知识的练习册。
该练习册包含了大量的练习题和答案,可以帮助学生练习和理解高等数学的概念和技能,提高其高等数学水平。
本文对该练习册进行详细介绍,包括练习册的特点、使用方法以及注意事项等。
练习册特点高等数学同步练习册下课后练习题含答案有以下几个特点:1.练习题内容全面:该练习册覆盖了高等数学中的各个知识点,包括微积分、线性代数、概率论等。
2.练习题数量丰富:该练习册包含了大量的练习题,可以满足不同层次和不同需求的学生的练习需要。
3.练习题难度适中:该练习册的练习题难度从易到难,可以帮助学生逐步掌握和提高高等数学知识。
4.答案详细准确:该练习册的答案详细准确,可以帮助学生自行检查和纠正练习中的错误。
使用方法学生可以根据自身的学习进度和需要,选择适合自己的章节和练习题进行练习。
使用时,可以先独立完成练习题,在完成后再对答案进行比对和纠正错误。
如果有不理解的地方,可以查看相关的高等数学教材或参考相关的网上资料。
建议学生在完成练习后,将所犯的错误及时记录,并加以纠正和改进,以达到持续提高的目的。
注意事项1.在使用该练习册时,建议学生先掌握高等数学基础知识,以免对练习造成过大的困难。
2.学生在完成练习时,应注重时间控制,控制练习用时,以查漏补缺和提高练习效果。
3.学生在使用该练习册时,应注重答案的纠正和思考,以查漏补缺和提高练习效果。
结语高等数学同步练习册下课后练习题含答案是一本帮助学生巩固和提高高等数学知识的练习册。
该练习册内容全面、数量丰富、难度适中,并附有详细准确的答案,是学习高等数学的一份好材料。
希望学生可以认真使用该练习册,提高自己的高等数学水平。
高等数学习题册(上册)目录习题1-1 函数 (1)习题1-2 常用的经济函数 (5)习题2-1 极限 (9)习题2-2 无穷小与无穷大,极限运算法则 (13)习题2-3 极限存在准则,两个重要极限及无穷小的比较 (17)习题2-4 函数的连续性 (21)习题2-5 闭区间上连续函数的性质 (25)第二章综合题 (29)第二章自测题 (36)习题3-1 导数概念 (40)习题3-2 求导法则与基本初等函数求导公式(一) (44)习题3-2 求导法则与基本初等函数求导公式(二) (48)习题3-3 高阶导数 (52)习题3-4 隐函数及由参数方程所确定的函数的导数 (56)习题3-5 函数的微分 (60)习题3-6 边际与弹性 (64)第三章综合题 (68)第三章自测题 (74)习题4-1 中值定理 (78)习题4-2 洛必达法则 (82)习题4-3 导数的应用(一) (86)习题4-3 导数的应用(二) (90)习题4-4 函数的最大值和最小值及其在经济中的应用 (94)习题4-5 泰勒公式 (98)第四章综合题 (100)第四章自测题 (104)习题5-1 不定积分的概念、性质 (108)习题5-2 换元积分法(一) (112)习题5-2 换元积分法(二) (116)习题5-3 分部积分法 (120)习题5-4 有理函数的积分 (122)第五章综合题 (124)第五章自测题 (128)微积分(上)模拟试卷一 (134)微积分(上)模拟试卷二 (138)参考答案 (142)习题1-1 函数1. 填空题:(1)()x y 32log log =的定义域 。
(2)523arcsin3xx y -+-=的定义域 。
(3)xxy +-=11的反函数 。
(4)已知31122++=⎪⎭⎫ ⎝⎛+xx x x f ,则=)(x f 。
2. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3 , sin )(ππϕx x x ,求()2,6-⎪⎭⎫⎝⎛ϕπϕ,并作出函数()x ϕη=的图形。
高等数学1C 习题解答习题一一.单项选择题1、A2、D3、C 二.填空题1、22)1(133-+-x x x 2、(-9,1)三.计算题 1、(1)解 函数要有意义,必须满足⎩⎨⎧≥-≠0102x x 即⎩⎨⎧≤≤-≠110x x 定义域为]1,0()0,1(⋃- (2)解 函数要有意义,必须满足⎪⎪⎩⎪⎪⎨⎧≤≤-≠≥-111003x x x 解得1-≤x 或31≤≤x 3.(1)解 由1-=x e y 得 1ln +=y x 交换x 、y 得反函数为1ln +=x y(2)解 由11+-=x x y 得 y y x -+=11 交换x 、y 得反函数为xxy -+=114.(1)解 只有t=0时,能;t 取其它值时,因为 112>+t ,x arcsin 无定义 (2)解 不能,因为11≤≤-x ,此时121-=x y 无意义 5.解(1)12arccos 2-====x w wv v u ey u(2) 令22y y y += 则11ln 21+=+==x u uv v yx w e m m x v v u ey wu2)sin(32==+===6.解 ⎪⎩⎪⎨⎧-≤+≤<-+->-=1101)1(0)]([22x x x x x x x f g7.解 设c bx ax x f ++=2)(所以⎪⎩⎪⎨⎧==++=++41242c c b a c b a 解得 25214-===b a c习题二一.单项选择题1、A2、B3、D 二.填空题1、>12、单调增加 三.计算题1、(1)解 因为)(sin )sin()(x f x x x x x f ==--=- 所以函数是偶函数 (2)解 因为)()1ln(11ln )1ln()(222x f x x xx x x x f -=-+-=-+=++=-所以函数是奇函数(3)解 )(0)1(000)1(010001)(x f x x x x x x x x x x x f -=⎪⎩⎪⎨⎧>+-=<--=⎪⎩⎪⎨⎧<---=->-+-=- 所以函数是奇函数 2.解 因为 x x y 2cos 2121sin 2-== 而x 2cos 的周期为π,所以x y 2sin =是周期函数,周期为π 3.解 由h r V 231π=得23rv h π= 表面积: )0(919221226224222222≥++=++=+⋅+=r r v r r r r v r r r r h r s πππππππ四 证明 )()1()1(11)(x f e e e e e e x f x x x x x x -=+-=+-=---习题三一.单项选择题1、C2、C3、B4、C 二.填空题1、12、a3、≥4、2,05、1 三.判断正误1、对;2、对;3、错 四.(1) 证明 令12+=n nx n ε<=<+=-nn n n n x n 11022只要ε1>n ,取]1[ε=N当N n >时,恒有ε<-0n x 所以01lim2=+∞→n nn(2)证明 因为)0()(lim >=+∞→A A x f x ,对取定的2A=ε,存在M>0,当x>M 时,有 2)()(A A x f A x f <-<- 故当x>M 时,2)(A x f > 习题四一.单项选择题1、B2、B3、B4、D 二.填空题1、ae 2、0,6 3、6 4、2,-2 三.判断正误1、错;2、错;3、错; 四.计算题 1、原式=2112lim )1)(1()1)(2(lim11=+--=+---→→x x x x x x x x2、原式=01111lim11lim=++=+++∞→+∞→xxxx x x 3、原式=2311lim)1)(1()1)(1(lim32313231=+++=-+++-→→xx x x x x x x x x 4、原式=31)32(131)32(31lim )32(13233lim 1111=-⋅+=-++∞→++++∞→n n n n n n n n n 5、原式=]21)121121(21)5131(21)311[(lim ⋅+--++⋅-+⋅-+∞→n n n21)2112121(lim =⋅+-=∞→n n6、、原式=23232223)12)(1(21lim 3)21(3lim n n n n n n n n n n -++=-+++∞→+∞→ 2132123lim 22=+=∞→n nn n 7、因为 0lim =-+∞→xx e1sin ≤x 所以 0sin lim =-+∞→x exx习题五一、1.B , 2.A, 3. B二、1.sin tan x x x << 2.0 三、1.(1)0sin 77limtan 55x x x →=解:(2)0lim sin0x x xπ→=解:这是有界函数乘无穷小量,故(3)000sin 5sin 5115sin 55lim lim lim 1sin 3sin 3sin 31133x x x x x x x x x x xx x x x→→→---===-+++解: (4)00sin 1lim lim sin 1()x x x x x x++→→+=解:原式=后一项是无穷小量乘有界函数2.(1)22222222222lim(1)lim[(1)]lim(1)1n n n n n e e n n n⨯+→∞→∞→∞=+=++==原式 (2)()1()1111lim(1)lim 1xx x x x x e ---•-→∞→∞⎡⎤⎛⎫-=-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦原式=(3)22322(3)3332233lim(1)lim(1)22x x x x e x x -++-•---→∞→∞⎡⎤-=-=⎢⎥++⎢⎥⎣⎦原式= (4)13330lim(13)xx x e •→=+=原式(中间思维过程同前)(5)222222lim ln()lim ln(1)lim ln(1)lim ln(1)1nn n n n nn n n n n nn•→∞→∞→∞→∞+==+=+=+=原式 四.1.证明:2......n n n π<+<+1,,.n n ==而故由夹逼准则知原式成立2.证明:只要证明原数列单调有界就可以达到目的()()2211112,110,0,.n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x ++++=-+-=-=-->->>n 即而0<x <1,故即故数列单调递增且有界,极限存在.22212(21)11(1)1lim 1n n n n n n n n x x x x x x x +→∞=-+=--++=--<∴=习题六一、1.B,2.B,3.B,4.B,5。
大学《高等数学》同步练习册(上)新答案第1章极限与连续1.1 函数1、(1) «Skip Record If...» (2) «Skip Record If...»(3) «Skip Record If...» «Skip Record If...»,«Skip Record If...»(4) 奇函数 (5)«Skip Record If...» (6) «Skip Record If...»(7) «Skip Record If...» (8)«Skip Record If...» «Skip Record If...» (9) «Skip Record If...» (10) «Skip Record If...»2、«Skip Record If...»3、«Skip Record If...» «Skip Record If...»1.2 数列的极限1、(1) D (2) C (3) D1.3 函数的极限1、(1) 充分 (2) 充要3、 11.4 无穷小与无穷大1、(1) D (2) D (3) C (4) C1.5 极限运算法则1、(1) «Skip Record If...» (2) «Skip Record If...» (3) «Skip Record If...» (4) «Skip Record If...» (5) 02、(1)B(2)D3、(1) 0 (2)«Skip Record If...»(3)«Skip Record If...»(4) «Skip Record If...» (5) 1 (6) «Skip Record If...»4、a = 1 b = -11.6 极限存在准则两个重要极限1、(1) 充分 (2) «Skip Record If...»,3 (3) 2 ,«Skip Record If...»(4) 0,«Skip Record If...» (5) «Skip Record If...»,«Skip Record If...»2、(1) «Skip Record If...» (2) «Skip Record If...» (3) «Skip Record If...» (4) 1 (5) «Skip Record If...» (6) «Skip Record If...»1.7 无穷小的比较1、(1) D (2) A (3) B (4) C2、(1) 1 (2) 2 (3) «Skip Record If...» (4) «Skip Record If...» (5) «Skip Record If...» (6) «Skip Record If...»3、e1.8 函数的连续性与间断点1、(1) 充要 (2) «Skip Record If...» (3) 0,«Skip Record If...» (4) 跳跃,无穷,可去2、(1) B (2) B (3) B (4) D3、(1) «Skip Record If...»(2)«Skip Record If...»4、a =1 ,b = 25、 (1)«Skip Record If...»是可去间断点,«Skip Record If...»是无穷间断;(2) «Skip Record If...»是跳跃间断点,«Skip Record If...»是无穷间断点6、«Skip Record If...»仅供学习与交流,如有侵权请联系网站删除谢谢1051.10 总习题1、(1) 2 (2) «Skip Record If...» (3) «Skip Record If...» (4)2 (5) 2 «Skip Record If...»(6) 2 (7) «Skip Record If...» (8) 0 «Skip Record If...»(9) 跳跃可去 (10) 22、(1) D (2) D (3) D (4) C (5) D(6) B (7) D (8) D (9) B (10) B (11) B3、(1)«Skip Record If...»(2)«Skip Record If...»(3)«Skip Record If...»(元)。
