当前位置:文档之家› 流体流量及流速分析与计算

流体流量及流速分析与计算

流体流量及流速分析与计算
流体流量及流速分析与计算

本节概要

本节讨论喷管内流量、流速的计算。工程上通常依据已知工质初态参数和背压,即喷管出口截面处的工作压力,并在给定的流量等条件下进行喷管设计计算,以选择喷管的外形及确定其几何尺寸;有时也需就已有的喷管进行校核计算,此时喷管的外形和尺寸已定,须计算在不同条件下喷管的出口流速及流量。在喷管的计算中要注意到背压对确定喷管出口截面上压力的作用。

本节内容

4.8.1 流速计算及其分析

4.8.2 临界压力比

4.8.3 流量计算及分析

4.8.4 例题

本节习题

4-24、4-25、4-26、4-27、4-29

下一节

流速计算及其分析

1.喷管出口截面的流速计算

2.压力比对流速的影响

…喷管出口截面的流速计算

据能量方程,气体在喷管中绝热流动时任一截面上的流速可由下式计算:

(4-28)

因此,出口截面上流速:

(4-28a)

或(4-28b)

在入口速度较小时,上式中可忽略不计,于是:

(4-28c)

(4-28)各式表明,气流的出口流速取决于气流在喷管中的绝热焓降。值得注意的是,上述各式中焓的单位是J/kg。

如果理想气体可逆绝热流经喷管,可据初态参数(p1,T1)及速度求取滞止参数,

然后结合出口截面参数如p2按可逆绝热过程方程式求出T2从而计算h2再求得;对水蒸汽

可逆绝热流经喷管,可以利用h-s图,根据进口蒸汽的状态查得初态点1,通过点1作垂线与喷管出口截面上压力p2相交,得出状态点2,从点1和2可查出h1和h2,代入式(4-28)即可求出出口流速。

式子对理想气体和实际气体均适用;与过程是否可逆无关,但不可逆绝

热流动,若用可逆的关系求出h2在求得的需修正,若h2是不可逆过程终态的焓,则求出的不需修正。

式的适用范围是什么?是否与过程的可逆与否有关?与工质的性质有关?

返回

…压力比对流速的影响

为了分析截面上压力对流速的影响,假定喷管的几何形状满足流速变化的几何条件,气体为理想气体,并取定值比热容。分析得出的结论可定性地应用于水蒸汽等实际气体。据式(4-28a ):

(4-29a)

(4-29b)

从式(4-29a)及式(4-29b)

中可以看出,出口流速的大小,决定于气体的滞止状态参数

及出口截面压力与滞止压力之比

。由于滞止参数决定于喷管进口截面

参数,所以出口流速的大小,也就决定于气体进口截面的参数及出口截面压力与进口截面压 力之比。当喷管进口截面参数一定时,流速随出口截面压力与滞止压力之比而变,

其变化趋势如图4-19所示。当

时,

=0, 表明两侧压力平衡,如初速为零,则根

本不会产 生流动,

=0;当逐渐减小时,逐渐

增大;当出口截面压力为零时,流速趋向最大值:

因实际流动存在摩擦,而且即使不考虑摩擦,p

趋向于零时,v 将趋向于无穷大,而出口截面积不可能达到无穷大,所以喷管的实际速度不可能达到这一速度。 实际的喷管中有可能达到此速度吗?

图4-19 喷管内流速与压力比的关系

返回

上一节 下一节

临界压力比

将式(4-29b)用于喷管临界截面,如缩放喷管的喉部截面,此时因

所以式(4-29b)可改写为:

所以

考虑到并令,称为临界压力比,则上式可写为:

(4-30)

或(4-31)

从式(4-30)和式(4-31)可以看出,临界压力比只取决于气体的性质(绝热指数),而临界压力

则与气体的性质及其滞止压力有关。

对于双原子理想气体,若比热容取定值,则,。在喷管分析中,对于初态

为过热水蒸汽值可取1.3,;饱和蒸汽,值可取1.135,。

对,而且据几何条件收缩喷管中间截面上的压力与滞止压力之比只可能大于临界压力比不可能达到临界压力比。

收缩喷管若其出口截面上达到音速,出口截面压力与滞止压力的比值也是临界压力比?

