模数转换 ADC
- 格式:ppt
- 大小:1.17 MB
- 文档页数:30
stm32F103之ADC模数转换⼀、ADC简介 通常是指⼀个将模拟信号转变为数字信号的电⼦元件。
通常的模数转换器是把经过与标准量⽐较处理后的模拟量转换成以⼆进制数值表⽰的离散信号的转换器。
12位ADC是⼀种逐次逼近型模拟数字转换器。
它有多达18个通道,可测量16个外部和2个内部信号源。
各通道的A/D转换可以单次、连续、扫描或间断模式执⾏。
ADC的结果可以左对齐或右对齐⽅式存储在16位数据寄存器中。
模拟看门狗特性允许应⽤程序检测输⼊电压是否超出⽤户定义的⾼/低阀值。
⼆、ADC功能框图掌握了ADC 的功能框图,就可以对ADC 有⼀个整体的把握,在编程的时候可以做到了然如胸,不会⼀知半解。
框图讲解采⽤从左到右的⽅式,跟ADC 采集数据,转换数据,传输数据的⽅向⼤概⼀致。
三、ADC功能描述1、电压输⼊范围 ADC 输⼊范围为:VREF- ≤ VIN ≤ VREF+。
由VREF-、VREF+ 、VDDA 、VSSA、这四个外部引脚决定。
设计原理图的时候⼀般把VSSA和VREF-接地,把VREF+和VDDA 接3V3,得到ADC的输⼊电压范围为:0~3.3V。
2、输⼊通道 我们确定好ADC 输⼊电压之后,那么电压怎么输⼊到ADC?这⾥我们引⼊通道的概念,STM32 的ADC 多达18 个通道,其中外部的16个通道就是框图中的ADCx_IN0、ADCx_IN1...ADCx_IN5。
这16 个通道对应着不同的IO ⼝,具体是哪⼀个IO ⼝可以从⼿册查询到。
其中ADC1/2/3 还有内部通道:ADC1的通道16连接到了芯⽚内部的温度传感器,Vrefint 连接到了通道17。
ADC2 的模拟通道16 和17 连接到了内部的VSS。
ADC3 的模拟通道9、14、15、16 和17 连接到了内部的VSS。
我们在编程的时候需要根据使⽤的IO引脚来确定具体的通道。
外部的16 个通道在转换的时候⼜分为规则通道和注⼊通道,其中规则通道最多有16路,注⼊通道最多有4 路。
模数转换adc实验报告1. 引言模数转换(ADC)是将模拟信号转换为数字信号的过程,广泛应用于各种电子设备中。
本实验旨在通过搭建一个简单的ADC电路,了解和掌握模数转换的基本原理和方法。
2. 实验设备和工具- 一块Arduino开发板- 一根面包板- 一块电位器- 若干杜邦线- 一台笔记本电脑- Arduino开发环境3. 实验步骤3.1 搭建电路首先在面包板上连接电位器和Arduino开发板。
将电位器的两个引脚与Arduino 的3.3V电源和GND(地)相连,电位器的中间引脚与Arduino的A0引脚相连。
3.2 编写代码打开Arduino开发环境,在新建的代码文件中输入以下代码:C++int potentiometerPin = A0;int adcValue;void setup() {Serial.begin(9600); 设置串口波特率为9600}void loop() {adcValue = analogRead(potentiometerPin); 读取A0引脚的模拟值Serial.println(adcValue); 打印模拟值delay(500); 延时500毫秒}3.3 上传并观察结果将Arduino开发板通过USB连接到电脑上,在Arduino开发环境中点击“上传”按钮将代码上传到开发板上。
上传完成后,点击Arduino开发环境的“串口监视器”按钮,设置波特率为9600,并观察串口监视器上显示的数据。
4. 实验结果与分析通过实验,我们可以得到电位器产生的模拟信号在进行模数转换后得到的数字信号。
数字信号表示了模拟信号的离散程度,数值越高表示模拟信号越接近最大量程。
在实验过程中,我们可以通过旋转电位器来改变模拟信号的大小,从而观察到模数转换的效果。
通过串口监视器显示的数据,我们可以清晰地看到转换后的数字信号随着模拟信号的变化而变化。
模数转换的精度取决于ADC的分辨率,即能够将模拟信号转换为多少个离散的数字信号。
数模转换与模数转换数模转换(Digital-to-Analog Conversion,简称DAC)和模数转换(Analog-to-Digital Conversion,简称ADC)是数字信号处理中常用的两种信号转换方法。