第1页共13页⎧⎨第一章:函数与极限ξ1-1函数1、(1)√(2)√(3)×lim arctan x = π,故有界x →+∞2(4)×2、(1)D 0≤ x + a ≤ 1⇒ -a ≤ x ≤ 1- a π(2)A 显然当x → k时2f (x ) → ∞(3)C f (-x )=-x sin (-x )e cos (-x )=x sin x e cos x =f (x )(4)A 若f (x ),g (x )均为奇函数则f (g (x ))也为奇函数又f (- x )是奇函数,故f (x )为奇函数3、证明:设∀M > 0要使f (x ) > M 则ln (x +1) > Mln (x +1) = ⎨- l n (x +1)⎩ln (x +1)- l n (x +1) > Mln (x +1) < -M⎧(-1,0]⎩(0,1]x +1< 1e M x < 1-1e M又-1< x ≤ 0∴存在x 0∈(-1,0]x <1-1e M∴ lim x →-1f (x ) = ∞∴ f (x )在ln (x +1)在(-1,1]上是无界的4、解:当x ∈[0,2]时,f (x )=x (x 2-4)当0≤ x + 2≤ 2时,2f (x + 2) = 2(x + 2)(x + 4)x 即当x ∈[- 2,0]时,f (x ) = 2x (x + 2)(x + 4)ξ1- 2数列的极限1、(1)√2、×数列发散不一定是无界数列,例如x n = sin n 3、√4、√2、(1)C 发散,但是有界(2)D (3)B (4)A n → ∞ 时数列极限值不唯一,故极限不存在n → ∞ 时数列极限值不唯一,故极限不存在故发散3、证明:x 2k -1=arctan [(-1)2k -1(2k -1)]=arctan (1-2k )lim x n 2k -1→∞= -π2x 2k =arctan [(-1)2k 2k ]=arctan 2k πlim x n =2k →∞2∵{x 2k -1}与{x 2k }为{x n }的两个子数列而lim 2k -1→∞x n ≠lim x n2k →∞∴lim x n 不存在n →∞∴{x n }发散ξ1- 3函数的极限1、(1)×若f (x-)=f (x +)=4则lim f (x ) = 4x → x 0(2)×函数极限存在的充要条件是左右极限都存在且相等(3)√(4)√2、(1)C函数值不一定等于极限值(2)D (3)C 3、(1)0(2)0(3)04、(1)21(2)4(3)不存在215、证明:= 2n π 时,即x =1→ 0时,limcos 2n π = 1x2n πn →0⎛π⎫1π当= 2n π+,即x =1+ π→ 0时,limcos 2n π+⎪ = 0x 2故极限不存在2n π2n →0⎝2⎭ξ1- 4无穷小与无穷大1、(1)C (2)C (3)D (4)D2、(1)lim ln x = 0x →1无穷小lim ln x = -∞x →0+无穷大(2)lim x sin1+ 2⎪ = 0无穷小⎛⎫x →0⎝x ⎭(3)lim e x= +∞x →+∞无穷大lim e x = 0x →-∞无穷小1(4)lim e x= +∞x →0+f (x )无穷大x +11lim e x= 0x →0-1无穷小1lim e x不存在x →03、解:k = limx →∞x= limx →∞ x 2= lim= 0-1x →∞x -1b = lim [ f (x )- kx ] = lim x= 1x →∞∴ x = 1x →∞ x -1ξ1- 5极限的运算法则1、(1)√(2)√(3)√(4)√x 2+ 5lim (x 2+5)3x →12、(1)limx →1x + 3=lim (x + 3) =2x →1(2)limx - 4= lim (x - 2) = -4x →-2x + 2x →-2(3)limh →0(x + h )2- x 2h= lim (2x + h ) = 2xh →01+ sin1xx 2+1x 2-1(4)lim 2x 2-12= lim 2-1x 2= 2x →∞ 3x + x -1x 2+ x x →∞113+-x x2(5)limx →0x 4= 0- 3x 2+1x 2- 6x + 8(x - 4)(x - 2)x - 22(6)lim x = lim = lim =- 5x + 4(x - 4)(x -1)x -13x →42⎛11x →41⎫1- 13n x →43(7)lim 1+++ ...+n ⎪ = lim=n →∞⎝39n →∞11-3(n -1)n(8)lim 1+ 2+ 3+ ...+ (n -1)= lim 2= lim n -1= 1n →∞n 2n →∞n 2n →∞ 2n 2⎛ 13⎫1+ x + x 2- 3(x -1)(x + 2)- x - 2(9)lim -⎪ = lim 1- x 1- x 21- x2=lim (1-x )(x 2+x +1)=lim x 2+x +1=-1x →1⎝⎭x →1x →1x →1(n +1)(n + 2)(n + 3)(10)lim 2= lim n +1+lim n + 2+lim n + 3= 3n →∞n n →∞n n →∞n n →∞n(11)lim e xarctan x = 0x →-∞(12)limsin x ⋅= 0x →0(13)lim(x 2+1-)=lim2=0(14)limx →+∞x →∞= lim x →+∞x →∞+= lim x →+∞= lim= 1x →+∞23、解:x 2+ ax + b = (x + d )(x - 2)limx + d = 2⇒ x + d= 2⇒ d = 4x →2x +13∴ a = 2,b = -8x 2-1x +x +x 2x +1x +x +x 2x +133⎭2x +x +x2x +1(2x +1)22 n⎪221- cos 2hsinh+ ⎪⎛ x 3im+1- ax 3-ax ⎫4、解:l x 2+1- b ⎪⎪x⎝⎭= lim ⎡(1-a )x 3-ax +1⎤-b x →∞⎢⎣x 2+1⎥⎦1+1= lim [(1- a )x ]- l im x x - bx →∞x →∞11+x 2= lim [(1- a )x ]- b = 1x →∞∴ a = 1,b = -1ξ1- 6极限存在准则两个重要极限1、(1)√(2)√(3)√2、(1)D limx = lim1= 1(2)A>B x →0x 4+ x 2x →0x 2+1(3)elim ⎛1+n →∞⎝n +1000⎫⎪n ⎭= lim ⎛1+ 1⎫ = e n →∞⎝n ⎭(4)-1lim tan x = limcos x = -1x →π sin x x →π(5)-1lim x sin 1- 1sin x ⎪ = 0-1= -1⎛x →0⎝⎫x x ⎭3、(1)limsin x = limsin x ⋅ limsin x = 1⋅ 0= 0x →0xx →0xx →0(2)lim 1- cos 2x = lim 2sin x = lim 2sin x= 2x →0x sin x x →0x sin x x →0x(3)limh h →0+= limh = 1h →0+(4)lim x1+ 2x 令t = 1则lim x1+ 2x = lim ⎛1+ 1⎫x →02x⎛⎫x ⎡⎛⎫x →0x ⎤t →∞⎝2t ⎭(5)lim 1x ⎪= lim ⎢ 1+ 1⎪ ⎥= e 2x →∞⎝x ⎭x →∞ ⎢⎣⎝x ⎭ ⎥⎦21te =21 ⎪111sin3x (1+ x + 1- x )1+ x kx(6)lim ⎛1-⎫=x →∞⎝x ⎭e k (7)lim 1-3x3x⎪= lim 1-⎪3x⋅ l im 1+⎪=1⋅ e 3= 1⎛x →∞⎝⎫x 2⎭⎛x →∞⎝⎫⎛⎫x ⎭x →∞⎝x ⎭e 3(8)lim (1-3sin x )2cos x=lim (1-0)2=1(9)x →0lim x →0sin 3x x →0= lim2x x →0= lim2x ⋅ l im (+)= 4lim 3x = 4x →0sin 3x x →03x →0sin 3x 3sin 3x + x 2sin 1lim x = lim (1+ cos )x sin 3x (1+ c os x )x x sin1+lim x 1+ cos x(10)x →0sin 3x x →0sin t x →03lim x →03xlim t →0t 31=+=+= 2lim (1+ c os x )lim (1+ c os x )22x →0nx →0nnn 4、证明:∵< ...<<<n 2+ n n 2+ 2n 2+1n 2且lim n ⋅n = lim n= 1n →∞n 2+ n n →∞ n +1而lim n ⋅n →∞⎛∴lim n n = 1n 21+1+ ...+1⎫⎪ = 1n →∞⎝ n 2+1n 2+ 2n 2+ n ⎭5、证明:∵x n +1= sin x n < x n∴ x n +1< x n∴{x n }为单调数列且0< x 1< π∴0< x n < π∴lim x n = 0n →∞ξ1- 7无穷小的比较1、(1)√(2)√1- x 1+ x - 1- x 12x (1+ x + 1- x)x2(1+ x arcsin x +cos x)1(3)×当x → 0时,cos x ,1- x 均不是无穷小(4)√limsin 3x= 3x →0e x -11- t 1- t 1(5)×lim 令t =lim = lim = -x →1x -1α+ βt →1t 3-1α+ο(α)t →1(t -1)(t 2+ t +1)3(6)√lim x → x 0α= lim x → x 0α= 1∴α+ β ~α2、(1)Blim 1- cos x = 1(2)Climx →0x →0xx 2= lim 2x = 1x →01+1(3)Clim x →∞x +12++= lim x →∞x x 2= 0+b + c ax bx cax x 21(1- x 2)1(1- x )(1+ x )(4)Clim 2= lim 2= lim 1(1+ x ) = 1x →11- x x →11- x x →12(5)Clim π ⋅ sin x = π ⋅ 1= 1x →π 2x 2π2223、证明:lim (cos x - cos2x )322lim (2cos x +1)(1- c os x )22lim 3(1- c os x )= 1x →0x 3x →0x 3x →0x4、解:limx →0x 2= limx →0∴ k =341+ x arcsin x - cosln (1+ 2x )2x = lim x →021x 2+ x 22= 3x 245、(1)limx →0arcsin3xsin x 3⋅ tan x = lim=x →03x3x 4(2)limx →01- cos x 2= lim = 2x →0x 2(3)lim x →0ln (1+ 3x sin x )tan x 2= lim x →03x sin x tan x 2= lim x →03x 2= 3x 21- 3x 3x1+ x - 1- x ==21+ x arcsin x -cos x4⎝⎭⎭ xxlim 5x + sin x - 2x 3= lim 5x - 2x +sin 2xx →0tan x + 4x 2x →0x + 4x 2(4)⎛ - x22x ⎫⎛x 2⎫= lim 52+sin ⎪ = lim 5+⎪ = 5x →0 1+ 4x x + 4x 2⎪x →0⎝x + 4x 2⎪ξ1- 8函数的连续性与间断点1、(1)×若lim x → x 0f (x ) ≠f (x 0)则不连续(2)×若lim x → x 0f (x ) ≠f (x 0)则不连续(3)√2、(1)A 若lim x → x 0f (x ) ≠f (x 0)则不连续,但是连续一定有定义(2)C (3)Alimsin x ⋅sin1= 0x →0x(4)Alimx -1= lim (x +1) = 2lim 2x = 2f (1-)=f (1+)=f (1)∴连续x →1-x -1x →1-x →1+(5)Cf (0-)=lim ⎛x +sin x ⎫⎪ = 1f (0+)=lim x cos 1=0f (0-)≠f (0+)x →0- ⎝x ⎭x →0+x (6)Alim (1-x )cot x 令x =1则lim 1-t ⋅ 1⎪ t ⋅= lim 1-t ⋅lim x⎪=x →0⎛t t →∞⎝1⎫ tan 1tt ⎭⎛t →∞⎝1⎫ x →0tan x 1t ⎭e 3、(1)f (1-)=-π2f (1+)=π2∴ x = 1为跳跃间断点cosπx(2)lim2= ∞x →0x (x -1)∴ x = 0为无穷间断点cos πx cos ππ⎪-sin πt ⎛ t +⎫lim2= lim ⎝ 22⎭ = lim 2= - π∴ x = 1为可去间断点x →1x (x -1)t →0t (t +1)t →0t (t +1)2(3)lim arcsinx = lim arcsin (-1) = -πlim arcsinx = lim arcsin1=πx →0-x →0-2x →0+x →0+2∴ x = 0为跳跃间断点4、解:lim x -1= 0x →1+lim x →0-f (x ) =f (0) = 0∴ x = 1为连续点lim x -1= 2lim cos πx = 0lim f (x )≠lim f (x )x →-1+x →-1+2x →-1-x →-1+223x (1-cos x )(1+cos x )x 3∴ x = -1为跳跃间断点ξ1- 9连续函数的运算与初等函数的连续性1、(1)√(2)√(3)×若f (x 0)=0而lim x → x 0f (x )⋅g (x )存在则在x 0连续(4)√2、解:lim f (x ) = limsin ax= limsin ax ⋅ a =ax →0+x →0+2xx →0+ax 22lim f (x ) = lim (2+ x 2) = 2= a⇒ a = 4x →0-3、(1)x →0-2lim x →a cos 2x - cos 2a x - a = lim x →a (cos x + cos a )(cos x - cos a )x - a = 2cos a ⋅ l im x →a cos x - cos ax - a= -sin 2a(2)lim arctan (ex 2-1)=arctan1=π+k π,k ∈Zx →11x(3)lim x →0+14- 1-1= lim 1- 3= 1x →0+- 13x +11+ 3xπ(4)lim 3arctan x= 32x →+∞1x2(5)lim= lim 1- cos x= lim 21()= lim x = 02x →0+x →0+1x →0+2221x →0+13(6)limx2= lim (tan x - s in x )23= lim sin x (1- c os x )23x= lim 4=1x →0e x -1x →0xx →0x cos xx →0x4ξ1-10闭区间上连续函数的性质1、(1)×不一定有最值(2)√(3)√(4)×若f (x ) 不连续,则不一定有零点(5)√(6)×f (x ) = tan x 在⎛π,3π⎫⎪ 内不连续⎝ 44⎭2、(1)A 不连续仍然可以有最大值和最小值(2)B31-cos x 1- cos x(3)C(4)A3、证明:令f(x) = sin x- x-1显然f(x) 连续f(- 2) = 1- sin2> 0f(2) = -3+ sin2< 0有f(- 2) f(2) < 0由零点定理得,至少存在一个点ξ⊂ [- 2,2]使得f(ξ) = sinξ-ξ-1= 0,即sin x- x= 1至少有一个根介于[- 2,2] 4、证明:构造函数F(x) = f(x)- f(x+ a)F(0) = F(a) =f(0)- f(a)f(a)- f(2a) = -( f(0)- f(a))f(0)f(a)=-(f(0)-f(a))2<0∴由零点定理可知,至少存在一点ξ⊂ [0,a],使得F(ξ) = 0即f(ξ) - f(ξ+ a) = 0⇒f(ξ) =f(ξ+ a)5、证明:构造函数F(x) =f(x)(t1+t2)-t1f(c)-t2f(d)易知F(x)在[c,d]上连续F(c) = F(d) =f(c)(t1+t2)-t1f(c)-t2f(d)=t2(f(c)-f(d)) f(d)(t1+t2)-t1f(c)-t2f(d)=-t2(f(c)-f(d))F(c)F(d) = -t1t2( f(c)- f(d)) < 0∴由零点定理可知,存在一点ξ⊂ [c,d]使得,F(ξ) = 0即f(ξ)(t1+t2)-t1f(c)-t2f(d)=0⇒t1f(c)+t2f(d)=(t1+t2)f(ξ)6、证明:构造函数F(x) =则F(x)在[a,b]上连续,f(x)- xF(a) = F(a)- a> 0(a< f(x) < b)F(b) =f(b)- b< 0(a< f(x) < b)∴ F(a)F(b) < 0由零点定理可知,存在一点ξ⊂ (a,b),e (2)1⎝1+ x x ⎪使得F (ξ) =⇒ f (ξ) = ξf (ξ) -ξ = 01- 1复习题1- 21- 12x+ e1、(1)lim = lim1+ e = 1e x + e xe x +1lim11= lim2= -1x →0+1- 1e x- exx →0+- 21- exx →0--e x- exx →0-e x -1(4+3x )2(4+3x )2x 3(2)lim = = 0x 1- x x →∞x 1-1x 2tan x - sin xsin x (1- cos x )x 3(3)lim x →0x α= lim x →0x α cos x = lim ⇒ α= 3x →0x α∴tan x - sin x 为x 的三阶无穷小(1-ax 2)4-1-1ax 241(4)lim x →0x sin x = lim x →0x2= -a = 1⇒ a = -44(5)lim x k sin 1= 0⇒ lim x k= 0⇒ k > 0x →0xx →0(6)lim x →0-f (x ) = lim (x + b ) = b x →0-lim x →0+f (x )=lim (e x +1)=b ⇒b =2x →0+(7)lim ln (1+ 3x )= lim3x =1x →0(8)lim 6xx ln (1+ x )1- cos x x →06x2x 2= lim 1= 2x →0(9)k = lim y= lim x →0x 2x = 1x →∞ xx →∞ 2x +12⎛x 2⎫⎛ - x ⎫b = lim (y - kx ) = lim -1x ⎪ = l im ⎪ = -1x →∞x →∞ 2x +12⎭x →∞⎝ 4x + 2⎭4∴渐近线方程为y =2、(1)D1⎛ x -2⎝1⎫⎪2⎭1- xα(x )1+x3(2)Clim ( ) = lim 1-= lim 1+2x →1β x x →1x →1xx 23x=u→⎭⎨1(3)B1lim n [(ln (n -1)- ln n )] = lim n ln 1- 1⎪ → lim ln (1- ) = -1n →∞n →∞⎛⎫n ⎝n ⎭u u →0u (4)A limx →0=x →0sin= 3= k 23、(1)lim 2nsin n →∞x 2n -1π= limn →∞2n -1⋅ 2x = 2x x2n -112u = - xu(2)lim 1- sin x 2lim 1- cos u = lim 2= 0x →π22x -πu →02u u →02u 1⎛ 1⎫ x=u u (3)lim x e x-1⎪ → lim e -1= lim e u = 1x →∞ ⎝⎪u →0u 3xu →02x -1⋅ 6x⎛ 2x +1⎫⎛2⎫ 22x -1lim6x (4)lim ⎪= lim 1+⎪=ex →∞2x -1=e 3x →∞⎝ 2x -1⎭x →∞⎝2x -1⎭(5)lim x →π38cos 2x - 2cos x -12cos 2x + cos x -1= lim x →π3(2cos x -1)(4cos x +1)(2cos x -1)(cos x +1)= lim x →π34cos x +1= 2cos x +14、解:⎧1+ xf (x =)⎪⎪-1< x < 1x = 1⎩0x ≤ -1x > 1lim x →-1-f (x ) = 0lim x →-1+f (x ) = 0故x = -1为连续点lim f (x ) = 2x →1-lim f (x ) = 0x →1+故x = 1为跳跃间断点1+ x5、解:设x为每一段5分钟时间的公里数,共6段设F(x) = 6x-120F(21) = 6,F(19) = -6F(21)⋅ F(19) < 0则由介值定理知,至少存在一点ξ∈ (19,21)使得F(ξ) = 0⇒ ξ = 20即至少存在一段长为20公里的距离恰好用5分钟跑完。
《高等数学》习题册参考答案说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错.第一册参考答案第一章 §1.11.⎪⎪⎩⎪⎪⎨⎧+≤≤--<≤<≤+=--. ),(2, , ,0 , 211010101T t T T t a v T t v t at v v a va vv a v v 图形为:2.B.3.)]()([)]()([)(2121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(21x f x f x G --=为奇函数. 4.⎪⎪⎩⎪⎪⎨⎧=<≤-<≤-<≤=.6 ,0,64 ,)4(,42 ,)2(,20 ,)(222x x x x x x x x f 5.⎩⎨⎧.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f6.无界.7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同.§1.21.(1))1 ,0()0 ,1(⋃-=D ;(2)} , ,{2Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.⎪⎩⎪⎨⎧>-=<=,0 ,1,0 ,0 ,0 ,1 )]([x x x x g f ⎪⎪⎩⎪⎪⎨⎧>=<=-.1 ,,1 ,1 ,1 , )]([1x e x x e x f g4.(1)]2 ,0[,)1arcsin(2=-=D x y ; (2)Y ∞=+=+=022),( , )(tan log 1k a k k Dx y πππ. 5.(1)xx x f f 1)]([-=; (2)xx f f 1)(1][=. 6.+∞<<=-h r V rh hr 2 ,23122π.7.(1)a x =)(ϕ; (2)h x x +=2)(ϕ; (3)ha a h x x )1()(-=ϕ.§1.91.1-=e a .2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类);(2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类)(注意:+∞==∞+-→-ee xx x 11lim ,而0lim 11==∞--→+e e xx x );(4))( 2Z ∈+=k k x ππ为无穷间断点(属第Ⅱ类); (5)⎩⎨⎧=≠=+=∞→,0 ,0,0 ,1lim )(12x x nx nx x f xn ∴ 0=x 为无穷间断点(属第Ⅱ类); (6)∵ )(lim , 0)(lim 11+∞==+-→→x f x f x x , ∴ 1=x 为第Ⅱ类间断点,(注意:这类间断点既不叫无穷间断点,也不叫跳跃间断点,不要乱叫); ∵ 1)(lim , 0)(lim -→→==+-e x f x f x x , ∴ 0=x 为跳跃间断点(属第Ⅰ类).3.(1)1 ,0≠=b a ; (2)1 ,≠=a e b .4.(1)21)0(=f ; (2)0)0(=f .5.证:由)()0()0(22x f f x f +=+,得0)0(=f ,于是,再由0)0()(lim )]()()([lim )]()([lim 0==∆=-∆+=-∆+→∆→∆→∆f x f x f x f x f x f x x f x x x ,∴ )(x f 在x 点连续.§1.101.)(x f 在),(+∞-∞内连续,则0≥a ;又0)(lim =-∞→x f x ,则0<b ,故选D.2.) ,2()2 ,3()3 ,(∞+⋃-⋃--∞; 210)0()(lim ==→f x f x (0是连续点), 5858213)2)(3()3()3(3322limlim)(lim -====----→-++-+-→-→x x x x x x x x x x x f (-3是可去间断点), ∞==-++-+→→)2)(3()3()3(222lim )(lim x x x x x x x x f (2是无穷间断点).3.(1)a1; (2)0; (3)2e (提示:原极限x e x xe x x x x x e e )ln(lim)ln(00lim ++→→==,而=+→110 )ln(lim 加分子减x e x x x 2)1(lim )]1(1ln[lim 00==-+-++→→拆分分子等价无穷小代换x e x x e x x x x x ); (4)21-e(提示:原极限xxx e 2sin cos ln 0lim→=,而21cos 11cos 11cos 0cos 1)]1(cos 1ln[0sin cos ln 0lim lim lim lim222-====+-→--→--+→→x x xx x x x x xxx ); 注意:(3)和(4)都用到了等价无穷小代换:□0→时,ln (1+□)~□. (5)1; (6)不存在(左极限2-,右极限2).4.(1)0=a ,e b =; (2)a 任意,1=b .§1.111.令)sin ()(b x a x x f +-=,则)(x f 在] ,0[b a +上连续,且0)0(<-=b f ,=+)(b a f 0)]sin(1[)sin(≥+-=-+-+b a a b b a a b a .若0)(=+b a f ,则b a +就是一个正根;若0)(>+b a f ,则由零点定理,)(x f 在) ,0(b a +内有一正根.总之,)(x f 在],0[b a +内有一正根.2.作辅助函数x x f x F -=)()(,则)(x F 在] ,[b a 上连续,且0)()(<-=a a f a F ,)(b F0)(>-=b b f ,由零点定理,) ,(b a ∈∃ξ,使得0)(=ξF ,即ξξ=)(f .3.由题设:)(x f 在] ,[1n x x 上连续,设m M 、分别为)(x f 在] ,[1n x x 上的最大值和最小值,则M x f x f x f c m n n≤+++=≤)]()()([211Λ,于是,由介值定理可知:) ,() ,(1b a x x n ⊂∈∃ξ,使得c f =)(ξ,即)]()()([)(211n nx f x f x f f +++=Λξ. 4.令)()()(a x f x f x F +-=,则)(x F 在] ,0[a 上连续.若)()0()0(a f a f f =+=,则取 00=x ,命题成立;设)()0(a f f ≠,则由)()0()0(a f f F -=,而)2()()(a f a f a F -= )]()0([)0()(a f f f a f --=-=,所以,)0(F 与)(a F 异号,于是,由零点定理可知:) ,0(a ∈∃ξ,使得0)(=ξF ,即)()(a f f +=ξξ,命题成立.第一章 总复习题1.⎪⎩⎪⎨⎧>≤=+.0,1 ,0 ,)]([211x x x f x ϕ 2.22sin 2x. 3.) ,(∞+e .4.