流量计算及分析

1.喷管流量的计算式

2.喷管流量分析

3.背压与流量及出口压力的关系

…喷管流量的计算式

根据气体稳定流动的连续性方程,气体通过喷管任何截面的质量流量都是相同的。因此,无论按哪一个截面计算流量,所得的结果都应该一样。但是各种形式喷管的流量大小都受其最小截面制约,所以常常按最小截面(即收缩喷管的出口截面,缩放喷管的喉部截面)来计算流量,即

或(4-32)

式中,A2、Acr分别为收缩喷管出口截面积和缩放喷管喉部截面积,m2;、分别为

收缩喷管出口截面上速度和缩放喷管喉部截面上速度,m/s;v2、v cr分别为收缩喷管出口截面上气体的比体积和缩放喷管喉部截面上气体的比体积,。

返回

…喷管流量分析

如同流速分析时一样,把工质作为理想气体,且比热容取定值

将式(4-29b)及代入式(4-32),得:

化简后可得理想气体流经喷管的流量公式:

(4-33)

式(4-33)表明:气体的流量与喷管的出口截面积、气体的滞止参数及出口截面上的压力p

有关。

2及初参数一定时,流量决定于喷管出口截面压力与滞止压力之比。据式当出口截面积A

2

(4-33),求,令之为零,可求得时,喷管流量达最大值,且

图(4-20)是根据式(4-33),以流量为纵坐标,以压力比

为横坐标而绘制的。曲线的ab段适合于收缩喷管,流量

时流量

随喷管出口截面的压力降低而增加,当

达最大值。曲线的bc段适合于缩放喷管,虽然喷管出口截面的

压继续降低,但由于缩放喷管的喉部截面保持临界状态,故

流量保持不变。图中b0段是依式(4-33)的解析解绘制的,正常工

图4-20 喷管流量与压力比的关系(气体作等熵流量)的喷管不会出现这种情况。当喷管出口截面外压力(即背压)低于临界压力时,收缩喷管出口截面的压不会降低到低于临界压力,流量也不再变化,等于出口截面的

压力为时的流量。

在给定的条件下,即给定工质性质和进口截面参数、背压等条件后喷管的流量就确定了,稳定流动时任何截面的流量都是相同的,但若条件改变,如背压改变,导致出口截面压力改变,则喷管的流量必然会随之而改变。所以根据连续性方程,稳定流动时气体通过喷管任何截面的质

量流量都相同和喷管流量随而改变是两个范畴的问题。

根据气体稳定流动的连续性方程,气体通过喷管任何截面的质量流量都是相同的。为什么喷管的流量还随

而变化?

返回

…背压与流量及出口压力的关系

对于在收缩喷管内作可逆等熵流动的气体而言,当喷管的背压时,喷管出口截面

的压力只能达到背压,即;当喷管的背压时,由于受喷管内气体

流速改变的几何条件的制约,喷管出口截面的压力只能达到,所以气体不能在喷管内膨

胀到,即

因此喷管的质流量不会继续上升。而对于缩放喷管,在设计工况下,喷管出口截面的压力可以达到背压,即,但是在喉部截面上,气流达到临界,压力等于临界压力,流速等于当地音速,流量受喉部截面制约。

当背压比设计背压下降时,因喷管不能提供足够大的截面积,故气体在喷管内膨胀不足,气体在离开喷管后自由膨胀,其流量保持与喉部截面相等而保持不变。当背压比设计背压高时,气体在喷管内过度膨胀,然后在喷管内某截面上产生激波,使压力上升到高于背压而排出。激波产生截面随背压升高向喉部截面推进,只要背压仍低于临界压力,则喉部截面仍可保持临界状态,流量维持不变。

如果缩放喷管工作时背压比设计背压低或高,将会发生什么现象?