数模转换将数字信号转换为模拟信号,而模数转换则将模拟信号转换为数字信号。
本文将就数模转换和模数转换的原理、应用以及未来发展进行探讨。
一、数模转换(DAC)数模转换是将数字信号转换为模拟信号的过程。
在数字系统中,所有信号都以离散的形式存在,如二进制码。
为了能够将数字信号用于模拟系统中,需要将其转换为模拟信号,从而使得数字系统与模拟系统能够进行有效的接口连接。
数模转换的原理是根据数字信号的离散性质,在模拟信号上建立相似的离散形式。
常用的数模转换方法有脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),脉冲宽度调制(Pulse Width Modulation,简称PWM)和脉冲位置调制(Pulse Position Modulation,简称PPM)等。
这些方法根据传输信号的不同特点,在转换过程中产生连续的模拟信号。
数模转换在很多领域有广泛应用。
例如,在音频领域,将数字音频信号转换为模拟音频信号,使得数字音频可以通过扬声器播放出来。
另外,在电信领域,将数字信号转换为模拟信号后,可以用于传输、调制解调、功率放大等过程。
二、模数转换(ADC)模数转换是将模拟信号转换为数字信号的过程。
模拟信号具有连续的特点,而数字系统只能处理离散的信号。
因此,当需要将模拟信号用于数字系统时,就需要将其转换为数字形式。
模数转换的原理是通过采样和量化来实现。
采样是将模拟信号在时间上进行离散化,而量化是将采样信号在幅度上进行离散化。
通过这两个过程,可以将连续的模拟信号转换为离散的数字信号。
模数转换在很多领域都有应用。
例如,在音频领域,将模拟音频信号转换为数字音频信号,使得音频信号可以被数字设备处理和存储。
模数转换器(ADC)原理及分类解析在仪器仪表系统中,常常需要将检测到的连续变化的模拟量如:温度、压力、流量、速度、光强等转变成离散的数字量,才能输入到计算机中进行处理。
这些模拟量经过传感器转变成电信号(一般为电压信号),经过放大器放大后,就需要经过一定的处理变成数字量。
实现模拟量到数字量转变的设备通常称为模数转换器(ADC),简称A/D。
通常情况下,A/D转换一般要经过取样、保持、量化及编码4个过程。
取样是将随时间连续变化的模拟量转换为时间离散的模拟量。
取样过程示意图如图11.8.1所示。
图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号vO(t)为输入信号v1,而在(Ts-τ)期间,传输门关闭,输出信号vO(t)=0。
电路中各信号波形如图(b)所示。
图11.8.1 取样电路结构(a)图11.8.1 取样电路中的信号波形(b)通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。
但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。
取样定理:设取样信号S(t)的频率为fs,输入模拟信号v1(t)的最高频率分量的频率为fimax,则fs与fimax必须满足下面的关系fs ≥2fimax,工程上一般取fs>(3~5)fimax。
将取样电路每次取得的模拟信号转换为数字信号都需要一定时间,为了给后续的量化编码过程提供一个稳定值,每次取得的模拟信号必须通过保持电路保持一段时间。
取样与保持过程往往是通过取样-保持电路同时完成的。
取样-保持电路的原理图及输出波形如图11.8.2所示。
图11.8.2 取样-保持电路原理图图11.8.2 取样-保持电路波形图电路由输入放大器A1、输出放大器A2、保持电容CH和开关驱动电路组成。
电路中要求A1具有很高的输入阻抗,以减少对输入信号源的影响。
为使保持阶段CH上所存电荷不易泄放,A2也应具有较高输入阻抗,A2还应具有低的输出阻抗,这样可以提高电路的带负载能力。
adc模数转换器原理模数转换器(ADC)是一种非常重要的电子电路,它可以将模拟信号转换为数字信号,以便电路中的微处理器可以对其进行处理。
随着科技的发展,ADC的性能也在不断提高,可以提供更多功能和性能,以满足不断变化的需求。