证:∵A x f x x =→)(lim 0,∴对于事先给定的无论多么小的正数ε,都存在正数δ,只要δ<-<00x x ,就必有ε<-A x f )(成立①(这就是函数极限的“δε-定义”); 又∵)( lim 00x x x x n n n ≠=∞→,∴对①中的正数δ(因这样的正数是任意的),必存在自然数N ,只要N n >,就必有δ<-0x x n 成立(这就是数列极限的“N -ε定义”).但对任何n ,0x x n ≠,所以这时也就有δ<-<00x x n 成立②.把①②两步结合起来就是(从②推回到①):对于事先给定的无论多么小的正数ε,(由①,0>∃δ,从而由②)必存在自然数N ,只要N n >,(①②同时成立)就必有 ε<-A x f n )( 成立. 故由极限的定义可知:A x f n n =∞→)(lim .附注:本题是函数极限与数列极限相结合的题目,抽象且有点难,但提供了一个重要的求极限的方法,即数列极限可作为函数极限的特殊情况来处理,比如下面:∵a xa x x e x a x a x x x x ln ln lim 1lim 1lim0ln 00==-=-→→→(用到了□→0时,e □-1~□), ∴a xa naa n x x nn nn ln 1lim 11lim)1(lim 01=-=-=-+→∞→∞→. 5.(1)23-; (2)2011 ,20111; (3)5,531. 6.提示:因)(x f 在],[b a 上连续,而 )(m ax )(m in ],[2)()(2],[x f M m x f b a x d f c f kb a x ∈+∈=≤=≤=,对)(x f 在],[b a 上用介值定理.7.(1)21(提示:每个括号通分,分子因式分解,并与分母约分,再整理得n n 21+); (2)a-11(提示:给极限式子乘)1(a -,打开括号得)1(4na -,并利用一个重要结果)1( 0lim <=∞→q q n n );(3)ab--11(提示:分子、分母都利用等比数列前n 项和公式:1减公比分之首项减去末项乘公比,再利用(2)中的重要结果);(4)21(提示:有理化,分子、分母再同除以n 或利用重要结果:当0 ,000≠≠b a 时,⎪⎩⎪⎨⎧>>∞>=<<==++++++++∞→----∞→.0 ,,0 ,,0 ,0 lim lim 00002211022110m k m k m k n b na b n b n b n b a n a n a n a b a mkn m m m m n k k kn ΛΛ ); (5)t (提示:利用重要极限);(6)2-(提示:分母就是x 2sin -~2x -,再拆分);(7)2b a +(提示:有理化,再利用(4)中重要结果); (8)4(提示:分子减1加1并拆分,再利用等价无穷小代换:□→0时,cos 1-□~21□2); (9)e (提示:原极限e e e x x x x x x ==→+→=22220tan )1ln(0lim lim 等价无穷小代换); (10)2)1(+n n (提示:分子因式分解,先分出个因式)1(-x 并与分母约简,再分出个因式)1(-x 仍可与分母约简,聪明的人一下子就可分出因式2)1(-x ); (11)π2(提示:令x t -=1,则原极限]2 cos sin [lim 20t t t t ππ→=,再利用重要极限). 8.提示:把根号进行放缩得不等式:n n n n n n n n n A nA a a a A ⋅=<+++<Λ21,并注意:1lim=∞→nn n (会推证吗?),再用夹逼定理(或叫夹挤准则,俗称“两头夹”).第二章 §2.61.(1))cos(21sin )cos(2xy x x xy y --; (2))1(2xy e e e e y xyy xxy +-+; (3)y x y x -+; (4)22ln ln xx xy y y xy --(两端取对数);(5)]111[ln )1(x x x x x x ++++(两端取对数或利用一个重要公式:若)()]([x g x f y =,则])()(ln )([)]([)()()(x f x f x g x g x f x g x f y '⋅+'⋅=');(6)])1)(1(2)2()1(2[111222x x x x x x x x x x x x x ++++-+--+++-(利用对数求导法). 2.(1)3222)1(])1()1[(--+--y x x y y ; (2)])1()1(213[2322422+-++y y x y y x . 3.])(arctan )()(arctan )([2222x y x y f y x f y x x y '-+'++-(提示:令xyv v u == ,arctan 而,则原方程变为 y x u f =)(,两端对x 求导得 y x y u f x y x y v '+=⋅⋅'⋅-⋅'+22111)(,再解出y ').4.提示:求出一、二、三阶导数,代入左端化简.5.切线方程:)1(152-=-x y ; 法线方程:)1(125--=-x y . 6.(1)2t; (2)23-. 7.(1)21)1(cos ----t a ; (2)1)]([-'t f .8.)2)(1(1e e t t-+(提示:第二个方程两端对t 求导,得0d d =+t y e e y t ,解出y t e e t y -=d dee e e e e t t t t 22-=--=,并代入 t x t y x y d d d d d d = 之中再约简).9.在时刻t ,甲船所走路程t t s 40)(1=,乙船所走路程t t s 30)(2=,两船间的距离为 t t t t d 50)30()40()(22=+=,两船间的距离增加的速度为50)(='t d .10.设y OP x ON == ,,则由木杆匀速前移知:c tx=d d (为常数), 由题图知:OA MN y x y =-,即 x MN OA OA y -=,从而 txMN OA OA t y d d d d -=. 可见tyd d 为常量,即P 点前移的速度是匀速的.§2.71.(1)增量为-0.09,微分为-0.1;(2)增量为-0.0099,微分为-0.01.评注:①结果表明:x ∆愈小,则y y d 与∆愈接近,这就是微分的数量特征;②微分的几何特征是“以直代曲”.2.(1)C x x ++3; (2)C x +-2cos 21; (3)C e x +--; (4)C x +2arctan 21. 3.(1)x d 2; (2)x a d ; (3)x d 42; (4)x d .4.(1)x x x d 13)]13ln(2sin[3++; (2)t t t t e t t d )52(2)23(332)52ln(323+--⋅+-;(3)x x x x d )21(sec )21tan(8222++. 5.150110+. 第二章 总复习题1.A 、E .2.)(x f 在0=x 处可导必连续.由连续有:)0()2sin (lim lim 0f x b e x ax x =+=+-→→,求极限得:1=b ;由可导有:⎪⎩⎪⎨⎧=='=--=''='--+→+→-+-+-,2lim )0(,01lim )0( , )0()0(01)2sin 1(00x x x ax x f a x e f f f 而 所以,2=a . 3.由)0(f '存在,则)0()0(+-''f f 、存在且相等. 而x f x f x x f x f x f )0()(00)0()(0lim lim )0(-→--→+++==', )0(lim lim lim )0()0()(0)0()(0)0()(0+-→----→--→-'-=-==='++-f f xf x f x x f x f x x f x f x , 要使)0()0(+-'='f f ,只有0)0()0()0(='='='+-f f f . 4.(1)222211))((x a x ax axa +++-+; (2)]ln [ln 12xx x x x x x x ++(提示:===xx x x xexy lnxexx e ln ln ⋅,再利用指数复合函数求导;或者利用取对数求导法);(3)⎪⎩⎪⎨⎧≥<=--,1 ,,1 ,)(11x e x e x f x x 则 1<x 时,x e x f --='1)(; 1>x 时,1)(-='x e x f ;1=x 时,)1(lim 11lim )1(11111111+--→--→-'==≠-=='-+--f f x e x x e x x x ,则在1=x 处不可导.(4)4 ,1--; (5)tet t t t t t t t 22222)2sin cos 2()2cos 2(sin 4 , 2sin cos 22sin sin 2-+-+; (6)])6(1)5(1[!100101101+-+x x (提示:分母因式分解,并拆分,再求导). 5.1)0(=g ,11)sin 1(lim 0)0()(lim)0(1200=-++=--='→→xx x x g x g g x x x , 0≠x 时,x x x x x x x g 1112cos sin 21)sin 1()(-+='++='. 6.)0(lim 1lim )0( ,0)0(00)11(000)1ln(0+----+→--+→-'===='=+-f f f x x x x x x x , 所以,函数)(x f 在点0=x 处可导,且1)0(='f ,从而必在0=x 处连续.评注:2、3、4(3)、5、6都涉及函数在一点处的导数,特别是分段函数在分界点处的导数,导数的定义以及左右导数的概念起到关键的作用,务必要高度注意.7.(1)由xy y f x f y x f 2)()()(++=+,得0)0(=f .当0≠y 时,x y y f y x f y x f 2)()()(+=-+. 由已知并由导数定义,得 y y f y y f y f y f k )(0)0()(0lim lim )0(→-→=='=, k x x f y x f y x f y +=='-+→2lim )()()(0.故对一切) ,(∞+-∞∈x ,)(x f 皆可导,且 k x x f +='2)(.(2)由k x x f +='2)(,知C kx x x f ++=2)(,再由0)0(=f ,得kx x x f +=2)(.第三章 §3.31.)0( !2)(32之间与介于x x e x x x f ξξ++=. 2.) 1( )1()1(])1()()(1[)(1212之间与介于x x x x x x f n n n n-+-++++++++-=+++ξξΛ.3.2)1(2)1(76)(-+-+=x x x f .4.(1)61-(提示:分母的x sin ~x ,从而只需把分子的x sin 展开到3x 阶); (2)121-(提示:把分子的x cos 和22xe-都展开到4x 阶).§3.41.(1)) ,0(21∈x 单减,),(21+∞∈x 单增;(2)),(4 3a x -∞∈单增,),(4 3+∞∈a x 单减. 2.(1)证①:利用拉格朗日中值定理.令xe xf =)(,则x x e x f e e f x f x >⋅=-'=-=-ξξ)0)(()0()(0.证②:利用单调性.令1)(--=x e x f x ,则1)(-='xe xf .当0<x 时,0)(<'x f ,从而)(x f 单调减;而当0>x 时,0)(>'x f ,从而)(x f 单调增.故对一切0≠x ,0)0()(=>f x f ,即要证的不等式成立.评注:①虽抽象,但更简洁;②虽通俗,但稍显麻烦.(2)令)1sec 2(sin )( ,2sec cos )( ,2tan sin )(22-=''-+='-+=x x x f x x x f x x x x f .当20π<<x 时,)(0)(x f x f '⇒>''单调增0)0()(='>'⇒f x f )(x f ⇒单调增, 故当20π<<x 时,0)0()(=>f x f ,即要证的不等式成立(好好体会推理过程). 评注:本题与(1)和下面的(3)的不同之处在于:需两次利用单调性.(3)参考上题方法或用泰勒公式:①利用单调性方法:令331tan )(x x x x f --=,则 ))(tan (tan tan 1sec )(2222x x x x x x x x x f -+=-=--=', 当20π<<x 时,0)(>'x f ,所以,)(x f 单调增,故当20π<<x 时,0)0()(=>f x f . ②利用泰勒公式:令x x f tan )(=,则x x f 2sec )(=',x x x x f tan sec sec 2)(='', )1tan 4tan 3(2)sec sec tan 3(2)(24222++=+='''x x x x x x f ,x x x x x x x x f23223)4(sec )tan 2tan 3(8)sec tan 8sec tan 12(2)(+=+=(很麻烦),,之间与介于其中) 0 ( )( !4)(!3)0(!2)0()0()0()(tan 43314)4(32x x R x x x f x f x f x f f x f x ξξ++=+'''+''+'+== 当20π<<x 时,0)(4!4)(4)4(>=x x R f ξ,故 331tan x x x +> 成立. 评注:对本题而言,①似乎简单一些,但对②而言,得到泰勒公式(实际上是麦克劳林公式)后,其结果却更显而易见.擅长泰勒公式(或麦克劳林公式)的同学建议用②,其它几个题目也有类似的情况.总之,此类方法要好好掌握.(4)参考(1)题方法或用泰勒公式:4)1(14132432)1ln(x x x x x ξ+⋅-+-=+,而 0)(4)1(14134>⋅=+x x R ξ(ξ介于0与x 之间),故 3232)1ln(x x x x +-<+. 3.原不等式化为a a x a x a ln )ln(<++,设x xx f ln )(=,则2ln 1)(xx x f -='.所以,当e x >时, 0)(<'x f ,从而)(x f 单调减,故aax a x a ln )ln(<++,即原不等式成立. 评注:把要证的不等式先等价转化再利用单调性的方法会大大简化.4.