工程图学第三章 换面法
- 格式:ppt
- 大小:674.00 KB
- 文档页数:22
广东技术师范学院天河学院教案2012 年月日第周单元教案首页第三章投影变换——换面法第一节换面法的基本概念一、换面法的基本概念空间几何元素的位置保持不变,用新的投影面来代替旧的投影面,使空间几何元素对新的投影面的相对位置变成有利于解题的位置,然后找出其在新投影面上的投影。
这种方法称为换面法。
用换面解题时应遵循下列两原则:⒈选择新投影面时,应使几何元素处于有利于解题的位置;⒉新投影面必须垂直于原投影面体系中不被变换的投影面,并与它组成新投影面体系,必要时可连续变换。
(a) (b)图3.1 将一般位置直线变换成投影面平行线如图3.1,新投影面必须垂直于不变换的投影面,即V1⊥H,X1为新投影轴。
这时,不变换投影面上的投影a、b与V1面上的新投影a1'、b1'的投影连线a a1'⊥X1、b b1'⊥X1。
并且a1'、b1'到X1的距离等于被代替的投影a'、b'到被代替的投影轴的距离,即a1'a X1=a'a X=A a=Z A, b1'b X1=b'b X=B b=Z B。
第二节点的换面二、点的投影变换规律(一)点的一次变换点是一切几何形体的基本元素。
因此,必须首先掌握点的投影变换规律。
现在来研究更换正立投影面时,点的投影变换规律。
图3表示点A在V/H 体系中,正面投影为a′,水平投影为a。
现在令H面不变,取一铅垂面V1(V1⊥H)来代替正立投影面V,形成新投影面体系V1/H。
将点A向V1投影面投射,得到新投影面上的投影a′1。
这样,点A在新、旧两体系中的投影(a,a′1)和(a,a′)都为已知。
其中a′1为新投影,a′为旧投影,而a为新、旧体系中共有的不变投影。
它们之间有下列关系:1. 由于这两个体系具有公共的水平面H,因此点A到H面的距离(即z坐标),在新旧体系中都是相同的,即a′ax=Aa=a′1ax1。
2. 当V1面绕X1轴重合到H面时,根据点的投影规律可知aa′1必定垂直于X1轴。
这和aa′⊥X轴的性质是一样的。
3-1换面法
①X1∥de →②求出d1→③d1为圆心,40为半径做圆弧,交得e1→④返回,求得e’
思路:将△ABC变换为投影面的垂直面。
求点D到△ABC的距离也就是过点D 作△ABC 的垂线DK,
若△ABC⊥V
1面,则DK∥V
1
面。
作图步骤:
1.在△ABC内作水平线CN(作c’n’∥X );
2.作X1⊥cn;
3.投影变换,得a1、b1、c1、d1;
4.作d1 k1⊥a1 b1 c1(d1 k1即为所求)。
5.也可继续将K点返回:
∵△AB C⊥V
1,而DK⊥△AB C, ∴DK∥V
1
, ∴做dk∥X1, 得k;
∵点K∈△ABC,∴连接ak延长交bc于m;投影得m’,连接a’m’,投影得k’。
3-2换面法
思路:将△ABC变换为投影面的垂直面,直接得出交点K。
再判断可见性。
作图步骤:
1.在△ABC内作水平线AM(作a’m’∥X );
2.作X1⊥am;
3.投影变换,得a1、b1、c1、e1、f1;e1f1与a1b1c1交于k1;
4.返回求得k和k’;
5.判别可见性。
3-3换面法
思路:通过两次换面,求出△ABC的实形,即得AB和AC的夹角。
作图步骤:
1.∵BA∥H,∴作X1⊥ba;
2. 投影变换,得a1、b1、c1;
3. 作X2∥a1b1c1;
4. 投影变换,得a2、b2、c2;。
5. △a2b2c2=△ABC,θ即为AB和AC的夹角。
3-4换面法
3-5换面法
3-6换面法
3-7换面法。
换面法一、 换面法概述当直线或平面相对于投影面处于特殊位置(平行、垂直)时,它们的投影反映线段的实长、平面的实形及其与头面的倾角。
当直线或平面和投影面处于一般位置时,则它们的投影不具备上述特性。
换面法的目的,就在于将直线或平面从一般位置变换为和投影面平行或垂直的位置,以便于解决它们的度量和定位问题。
1.换面法的基本概念换面法就是保持空间几何元素不动,用一个新的投影面替换其中一个原来的投影面,使新投影面对于空间几何元素处于有利于解题的位置。
然后找出其在新投影面上的投影。
2.新投影面的选择原则(1)新投影面必须和空间的几何元素处于有利于解题的位置;(2)新投影面必须垂直于一个原有的投影面;(3)在新建立的投影体系中仍然采用正投影法。
二、 点的换面点是一切几何元素的基本元素。
因此在研究换面时,首先从点的投影变换来研究换面法的投影规律。
1.点的一次换面(1)换V 面图2-25(a )表示点A 在原投影体系V/H 中,其投影为a 和a '现令H 面不动,用新投影面V 1来代替V 面,V 1面必须垂直于不动的H 面,这样便形成新的投影体系V 1/H ,O 1X 1是新投影轴。
过点A 向V 1面作垂线,得到V 1面上的新投影1a ',点1a '是新投影,点a '是旧投影,点a 是新、旧投影体系中的共有的不变投影。
a 和1a '是新的投影体系中的两个投影,将V 1面绕O 1X 1轴旋转到与H 面重合的位置时,就得到图2-25(b )所示的投影图。
由于在(a)(b)(c)图2-25点的一次变换(换V面)新投影体系中,仍采用正投影方法,又在V/H投影体系和V1/H体系中,具有公共的H面,所以点a到H面的距离(Z坐标)在两个题词体系中是相等的。
所以有如下关系:1a'a⊥O1X1轴;1a'1xa=a'xa=A a,即:换V面时Z坐标不变。
由此得出点的投影变换规律是:①点的新投影和不便投影的连线,必垂直于新投影轴;②点的新投影到新投影轴(O1X1)的距离等于被替换的点的旧投影到旧投影轴(OX)的距离,也即换V面时高度坐标不变。