例题

1.【例 4-9】

2.【例 4-10】

…【例 4-9】

压力为3MPa,温度为500℃的蒸汽以=150m/s的速度流入缩放喷管,在管内作等熵膨胀。已知喷管出口截面上蒸汽压力=0.1MPa,喷管喉部截面积,若蒸汽

的值可取1.3,求:(1)喉部截面蒸汽压力;(2)喷管的质流量;(3)喷管出口截面积及出口截

面上的流速。

解:(1) 据p

1=3MPa,t

1

=500℃,在h-s图上确定点1,得h

1

=3457 kJ/kg

由于流速=150m/s,较大,故先求滞止参数:

在h-s图上通过点1,垂直向上截取,得滞止点0,查得=3.1MPa.

将代入式(4-30)得υ=0.546则

(2) 从点1向下作垂线,交p==1.69 MPa于点c,得=3282 kJ/kg,=0.185 m3/kg。在喉部截面处,气流达到临界,所以

(3) 从过点1的垂线与p=p

2=0.1MPa的等压线的交点2,得h

2

=2628 kJ/kg, v

2

=1.65 m3/kg。

于是

返回…【例 4-10】

压力p

1=0.4MPa及温度t

1

=20℃的空气,经由出口截面内径为10mm的收缩喷管从容积很大

的储气罐流向外界。若外界压力p

b

=0.1MPa,求空气的质量流量及出口截面上空气的温度。

解:因空气出储气罐内流入管道的流速不大,故储气罐压力p

1

即可作为滞止压力,同时由于储气罐容积很大,在一段时间内压力可维持稳定,所以

=

υ=0.528×0.4 MPa =0.211 MPa>=0.1 MPa

因为管道无渐扩部分,故管道出口截面上压力只能达到临界压力,即==0.211 Mpa 出口截面上空气的温度

出口截面上空气的比体积

出口截面上空气的流速

喷管质量流量

4.9 绝热节流

4.9.1 绝热节流的特征

4.9.2 节流过程的焦尔-汤姆逊系数

4.9.3 例题

本节概要

本节讨论绝热节流现象中工质参数的变化特征及能量关系,需要指出的是绝热节流并不是可逆等焓过程,实际气体节流前后温度的变化取决于焦尔-汤姆逊系数。

本节内容

4.9.1 绝热节流的特征

4.9.2 节流过程的焦尔-汤姆逊系数

4.9.3 例题

绝热节流的特征

气体或蒸汽在管道中流动时,由于遇到突然缩小的狭窄通道,如阀门、孔板等,而使流体压

力显著下降的现象,称为节流。如果流体在节流时,与外界没有热量交换,则称为绝热节流。

热力工程上常遇到的节流现象,基本上都可以认为是绝热节流。

图4-21为气体流经孔板时绝热节流的情况。气

流在管道中遇到流道截面突然缩小,产生强烈的扰

动,在突缩截面前、后产生涡流耗散效应,压力下

降。当流经缩孔一段距离后,在截面2—2处气流

又恢复平衡。节流前后压降的程度,即-的大

小,取决于突缩截面的大小,截面缩孔愈小,压力

降就愈大。节流过程中,工质与外界没有热量交换,

也不对外作机械功,如取图4-21中1—1及2—2

截面间管道作系统,则根据稳定流动能量方程式

有:图4-21 节流现象

由于截面1—1和截面2—2上的流速和一般相差不大,故式中动能差可忽略不计,于

是得:

上式表明,气体或蒸汽绝热节流前和节流后的焓值相等。

只说明气体或蒸汽经过绝热节流后其焓值没有变化,但不能因此而认为绝热节流过程是

一个可逆等焓过程。因为在突缩截面前后,气体并不处于平衡状态,不能用状态参数来描述,

绝热节流是一个典型的不可逆过程。

表明节流过程是可逆等焓过程?