不一定,例如,x x x f sin )(+=在) ,(∞+-∞内单增,但x x f cos 1)(+='在) ,(∞+-∞内不单调.5.) ,(512-∞∈x 单增,),(512+∞∈x 单减;10205205241m ax 512)(===f f ,无极小. 6.函数)(x f y =处处连续,322232a x x y -⋅=',有一个驻点0=x 和两个不可导点a x ±=;0)(=±a f 为极小值,也是最小值;34)0(a f = 为极大值,但无最大值.7.在]1 ,0[上函数单减,故4)0(π=f 最大,0)1(=f 最小. 8.令x bx x a x f ++=2ln )(,则应有 012)1(=++='b a f ,014)2(2=++='b f a , 求得 32-=a ,61-=b ;而)1(f 极小,)2(f 极大. 9.提示:因函数处处可导,而可导的极值点必为驻点. 但 c bx ax x f ++='23)(2 当0)3(434)2(22<-=⋅⋅-≡∆ac b c a b ,即 032<-ac b 时无零点.§3.51.)1 ,0(∈x 时,凸;) ,1(∞+∈x 时,凹;拐点)7 ,1(-.2.82±=k ,各有两个拐点) ,1(22±±. 3.3 ,0 ,1-===c b a .4.tt y 1143)1(2⋅-='',0=''y 的点 1±=t ,y '' 不存在的点 0=t ;有三个拐点:)2 ,1(11-↔-=t ,)0 ,0(02↔=t ,)4 ,1(13↔=t .§3.61.其图形如下所示:2.点) ,(22ln 22-处曲率半径有最小值233. 4.(1)铅锤渐近线两条:2=x 和3 -=x ;水平渐近线一条:1=y ;(2)铅锤渐近线:ex 1-=;斜渐近线:x y =.第四章 §4.11.(1)x e x 2cos 233+--; (2)C x x x +--33222 ,22; (3)C x x ++441221; (4)1ln +=x y .2.(1)C x x x x ++++22123232;(2)C x x ++-4147474;(3)C x x x ++-arctan 331; (4)C x +7272ln 121; (5)C x x +-arcsin 2arctan 3; (6)C e xxe ++1)5ln(1)5(; (7)C x +-cot 21;(8)C x x +-sec tan ;(9)C x x ++cos sin ;(10)C x x +-cot tan . §4.21.(1)C x x ++++])1[ln(411441; (2)C b ax nn n a n++++1)(2)1(2;(3)C x +)arcsin(tan ; (4)C x x +-ln 1; (5)C x+-10ln 1arccos 22110;(6)C x +2)(arctan; (7)C x+2sin 2212arctan ; (8)C x xe e ++1ln . 2.(1)C x x ++21; (2)C x x+--32arccos 39; (3)C xx +-442;(4)C x x x +++-)21ln()2()2(32323433132; (5)C x x x x +---)1(4arcsin 2222122; (6)提示:令 sin t x =(只需 20π<<t 即可),则 原式]d [d d cos sin )sin (cos d 21cos sin cos sin sin cos 21cos sin cos ⎰⎰⎰⎰++++-+++===t t t t tt tt t t tt tt t t (很巧妙)C x x x Ct t t t +-+++++==]1ln [arcsin ]cos sin ln [22121回代把.第五章 §5.11.提示:把区间n ]1 ,0[等份,每份长都是n1,每个小区间),,2,1( ],[1n i n in i Λ=-都取右端点,则a a a n a a an a a ax a nn n n n n n n ni ninn x ln 1)ln (]1[lim )1(])(1[limlimd 11111111-=--=--==∞→∞→=∞→∑⎰. 附注:其中①利用了分解式 )1)(1(112-++++-=-n n b b b b b Λ(上式中n ab 1=);②利用了等价无穷小代换:□→0时,1-a □~-□ln a .2.(1)极限中的和式相当于:把区间n ]1 ,0[等份,每份长都是n1,每个小区间 ],[1n in i - ),,2,1( n i Λ=都取右端点,函数x x f +=1)(在所取点处的值再乘以小区间的长度并把它们加起来的结果(这种和有个名称,叫“积分和”),于是,按定义:原极限=⎰+1d 1x x ;(2)同理,极限中的和式是函数x x f πsin )(=在区间]1 ,0[上的积分和,于是,按定义: 原极限=⎰1d sin x x π.另外,该极限式子又可变为 ∑=∞→ni n ni n11sinlimπππ,暂不管π1,而这极限中的和式是函数 x x f sin )(= 在区间] ,0[π上的积分和,所以,仍按定义:又有 原极限⎰=ππ 01d sin x x .(同一式子导致两种不同的表示说明:“会看看门道”的道理)3.(1)不可积,无界;(2)可积,连续.4.(1)⎰πd sin x x ; (2)⎰-112d x x .§5.21.(1)2110 152d 2≤≤⎰+x xx (提示:在]1 ,0[上,211522≤≤+x x ,再利用定积分的估值不等式性质); (2)412222d 2---≤≤-⎰e x e e xx(提示:在]2 ,0[上,2241e e e x x ≤≤--,再利用定积分的估值不等式性质,注意:下限大,而上限小).2.(1)反证法:若存在一点] ,[0b a x ∈,使0)(0≠x f ,则由题设可知,必有0)(0>x f ,又因)(x f 连续,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00>⎰+-δδx x x x f ;但另一方面,又由题设可知0d )(d )( 00=≤⎰⎰+-bax x x x f x x f δδ,矛盾. 故对一切] ,[b a x ∈,都有0)(=x f ,即在] ,[b a 上,0)(≡x f .(2)证:由题设可知:存在一点] ,[0b a x ∈,使0)(0>x f ,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00 >⎰+-δδx x x x f ,故0d )(d )(00 >≥⎰⎰+-δδx x bax x f x x f .(3)这是(1)的直接推论. 3.提示:①先对定积分用“积分中值定理”再取极限.②也可以“两头夹”:01sin d sin 01sin sin 01−−→−≤≤⇒≤≤∞→⎰n n n nnx x x .§5.31.(1)0; (2)⎰-xt t e 0 d 2; (3))0()(f x f -; (4)0 ,0 ,0 ,2x xe -; (5)x e ycos --.2.(1)81221213x x x x ++-; (2)x x x x cos )sin cos()sin ()cos cos(22⋅--⋅ππ.3.(1)2(连续用两次洛必达法则,还可先把分母等价无穷小代换后再用洛必达法则);(2)提示:0→x 时,2sin x ~2x ,12-x e ~x 21,x arctan ~x ,所以,原极限=01)1ln(lim 22lim d lim2201)1ln(0221 01)1ln(022002=++⋅→++→++→==⎰x x xx x tx x x x x t t x 约简型洛; (3)原极限21lim 2]1d [lim 2d 2lim202222200 02 0=⋅⋅→→→=⎰=⎰=xx x x t x xx x t x e e xte xe et e 型洛约简型洛; 注意:在极限的运算过程中,极限为1的变量式子21xe 直接“抹掉了”(想想合法吗 ?).(4)原极限)(lim 1)(d )(1 0a f a x f x t t f ax xa=⎰⋅+⋅→=型洛.4.(1)原式4d sin 42 0==⎰πx x ; (2)原式1d )1(210 =-=⎰x x ;(3)原式⎰-++=+=0141121d )3(2πx x x ; (4)原式3821 2211 0d d )1(=++=⎰⎰x x x x . 5.当)1 ,0[∈x 时,231 02d )(x t t x x==Φ⎰; 当]2 ,1[∈x 时,=+=Φ⎰⎰xt t t t x 11 02d d )(61221-x (这一步是关键). 故 ⎪⎩⎪⎨⎧≤≤-≤≤=Φ,21,,10 , )(61221331x x x x x 显然,)(x Φ在]2 ,0[内连续(显然吗?).6.当)0 ,(-∞∈x 时,0d 0 d )()(00 =-==Φ⎰⎰xx t t t f x ;当] ,0[π∈x 时,=Φ)(x )cos 1(d sin 2121x t t x-=⎰; 当) ,(∞+∈πx 时,⎰⎰⎰+==Φxx t t t t t f x 0 210 d 0d sin d )()(ππ1=.故 ⎪⎩⎪⎨⎧>≤≤-<=Φ. , 1 , 0 , )cos 1(,0 , 0 )(21ππx x x x x 7.先用一次洛必达法则得 xb xa x x cos lim120-=+→,因分子极限为0,所以分母极限也一定是0(想想为什么?),从而 1=b ;这时分母 x cos 1-~221x ,再一次取极限得 4=a . 8.提示:当) ,(b a x ∈时,2)(d )())(()(a x tt f a x x f xax F ---⎰=',只需证分子 0≤ 即可.于是,若令⎰--=x at t f x f a x x g d )()()()(,则)()()()()()()(x f a x x f x f a x x f x g '-=-'-+=',因在),(b a 内0)(≤'x f ,所以,在),(b a 内0)(≤'x g ,从而在),(b a 内0)()(=<a g x g .§5.71.(1)22ωω+p (连续两次分部积分,并注意会出现循环现象,再移项求解); (2)2π. 2.1>k 收敛;1≤k 发散; 当1>k 时,11)2(ln 1112)(ln 1112)(ln 1d --⋅=⋅=-∞+-∞+⎰k k kk x k x x x ,而函数 )0( )()2(ln 1>=x x f xx 当 2ln ln 1-=x 时取得它在) ,0(∞+内的最小值=m in f 12ln ln 1)2ln (ln +-,所以,当2ln ln 11-=-=k x ,即 2ln ln 11-=k 时广义积分的值最小.3.左c x cx c x e 22)1(lim =+=-∞→, 右⎰⎰∞-∞-∞--==ct ctct t e te e t 221221 221d )(dc c c tc c e e e 241224122)(-=-=∞-, 应有 1412=-c ,所以 25=c . 第五章 总复习题1.(1)A ; (2)C ;(3)提示:0=M 是奇函数在对称区间上的积分;P 的第一部分积分为0,第二部分积分为负,所以,0<P ;而N 的第一部分积分为0,第二部分积分为正(很容易算出,等于几呢?),所以,0>N ,故选D ;(4)提示:⎰⎰-=x xt t f t t t f xx F 02 02d )(d )()(,则⎰='xt t f x x F 0d )(2)(,而极限10 0 00d )(2lim d )(2lim )(lim -→→→⎰⎰=='k xx k x x k x x t t f x t t f x x x F 2000)1()(2lim-→-=k x x k x f 型洛0)0()(lim0 3 ≠'=→==f x x f x k 时当才会存在,故选C ;(5)提示:如图所示,由题设可知:)(x f 的图形在x 轴的上方单调下降且是凹的,2S 是下边小矩形的面积,最小;3S 是梯形的面积,最大;而1S 是阴影的面积,介于其间,故选B ;(6)提示:利用周期函数的积分性质:若)()(t f T t f =+,则对任意的常数a ,积分⎰⎰=+TTa at t f t t f 0 d )(d )( 与a 无关,现在t e t f t sin )(sin = 的 π2=T ,可知:⎰⎰⎰⎰+===πππππ2 sin 0sin 2 0sin 2 0d sin d sin d sin d )()(t te t t et t et t f x F t tt,对第二个积分令 π+=u t 换元而化为 ⎰⎰-=--ππsin 0sin d sin d )sin (t etu u e t u , 故可知:0d sin ]1[)( 0sin sin >-=⎰πt t ee x F tt 为正常数,故选A ;(7)提示:先通过换元把被积函数符号)(22t x f -中的x “拿出来”,再求导.=⎰=⎰-=-⋅---换凑22)()(d )( d )( 21 02222 0 22t x u xxtx t x f t t xf t⎰⎰=-=2221021d )(d )(x x u u f u u f ,故选A. (评注:本题的关键是换元)2.(1)0; (2)a 2sec ; (3)0; (4)0; (5)0;(6)x x f 3sin )3(cos 3-; (7)2sin x ; (8)8π; (9)3ln ; (10)π1231+. 3.(1)证①:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f (积分中值定理))10( 0)]()()[1()1)(()()1(≤≤≤≤≥--=--⋅-=ηλξηξλλληλλξλf f f f .证②:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f0)()1()()1(=---≥λλλλλλf f .评注:两种证法仅是考虑问题出发点不同:①的核心是积分中值定理与单调性的结合;②的核心是积分的不等式性质与单调性的结合.