本文将重点介绍ADC的工作原理,以及其在现有技术中的应用。
ADC的基本原理是将模拟信号(如模拟电压或电流)转换成数字信号,然后通过串行数据总线将其传送到微处理器其他部分。
ADC的类型主要分为抽样-持续转换(SAR)和按位逐次抽样(S&S)两种,其中SAR类型ADC更加常用。
SAR类型ADC的工作原理主要是将电路中的输入信号反复地采样,并使用内部电压参考或外部电压参考进行比较,以确定最终输出值。
采样率和参考电压是控制转换精度的关键因素,采样率越高,参考电压越精准,最终转换的精度就越高。
此外,随着科技的发展,ADC的性能也在不断提高。
近年来,ADC 技术可以实现多种性能,如低功耗、高动态范围、高采样率和高精度等功能。
通过不断的技术进步,ADC已经可以用于传感器、医疗影像、音频应用、声纳应用、无线通信和军事应用等多个领域。
最后,ADC技术也取得了很大的发展,能够为上述应用提供更优质的服务。
例如,最新的ADC技术可以实现低功耗、高转换速率和极高的精度,以满足当今快速变化的应用需求。
综上所述,ADC模数转换器是一种关键电路,它可以将模拟信号转换为数字信号,以便电路中的微处理器可以对其进行处理。
它的原理是采样-持续转换,依靠内部或外部参考电压进行比较,以确定最终输出值,并可用于多种应用场合,比如传感器、音频应用等。
由于技术的不断进步,ADC可以实现低功耗、高转换速率和极高的精度,以满足现有应用的需求。
ADC 模数转换器是什么
ADC 模数转换器是什幺
ADC,Analog-to-DigitalConverter 的缩写,指模/数转换器或者模数转换器。
是指将连续变化的模拟信号转换为离散的数字信号的器件。
真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。
模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。
与之相对应的DAC,Digital-to-AnalogConverter,它是ADC 模数转换的逆向过程。
ADC 最早用于对无线信号向数字信号转换。
如电视信号,长短播电台发接收等。
ADC 模数转换器构成及特点。
电路中的模数转换与数模转换的原理与应用在现代电子设备中,模数转换和数模转换是一些关键的技术,广泛应用于音频、视频和通信等领域。
这些转换技术允许我们将模拟信号和数字信号之间进行转换,并在电路设计中发挥重要作用。
本文将探讨模数转换和数模转换的原理和应用。
一、模数转换(ADC)模数转换(Analog-to-Digital Conversion,简称ADC)是将连续的模拟信号转换为离散的数字信号的过程。
它的原理基于量化和编码两个步骤。
首先,量化将连续的模拟信号分为不同的离散级别。
这个过程类似于将一个连续的信号映射到一组离散的数值上。
量化程度的精确度决定了数字信号的分辨率。
常见的量化方法有线性量化和非线性量化。
接下来,编码将量化后的数值转换为数字信号。
常见的编码方式包括二进制编码、格雷码和翻转码等。
其中,二进制编码是最常用的编码方式,它将每个量化级别与一个二进制码相对应。
模数转换器的应用非常广泛。
例如,在音频信号处理中,模数转换器将模拟音频信号转换为数字形式,使得我们可以进行数字信号处理,如音频编码和音频分析等。
此外,在通信系统中,模数转换器将模拟语音信号转换为数字信号,使得我们可以进行数字通信,如电话和移动通信等。
二、数模转换(DAC)数模转换(Digital-to-Analog Conversion,简称DAC)是将离散的数字信号转换为连续的模拟信号的过程。
它的原理与模数转换相反,包括解码和重构两个步骤。
首先,解码将数字信号转换为对应的离散数值。
解码过程与编码过程相反,常见的解码方式包括二进制解码和查找表解码等。
接着,重构将解码后的数值转换为模拟信号。
重构过程类似于对数字信号进行插值和滤波,以恢复出连续的模拟信号。
数模转换器在许多领域中也得到广泛应用。
例如,在音频播放器中,数模转换器将数字音频信号转换为模拟音频信号,供扬声器播放。
此外,在调制解调器中,数模转换器将数字通信信号转换为模拟信号,使其可以被传输和接收。