(2)提示:分部积分,得原式⎰⎰----+=⋅-=πππππππππ 0)( 0sin 0d sin )( d )(x x f x x x xf xx x x2)( d sin )( d d sin )( 00 sin 0=-+=-+=⎰⎰⎰-πππππππππππf x x f x x x f xx ;评注:本题的特点是含有“积不出”的积分 ⎰-xt tt 0 sin d π,但并不影响要求的定积分. (3))32ln(23++-(提示:令xet 21--=,则原积分⎰-=231d 22t t t ,再拆分); (4))()](2)([42222t f t f t t f ''+'(特点是参数方程,但含有变限积分);(5)令xt u =,则u t xd d 1=,xu t 010↔,⎰=x x u u f x 01d )()(ϕ,由A xx f x =→)(0lim及)(x f连续知:0)0(=f ,A f =')0(;由 ===→⎰→→=)0(limlim)(lim 1)(0d )(00 0f x x f x xt t f x x x型洛ϕ0)0(d )0(1==⎰ϕt f ,知)(x ϕ在点0=x 处连续;==='→--→xx x x x x )(00)0()(0lim lim )0(ϕϕϕϕ 22)(0d )(0lim lim 02 0 Ax x f x x tt f x x=→⎰→=型洛; 0≠x 时,20 d )()()(x tt f x f x x x ⎰-='ϕ,且因)0(][lim lim)(lim 22d )()(0d )()(02 0 2ϕϕ'==-=⎰-⎰='→-→→=A A x tt f x x f x x t t f x f x x x A x xx拆分,故可知)(x ϕ'在点0=x 处连续,从而处处连续.评注:本题是属于对变限积分所定义的函数的可导性的研究的题目.核心是导数的定义.(6)π2(提示:先放缩分母得不等式 ∑∑∑===+<+<ni n n i i n i ni n ni n n i 1111111sinsin sin πππ, 而左端的极限(利用定积分)πππππ2111 0 111111d sin sin lim ]sin [lim sin lim ===⋅=∑∑⎰∑==∞→+∞→=+∞→n i n i n n n n n n ni n n x x n i n i n i , 右端的极限(利用定积分)πππ21 0 11d sin sin lim ==⎰∑=∞→x x n i ni nn ,再利用夹逼定理); 评注:本题是利用夹逼准则和定积分相结合的方法而求和式极限的题目,加大了难度. (7)首先,因分子极限为0,所以,分母极限也一定是0,于是得0=b ;由洛必达法则得 20)1ln(0cos limcos lim 3x x a xa c x x x x --=→+→=分母等价无穷小代换,可知 1=a ;进而知21=c ; (8)原式⎰⎰--+=23 1)1(1121 )1(1d d x x x x x x ,第一个积分令2x x t -=,则012121t x ↔, )411(221t x -+=,所以,221)2(110214121 21)1(1)d(2d d 22π===⎰⎰⎰----t t x t tx x ;而对第二个积分令x x t -=2,则2323tx ↔,)411(221t x ++=,所以, ⎰⎰+-=23412231)1(1d d 2t x t x x 2320223)2(11))2(12ln()d(2t t t t ++==⎰+)32ln(+=, 故原式)32ln(2++=π.评注:本题中所作的两个换元虽有相似,但却本质不同,因此,相当于两个不同的积分. (9)提示:⎰∑⎰⎰∑--=-=-+-=-=nn n k n nnk n x x f n f x x f k f x x f k f a 1111111d )()(]d )()([d )()()](d )([ 11n f x x f a nn n --=⎰--,因)(x f 单调减,则)1(d )()( 1-≤≤⎰-n f x x f n f n n ,从而 0)](d )([1 ≥-⎰-n f x x f nn ,所以 1-≤n n a a ,即n a 单调减;另一方面,对一切n ,)(]d )()([d )()(11111n f x x f k f x x f k f a n k k knnk n +-=-=∑⎰⎰∑-=+=0)()()]()([11>=+-≥∑-=n f n f k f k f n k ,即n a 有下界. 综上:n a 单调递减有下界,故由单调有界准则(或原理)可知:A a n n =∞→lim 存在. 评注:上述分析推到过程中,积分的不等式性质起到关键作用. (10)] )( )([ )( )(22222222d 1d 21 12d 1d 2⎰⎰⎰=⎰+++=++=a auuu a auuu a a uuu a u x axxx a u f u f u f x f 令 而上式右端第二个积分⎰=⎰-⋅++=1d )d ()( )(2222222a t a a t ta u a au u ua t t f u f ta 令⎰⎰+=+=au u u a a t t t a u f t f 1d 1 d )( )(22(恰与第一个积分相等). ∴ ⎰+a x x x ax f 1 d 2 )(22⎰+=a u uu a u f 1 d )(2⎰+=a x x x a x f 1d )(2. 评注:通过两次不同的换元才最终达到目的是本题的特点.第六章 §6.51.由虎克定律:kx x F =)((x 为弹簧伸长厘米数),由5=x 时,100=F ,即k 5100=,得 20=k ,于是,x x F 20)(=,故 2250d 20d )(150 15===⎰⎰x x x x F W (克厘米).2.如图所示,沙堆母线AB 的方程为 1=+hyr x ,即)1(h yr x -=.沙的比重2000=ρ公斤/米3.对应于薄层]d ,[y y y +,则y yr y x y V y W h y d )1( d d d 222-===πρρπρ,故 22350022 d )1( h r y yr W hh y ππρ=-=⎰. 3.(1)660d )8(10 ,d )8(10d 6=+=+=⎰x x F x x F (吨);(2)设应升h 米,则 )11(60d )8(10 2 ,d )8(10d 60 +=++=++=⎰h x h x F x h x F ,于是,应有 )11(606602+=⋅h ,故 11=h (米).4.(1)AB 的线密度为l M,)(d )( 0 2a l a kmM x a x l kmM F l +=+=⎰(k 为引力常数); (2)引力分解为两个分力,由对称性,x x a l kmMF F x d )(d ,022+==,x x a l kmMax x a l kmM F y d )(cos d )(d 232222+=⋅+=ϕ, 222 2 232242d )(la a kmMx x a l kmMa F l l y +=+=⎰-. §6.61.232211d 2 e x x xe y -==⎰-. 2.12d )23( 3231=+=⎰t t t v (m/s ).3.mT T I t t i 21 021d )(I ==⎰. 第六章 总复习题1.23+-=x y ; )3 ,( , )1 ,(2921-; 31613 22123d ])[(=--=⎰-y y y A . 2.) , 2(4πa ;⎰⎰+2 42214 0221d )cos 2( d )sin 2( πππθθθθa a ; 22)1(a -π. 3.4ln 141+-=x y (提示:曲线]6 ,2[ ln ∈=t x y 在处的切线 方程为)(ln 1t x t y t -=-,即1ln 1-+=t x y t.题设中所指的 面积为⎰--+=-=62 8d ln )2ln 2(2)(x x t S S t S t曲边梯形梯形6ln 62ln 2ln 416-++=t t. 令0)(4162=+-='ttt S ,求得唯一驻点为]6 ,2[4∈=t ,从而曲线上的点为)4ln ,4().4.)32ln(6++(提示:抛物线221x y =与圆322=+y x 的右交点为)1 ,2(A ,如图:由对称性,所求的弧长为⎰⎰⎰+='+==2220 2 d 12d 12d 2x x x y s l OA).5.222342 , ab ab ππ(提示:椭圆绕直线b y =旋转所得的 立体与把椭圆向上平移b 个单位再绕x 轴旋转所得的立体一样大小.如图所示:所求的体积为⎰--=aax y y V 2221d ])()[(π⎰-----+=aaa x a x xb b b b 22d ])1()1[(2222π⎰⎰-⋅⋅=-=-aabaa a x x x a xb 022 2d 42d 14222ππ 2 8 222412ab a a b πππ=⋅⋅=). 6.0 , 2 , 35==-=c b a (提示:因抛物线过原点,∴0=c .如图:由题意,得图中阴影的面积为231 0294d )(ba x bx ax +=+=⎰ ①;此阴影绕x 轴旋转所得的立体的体积为)(d )(23121251122b ab a x bx ax V ++=+=⎰ππ.由①得)(2394a b -=,并代入V 的表达式而转化为求)(a V 的最小值问题,令0)(='a V ,可得唯一驻点35-=a ,从而2=b ). 7.提示:与曲线221-+=x x y 关于点)2 ,(p p 对称的曲线方程,是从21211-+=x x y 以及p x x =+)(121 和p y y 2)( 121=+中消去1y 和1x 而得到的,即 224)14(222++-++-=p p x p x y .设1y 与2y 的交点横坐标为)( βαβα<、,则所围面积为33112)(d )()(αββα-=-=⎰x y y p S .令21y y 、右端相等,得022222=--+-p p px x ,解之得βα、,并令判别式大于0解得 21<<-p ,23231])12(9[)(--=p p S ,21=p 时,)(p S 取最大值9.8.如图所示,设球的比重1≡ρ,半径为r ,则对应于 薄层]d ,[x x x +上的体积微元V d 上的功的微元为,d ])([1d d d 222x r x r gx x g x y x g V W --=⋅⋅⋅=⋅⋅=ππρ∴=-=⎰r x x rx x g W 2 02d )2(π)s /m 8.9( 2434=g g r π. 9.如图所示,水深x 处宽为x d 的面积微元x y A d 2d =上所受的压力微元为 x x gxA gx F d 2d d 22ρρ==,∴ ===⎰g x x x g F ρρ5162 0d 2N 31360; 设压力加倍时闸门下降m h , 则⎰+=2d )(22x x h x g F ρh g F ρ38+=,即 51638=h ,∴ =h m 2.1.其中ρ为水的比重. 定积分应用总评住:对所有专业而言,面积、体积和弧长应是最基本的;力学、物理方面的应用因专业而异;限于篇幅,未涉及经济和其它方面的应用.第二册参考答案第一章 §1.31.(1)B ;(2)C ;(3)C ;(4)A .2.(1)证:∵a x n n =∞→lim ,∴对于事先给定的无论多么小的正数ε(简记为0>∀ε),都存在自然数N (记为N ∃),只要N n >,就必有不等式ε<-a x n 成立,从而对任一自然数k ,当N k n >+(即k N n ->)时,不等式ε<-+a x k n 仍成立,故由数列极限的定义可知:a x k n n =+∞→lim .(2)证:∵a a n n =∞→lim ,∴N n N >∃>∀ , , 0ε时,ε<-a a n ,这时也必有ε<-≤-a a a a n n ,故a a n n =∞→lim .反例:n n a )1(-=,则1)1(lim lim =-=∞→∞→n n n n a 存在,但nn n n a )1(lim lim -=∞→∞→不存在(即n n a )1(-=发散).(3)证:∵0lim =∞→n n x ,∴N n N >∃>∀ , , 0ε时,ε<-0n x ε<-⇔0n x 成立,故0lim =∞→n n x .(4)证:∵)2( 112)12(232231232223222>=<==--+-+-+n nn n nn n n n nn ,∴][ , 01εε=∃>∀N (取整)只要N n > (从而ε1>n ),必有ε<><--+)2( 12312322n n n nn 成立,故2312322lim =-+∞→n n n n . 3.证:∵数列}{n x 有界,∴0>∃M ,使得对一切N ∈n ,都有M x n ≤成立①;又∵0lim =∞→n n y ,∴N n N >∃>∀ , ,0ε时,Mn n y y ε<=-0②. 于是,0>∀ε,对②中的N ,当N n >时,①②同时成立,所以这时εε=⋅<⋅<=-M n n n n n n M y x y x y x 0,故 0lim =∞→n n n y x .§1.41.(1)分析:因为22)2)(2(42-+=-+=-x x x x x ,而2→x ,所以可设31<<x ,于是,252242-<-+=-x x x x ,对于给定的0>ε,为了ε<-42x ,则只要δε=<-52x 即可,于是有如下的证明: 证:对于事先给定的无论多么小的正数ε,取5εδ=,只要δ<-<20x ,就必有 ε<-42x 成立,所以,4lim 22=→x x .(2)分析:因为)4)(2(2)106(2--=-+-x x x x ,而2→x ,所以可设31<<x ,于是,234)2(2)106(2-<--=-+-x x x x x ,对0>∀ε,为了ε<-+-2)106(2x x ,只要δε=<-32x 即可,从而证明如下:证:0>∀ε,03>=∃εδ,只要δ<-<20x ,就必有ε<-+-2)106(2x x成立,故 2)106(lim 22=+-→x x x .评注:以上的证法就是函数极限的“δε-论证法”,虽然抽象,但很严密,望认真体会.2.(1)证:∵21211212222x xxx x ≤=-++-,∴0>∀ε,取2εδ=,只要δ<-<00x ,就必有ε<≤=-++-21211212222x xxx x 成立,故 1lim 22110=+-→x x x . (2)证:∵34312221++-=-x x x ,∴0>∀ε,取34-=εX (10<<ε),则当X x >时,必有ε<=-++-34312221x x x 成立,故 1lim 3122=+-∞→x x x . 当01.0=ε时,397=X .评注:(2)的证法就是函数∞→x x f )(当时极限的“X -ε论证法”,望认真体会.3.(1)1)00( ,1)00(=+-=-f f ,所以,)(lim 0x f x →不存在;(2)0)00( ,1)00(=+=-f f ,所以,)(lim 0x f x →不存在; 而 1)(lim 1=→x f x .4.⎪⎩⎪⎨⎧>-><-=. 0 ,1, 0 ,1 ,0 ,1)(为无理数且为有理数且x x x x x x f。
《数学同步练习》(上册)答案第一单元 集合与充分必要条件 第一节 集合的概念、表示法【基础练习】 一、填空题1. (1)∈ (2)∈ (3)∉ (4)∈ (5)∈ (6)∉2.}0|{<x x3. }2,2{-4. }2,1,0,1,2{--,},33|{Z x x x ∈<<-5. }24|{<<-x x6. }6,5,4,3,2,1,0{,},6|{N x x x ∈≤7. }5|{<x x8.N ,Z ,Q ,R9.(1)}4,4{- (2)},5|{N x x x ∈≤ 二、选择题1.C2.D3.B4.C5.A 【变式练习】 一、填空题1.(1)∉(2)∈(3)∈(4)∈ 2. }3|{≤x x 3. ∉ 4. },4|{N x x x ∈≤ 二、选择题1.A2.B3.A4.B5.D 【综合练习】解:由题得:24=+m 或22=+m m2-=m 或022=-+m m解得2-=m 或1=m当2-=m 时,}2,2{=A 不符合题意当1=m 时,}5,3{=A 符合题意 综上得1=m 。
第二节 集合之间的关系【基础练习】 一、填空题1. ∈2. ∈3.4. ∉5. =6.7.8. ⊄二、选择题1.D2.C3. C “把32=a 改成:2=a ”4.C5. C 【变式练习】 一、填空题1.⊂≠,,,⊂≠2. 8,73. }1{、}2,1{、}3,1{4. )}2,1{(--5. )}1,3{( 二、选择题1.C2. C3. B4. C5.B 【综合练习】1.解:集合A 的子集是:φ、}0{、}1{、}2{、}1,0{、}2,0{、}2,1,0{;真子集是:φ、}0{、}1{、}2{、}1,0{、}2,0{。
2.解:由题得: 122-=m m ,解得1=m 。
当1=m 时,}1,3,1{-=A ,}1,3{=B ,则A B ⊆符合题意,综上得1=m 。
第三节 交集【基础练习】 一、填空题1. }1{2.}2{3. φ4. }2,1,0{5. φ 二、选择题1. B2. B3. C4. D5. B 【变式练习】 一、填空题1.φ 2. }0|{≥x x 3. )}1,1{(- 4. Q ,+Z ,*N 5. },{d c 二、选择题1.A2.B3.A4.B5.C “把C 选项改为}24|{-≤<-x x ” 三、解答题 1.解:由题得:②①⎩⎨⎧-=-=+1344y x y x ,由②4⨯得:4412-=-y x ③,由①+③得:013=x ,解得0=x ,把0=x 代入①得1=y ,所以}1,0{=B A 。
1 高等数学1C 习题解答习题一一.单项选择题1、A 2、D 3、C 二.填空题1、22)1(133-+-x x x 2、(-9,1)三.计算题1、(1)解函数要有意义,必须满足îíì³-¹0102x x 即îí죣-¹110x x 定义域为]1,0()0,1(È-(2)解函数要有意义,必须满足ïïîïïí죣-¹³-111003x xx 解得1-£x 或31££x 3.(1)解由1-=x e y 得1ln +=y x 交换x 、y 得反函数为1ln +=x y (2)解由11+-=x x y 得y yx -+=11交换x 、y 得反函数为xx y -+=114.(1)解只有t=0时,能;t 取其它值时,因为112>+t ,x arcsin 无定义(2)解不能,因为11££-x ,此时121-=x y 无意义5.解(1)12arccos 2-====x w wv vu ey u(2) 令22y y y +=则11ln 21+=+==x u u v vy xw em m x v v u ey wu2)sin(32==+===6.解ïîïíì-£+£<-+->-=1101)1(0)]([22x x x x x x x f g 7.解设cbx ax x f ++=2)(所以ïîïíì==++=++41242c c b a c b a 解得25214-===b a c习题二习题二一.单项选择题一.单项选择题1、A 2、B 3、D 二.填空题二.填空题1、>1 2、单调增加、单调增加 三.计算题三.计算题1、(1)解)解 因为)(sin )sin()(x f x x x x x f ==--=- 所以函数是偶函数所以函数是偶函数 (2)解)解 因为)()1ln(11ln )1ln()(222x f x x xx x x x f -=-+-=-+=++=-所以函数是奇函数所以函数是奇函数(3)解)解 )(0)1(000)1(010001)(x f x x x x x x x x x x x f -=ïîïíì>+-=<--=ïîïíì<---=->-+-=- 所以函数是奇函数所以函数是奇函数2.解.解 因为因为 x x y 2cos 2121sin 2-== 而x 2cos 的周期为p ,所以x y 2sin =是周期函数,周期为p3.解.解 由h r V 231p = 得23rvh p =表面积:表面积: )0(919221226224222222³++=++=+×+=r r v r r r rv r r r r h r s p p p p p p p 四 证明证明 )()1()1(11)(x f e e e e e e x f x x xxxx-=+-=+-=--- 习题三习题三一.单项选择题一.单项选择题1、C 2、C 3、B 4、C 二.填空题二.填空题1、1 2、a 3、³4、2,0 5、1 三.判断正误三.判断正误1、对;、对;2、对;、对;3、错、错 四.(1) 证明证明 令12+=n nx ne <=<+=-n nn n nx n11022只要e 1>n ,取]1[e=N当N n >时,恒有e <-0n x所以01lim2=+¥®n nn(2)证明)证明 因为)0()(lim>=+¥®A A x f x ,对取定的2A=e ,存在M>0,当x>M 时,有时,有2)()(AA x f A x f <-<-故当x>M 时,2)(Ax f >习题四习题四一.单项选择题一.单项选择题1、B 2、B 3、B 4、D 二.填空题二.填空题1、ae 2、0,6 3、6 4、2,-2 三.判断正误三.判断正误 1、错;、错; 2、错;、错; 3、错;、错; 四.计算题四.计算题 1、原式=2112lim )1)(1()1)(2(lim 11=+--=+---®®x x x x x x x x 2、原式=01111lim 11lim =++=+++¥®+¥®xxxx x x 3、原式=2311lim )1)(1()1)(1(lim 32313231=+++=-+++-®®xx x x x x x x x x 4、原式=31)32(131)32(31lim )32(13233lim 1111=-×+=-++¥®++++¥®n n n n n nn nn 5、原式=]21)121121(21)5131(21)311[(lim ×+--++×-+×-+¥®n n n 21)2112121(lim =×+-=¥®n n 6、、原式=23232223)12)(1(21lim 3)21(3lim n n n n n n n n n n -++=-+++¥®+¥® 2132123lim 22=+=¥®nn n n 7、因为、因为 0lim =-+¥®xx e 1s i n £x 所以所以 0s i nl i m =-+¥®x e xx习题五习题五一、1.B , 2.A, 3. B 二、1.sin tan x x x << 2.0.0 三、1. (1)0sin 77lim tan 55x x x ®=解:(2)0lim sin0x x x p ®=解:这是有界函数乘无穷小量,故 (3)000sin 5sin 5115sin 55lim lim lim 1sin 3sin 3sin 31133x x x xxx x x x x x x x x x®®®---===-+++解: (4)00sin 1lim lim sin 1()x x x x x x ++®®+=解:原式解:原式==后一项是无穷小量乘有界函数2.(1)22222222222lim(1)lim[(1)]lim(1)1n nn n n e e nn n´+®¥®¥®¥=+=++==原式 (2)()1()1111lim(1)lim 1x x x x x x e ---·-®¥®¥éùæö-=-=êúç÷èøêúëû原式原式== (3)22322(3)3332233lim(1)lim(1)22x x xx e x x -++-·---®¥®¥éù-=-=êú++êúëû原式= (4)13330lim(13)xx x e ·®=+=原式(中间思维过程同前) (5)222222lim ln()lim ln(1)lim ln(1)lim ln(1)1nnn n n n n n n nn n n·®¥®¥®¥®¥+==+=+=+=原式四.四.1.证明:证明:22222111......2n n n n n n n n n ppppp<+++<+++++22limlim 1,,.n n n nn n n p p®¥®¥==++而故由夹逼准则知原式成立 2.证明:证明:只要证明原数列单调有界就可以达到目的只要证明原数列单调有界就可以达到目的()()2211112,110,0,.n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x ++++=-+-=-=-->->> n 即而0<x <1,<1,故故即故数列单调递增且有界故数列单调递增且有界,,极限存在极限存在..22212(21)11(1)1lim 1n nnnn n n n x x x x x x x +®¥=-+=--++=--<\=习题六习题六一、1.B ,2.B ,3.B ,4.B ,5。
第一章第一章 函数与极限§1 函数一、单项选择题1、下面四个函数中,与y=|x |不同的是( A ) (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =)上是(,在其定义域、B x x f )()3(cos )(22∞+−∞=非周期函数。
的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 最小正周期为)(32)(3)(3)(D C B A πππ )函数的是( 、下列函数中为非偶数B 3)1lg(1)(4343)(arccos )(1212sin )(2222x x x x y D x x x x y C x y B x y A x x +++=++++−==+−⋅=;;4、是 函数)0(ln)(>+−=a xa xa x f (A ) 的值奇偶性决定于非奇非偶函数;偶函数; 奇函数; a D C B A )()()()(二、填空题1、=则时且当设 z x z y y x f y x z , , 0 , )(2==−++= . 解:2 , 0 x z y ==时因 2)(x x f x =+∴ 故有 x x x f −=2)( )()()(2y x y x y x f −−−=−)()(2y x y x y x z −−−++=∴2)(2y x y −+=2、的定义域为,则设 )()65lg(56)(22x f x x x x x f +−+−+=解:由 解得 ,650162+−≥−≤≤x x x由 解得 或x x x x 256023−+><>[)(]故函数的定义域是 ,,−1236Υ.3、[]=则., ;,设)(0202)(x f f x x x x f≥<+=解:[]f f x x x x ()=+<−≥−4222,;, 4、=的反函数则.,;,;,设)()(42411)(2x x f x x x x x x f xφ+∞<<≤≤<<∞−=解:当时,,即−∞<<==x y x x y 1 −∞<<y 1 当时,, .141162≤≤=∴=≤≤x y x x yy当时,, .42162<<+∞=∴=>x y x y x y log>≤≤<<∞−=φ.,;,;,的反函数故16log 1611)()(2x x x x x x x x f 5,,且成立,对一切实数设0)0()()()()(212121≠=+f x f x f x x f x x x f ,a f =)1(=则)0(f ,=)(n f )(为正整数.n解)0()0()0()00(021≠⋅=+==f f f f x x ,代入已知式取∴=f ()01又 f af f f f a ()()()()()1211112==+==设则f k a f k f k f a a akkk ()()()()=+=⋅=⋅=+111nan f n =)(有故对一切§2 数列的极限一.单项选择题1、{}无界是数列发散的数列n a ( B )件..既非充分又非必要条 .充分必要条件.充分条件 .必要条件D C B A ;;;2、=−为偶数当为奇数当n n n x n ,10,17则 D 。
第1章 极限与连续1.1 函数1、(1) x -- (2) ]3,0()0,(Y -∞ (3) 时,210≤<a a x a -≤≤1,φ时,21>a(4) 奇函数 (5))(101log 2<<-x x x(6) )1(-≠x x (7) 22+x (8))(x g π2 (9) 1525++⋅x x(10) xe1sin 2-2、⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-==<<=e x e x e x e x e x e x g f 或或1011011)]([ 3、⎪⎩⎪⎨⎧>+-≤<--≤+=262616152)(2x x x xx x x f 4)(max =x f 1.2 数列的极限1、(1) D (2) C (3) D1.3 函数的极限1、(1) 充分 (2) 充要 3、 11.4 无穷小与无穷大1、(1) D (2) D (3) C (4) C1.5 极限运算法则1、 (1) 21-(2) 21(3) ∞ (4) 1- (5) 02、(1)B (2)D3、(1) 0 (2)23x (3)1-(4) 62(5) 1 (6) 4 4、a = 1 b = -11.6 极限存在准则 两个重要极限1、(1) 充分 (2) ω,3 (3) 2 ,23(4) 0,22t (5) 3e ,2e2、(1) x (2)32(3) 2 (4) 1 (5) 3-e (6) 1-e 1.7 无穷小的比较1、(1) D (2) A (3) B (4) C2、(1) 1 (2) 2 (3) 23- (4) 21- (5) 23 (6) 32-3、e1.8 函数的连续性与间断点1、(1) 充要 (2) 2 (3) 0,32 (4) 跳跃 ,无穷 ,可去2、(1) B (2) B (3) B (4) D3、(1) 1-e (2)21-e4、a =1 , b = 25、 (1))(2,0Z k k x x ∈+==ππ是可去间断点,)0(≠=k k x π是无穷间断;(2) 0=x 是跳跃间断点,1=x 是无穷间断点 6、e b a ==,01.10 总习题1、(1) 2 (2) },,,max{d c b a (3)21(4) 2 (5) 2 8- (6) 2 (7) 23 (8) 0 1- (9) 跳跃 可去 (10) 2 2、(1) D (2) D (3) D (4) C (5) D (6) B (7) D (8) D (9) B (10) B (11) B 3、(1)⎪⎩⎪⎨⎧≥<<-≤≤=11575115100190100090)(x x x x x p(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=11515115100130100030)60(2x x x x x x xx p P(3)15000=P (元)。
第1章 极限与连续1.1 函数1、(1) x -- (2) ]3,0()0,(Y -∞ (3) 时,210≤<a a x a -≤≤1,φ时,21>a(4) 奇函数 (5))(101log 2<<-x x x(6) )1(-≠x x (7) 22+x (8))(x g π2 (9) 1525++⋅x x(10) xe1sin 2-2、⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-==<<=e x e x e x e x e x e x g f 或或1011011)]([ 3、⎪⎩⎪⎨⎧>+-≤<--≤+=262616152)(2x x x xx x x f 4)(max =x f 1.2 数列的极限1、(1) D (2) C (3) D1.3 函数的极限1、(1) 充分 (2) 充要 3、 11.4 无穷小与无穷大1、(1) D (2) D (3) C (4) C1.5 极限运算法则1、 (1) 21-(2) 21(3) ∞ (4) 1- (5) 02、(1)B (2)D3、(1) 0 (2)23x (3)1-(4) 62(5) 1 (6) 4 4、a = 1 b = -11.6 极限存在准则 两个重要极限1、(1) 充分 (2) ω,3 (3) 2 ,23(4) 0,22t (5) 3e ,2e2、(1) x (2)32(3) 2 (4) 1 (5) 3-e (6) 1-e 1.7 无穷小的比较1、(1) D (2) A (3) B (4) C2、(1) 1 (2) 2 (3) 23- (4) 21- (5) 23 (6) 32-3、e1.8 函数的连续性与间断点1、(1) 充要 (2) 2 (3) 0,32 (4) 跳跃 ,无穷 ,可去2、(1) B (2) B (3) B (4) D3、(1) 1-e (2)21-e4、a =1 , b = 25、 (1))(2,0Z k k x x ∈+==ππ是可去间断点, )0(≠=k k x π是无穷间断;(2) 0=x 是跳跃间断点,1=x 是无穷间断点 6、e b a ==,01.10 总习题1、(1) 2 (2) },,,max{d c b a (3)21(4) 2 (5) 2 8- (6) 2 (7) 23 (8) 0 1- (9) 跳跃 可去 (10) 2 2、(1) D (2) D (3) D (4) C (5) D (6) B (7) D (8) D (9) B (10) B (11) B 3、(1)⎪⎩⎪⎨⎧≥<<-≤≤=11575115100190100090)(x x x x x p(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=11515115100130100030)60(2x x x x x x xx p P(3)15000=P (元)。
4、(1)32 (2) 0 (3)e1 (4)21(5)a ln (6)nn a a a Λ21 (7) 15、x x x x f ++=232)( (提示:b ax x x x f +++=232)(令)6、a =1 b =21-7、 0=x 和)(2Z k k x ∈+=ππ是可去间断点)0(≠=k k x π是无穷间断点8、1±=x 是的跳跃间断点 9、3lim =+∞→n n x10、)(x f 在),(+∞-∞处处连续 1.11 测验题1、(1) A (2) C (3) C (4) B (5) B2、(1) b (2) 21(3) e (4)(略) (5)(略)3、(1)21(2)0 (3) a 21 (4)21-e4、a =1 , b =05、x =0为跳跃间断点,x =-1为第二类间断点,x =为可去间断点6、e+-117、2 第2章 导数与微分2.1 导数的定义1、(1) 充分, 必要 (2) 充要 (3))(0x f ',)()(0x f n m '+(4) !9- (5) 21x -,x21,4743--x 2、1-3、切线方程为12ln 21-+=x y ,法线方程为42ln 2++-=x y 5、提示:左右导数定义 6、2=a , 1-=b 7、在0=x 处连续且可导2.2 求导法则1、(1) x x e x xe 22+ (2)11-x (3) x 2cos 2 (4) 21arcsin 2xx -(5) x x x x cos sin 332+ (6) x x1sin 12 (7) 222)1(21x x x +--(8) 2)ln 1(2x x +- (9) 21x x + (10) x x e e tan - (11) 322)(x a x - (12) x cos (13) x 1- (14) )()(23x f x f '-2、(1)⎪⎩⎪⎨⎧=≠-0001cos1sin 2x x xx x (2)xx 2315+(3)xx x x ln 12+- (4)221x a + (5)212)(1ln sec a a x x x axa a a ++⋅-(6)323sin ln cos ln sin 2xxx x x x x x -- (7)mx x x n x mx m n n sin sin cos cos cos 1⋅⋅-⋅-3、(1))()]([x f x f f '⋅' (2))]()([(2222x f x f xe x '+ 4、)(2a ag5、(1) xy xy xe xy x y xy y ye -+-)sin(2)sin( (2) y x yx -+ (3) 22ln ln x x xy y y xy --(4) )3121411(31+-+++x x x 323)12)(1(+++x x x(5) )]1ln(1)1(1[)1(21x xx x x x +-++7、0=-y x 8、(1) 212t t- (2) 1-2.3 高阶导数及相关变化率1、 (1) 2)64(3x e x x + ,)(4)(2222x f x x f ''+'(2) )2sin(πnax a n + , )2cos(πn ax a n +(3) n x a a )(ln , nn xn )!1()1(1---(4) 1)(!)1(+±-n na x n , nnn x n x n )1()!1()1()!1()1(1--++---(5) )24cos(212πnx n +-2、(1) )sec 2tan tan sec 2(22x x x x e x -+- (2) ⎩⎨⎧<>0206x x3、11)1(!)1(31)2(!)1(32+++-⋅+--⋅n n n n x n x n4、)2sin 2cos 502sin 21225(2250x x x x x -+6、(1) 2 (2)3)1(y y + (3) 2)cos 1(1t a -- (4))(1t f ''7、)min cm ( 25162.4 微分1、(1) 18=∆y ,11=dy (2) C x++-11,C x +2 (3)C e x +441 ,C x n n +++111 (4) C x ++)13sin(31 2、(1) A (2) B 3、(1) dx x x2tan -(2) dx xx x)33ln 31(232-⋅ (3) dx x f x f x f )]())(cos()21(2['+-'-4、dx y x y x )ln(3)ln(2-+-+5、)cos(22x x ,)cos(2x ,xx 3)cos(222.5 总习题1、(1) 1- (2) ①0>n ,②1>n ,③2>n (3) 1-,1- (4)34cos sin t t t t - (5)32sin cos xx x x - (6))(200x f x ' 2、(1) B (2) B (3)C (4) A (5) B3、(1)x x x x x x cos ln 3ln 3tan 232cot 21-+ (2) 113+x (3) x x x x )ln 1(2sin 2ln 2-- (4))(2)()(ln 2)()(ln 2)()(ln 22x f x x x f x g x x f x g x x f x xg '-'+(5) ⎩⎨⎧-<><<-222220x x x x 或(6) ])1(2cot 1[21xx e e x x --+xe x x -⋅1sin (7) )()(x x ϕψ)()()())(ln()()()(2x x x x x x x ψϕϕψψϕψ'-' (8) )()(2)()(22y f x x yf y f x f y x '+-'-(9) ⎪⎪⎩⎪⎪⎨⎧<-≥+='0,sin 2sin 0,11)(22x x x x x x x x f (10) 2-e (11) 0 ,283e (12) θθ4cos sin 31a (13) 3481t t - (14) ])1(1)1(1[!)1(211+++---⋅n n n x x n(15) )24cos(41πn x n +- (16) dx xye x xy xye y yx yx ++--+ 4、)1(21-''=f a ,)1(-'=f b ,)1(f c = 5、2 2.6 测验题1、(1) B (2) A (3) B (4) C (5) D2、(1)31-(2) 1 (3) 0 (4) (16)x x e + (5) 22y x a ππ+= 3、(1)2ln 21ln sin(2)x xx x--(211(cot )224(1)x x e x x e +-- (3)1ln (ln 1)x a x a a ax x x -+++4、15、2223[(1)(1)](1)y y x x y -+--6、214t t+7、21492(1)2sin()25022sin()(1)sin()222n n x n n n n x a ax na x ax n n a ax πππ----++++-+g g g8、2ln()3ln()x y dy dx x y +-=++ 9、21=a ,1=b ,1=c第3章 中值定理与导数应用 3.1 中值定理 1、(1) 是,2π(2) 是,1-e (3) 4,)2,1)(1,0(),0,1(),1,2(--- 2、(1) B (2) B3.2 洛必达法则1、(1) 1-,4- (2) 12、(1) A (2) C3、(1)21(2) 31 (3) 1 (4) 1 (5)81-3.3 泰勒公式1、(1) )(!!3!2132n nx o n x x x x ++++++Λ (2) )()!12()1(!3121213---+--++-n n n x o n x x x Λ (3) )()!2()1(!21222n n n x o n x x +-++-Λ (4) )()1(212n nn x o nx x x +-++--Λ (5) )(12n n x o x x x +++++Λ 2、)1,()1()1(])1()1(1[1212之间在-+-++++++-+++x x x x n n n ξξΛ3、4324()4(11)4(37)4(2156)-+-+-+-+-x x x x4、)()!1()1(3132n n n x o n x x x x +--++--Λ 5、(1)121 (2) 41- 6、31,34-==b a*7、1)0(-=f ,0)0(='f ,37)0(=''f3.4 函数的单调性和极值1、(1) (0,2) ,),2()0,(+∞-∞Y (2) 531和=x 2、(1) C (2) C (3) A3、(1) 单调递增区间为),3[]1,(+∞--∞Y ,单调递减区间为)3,1(-(2) 单调递增区间为),1(+∞e ,单调递减区间为)1,0(e4、极小值为0)0(=y5、23=a , 21=b 7、当e a 1>时,方程无实根;当ea 1=时,方程有一个实根e x =;当ea 10<<时,方程有两个实根。