节流过程的焦尔-汤姆逊系数

气体绝热节流重新达到平衡后,焓值不变,压力下降,熵增大, 节流过程中的温度变化取决于焦尔—汤姆逊系数

(4-34)

由于节流压力下降,故压力变化是负值,所以实际气体节流后温度如何变化取决于

的正负,依其状态方程

的具体形式和节流前气体的状态而定:

(1)

倘若, 节流后温度降低,即;

(2)

倘若, 节流后温度升高,即;

(3)

倘若, 节流后温度不变,即

节流后的其它状态参数可依据

及T 2求得。

对于水蒸汽,在通常情况下,绝热节流后,温度总是有所降低。湿蒸汽节流后大多数情况下干度有所增加;而过热蒸汽节流后过热度增大。

水蒸汽的绝热节流过程,利用h-s 图进行计算非常方便。如已知节流前的状态p 1、T 1及节流后的压力

,根据节流前后焓值相等的特

点,可在水蒸汽的h-s 图上确定节流后的各状态参数。图4-22所示是过热蒸汽的节流。点1的参数是、T 1及h 1。在h-s 图上过点1

按定焓画水平线与相交得1',即可得终态各参

图4-22水蒸气节流

数。由图可见

,但节流后蒸汽的过热度增大。由图4-22还可清楚看出,水蒸汽在节流前

由点1经可逆绝热膨胀至某一压力p 2

时,可利用的焓降为,而经节流后的水蒸汽,同样经

可逆绝热膨胀至压力p 2

时,可利用的焓降为

,显然

>。可见,节流以后蒸

汽可作出功减少了,所减少的部分用Δh 表示,称为节流损失。

节流现象广泛应用在工程上,例如通过阀门开启的大小来调节流量,达到调节功率的目的,利用节流阀降低工质的压力,以及用节流原理测量工质的流量或蒸汽的干度等。 ☆

是的,对于理想气体,焓仅是温度的函数,焓不变温度也不变,即 T 2=T 1;对于实际气体,节流后温度可以降低、可以升高,也可以不变,视节流时气体所处的状态及压降的大小而定。

理想气体节流后温度不变,实际气体温度的变化则取决于气体的性质及节流前气体的状态、节流压降的大小等因素?

例题

…【例4-12】在干燥室的主蒸汽管上,用蒸汽干度计测得下列数据:节流前的蒸汽压力

,节流后的蒸汽压力

,温度t 2

=120℃,求节流前蒸汽的干度。

解: 根据

及t 2

=120℃,在水蒸汽的h-s 图

上得到终状态点2,并查得其焓值h 2

=2716kJ/kg , 如图4-23所示。

根据节流前后焓值相等的原理,由点2引水平线与

的等压线相交,得其交点1

,即为水蒸汽节流前

的初状态点。最后由h-s 图查得点1的湿蒸汽干度

图4-23 例4-12附图

流体流量及流速分析与计算

本节概要 本节讨论喷管内流量、流速的计算。工程上通常依据已知工质初态参数和背压,即喷管出口截面处的工作压力,并在给定的流量等条件下进行喷管设计计算,以选择喷管的外形及确定其几何尺寸;有时也需就已有的喷管进行校核计算,此时喷管的外形和尺寸已定,须计算在不同条件下喷管的出口流速及流量。在喷管的计算中要注意到背压对确定喷管出口截面上压力的作用。 本节内容 4.8.1 流速计算及其分析 4.8.2 临界压力比 4.8.3 流量计算及分析 4.8.4 例题 本节习题 4-24、4-25、4-26、4-27、4-29 下一节 流速计算及其分析 1.喷管出口截面的流速计算 2.压力比对流速的影响 …喷管出口截面的流速计算 据能量方程,气体在喷管中绝热流动时任一截面上的流速可由下式计算: (4-28) 因此,出口截面上流速: (4-28a) 或(4-28b)

在入口速度较小时,上式中可忽略不计,于是: (4-28c) (4-28)各式表明,气流的出口流速取决于气流在喷管中的绝热焓降。值得注意的是,上述各式中焓的单位是J/kg。 如果理想气体可逆绝热流经喷管,可据初态参数(p1,T1)及速度求取滞止参数, 然后结合出口截面参数如p2按可逆绝热过程方程式求出T2从而计算h2再求得;对水蒸汽 可逆绝热流经喷管,可以利用h-s图,根据进口蒸汽的状态查得初态点1,通过点1作垂线与喷管出口截面上压力p2相交,得出状态点2,从点1和2可查出h1和h2,代入式(4-28)即可求出出口流速。 ☆ 式子对理想气体和实际气体均适用;与过程是否可逆无关,但不可逆绝 热流动,若用可逆的关系求出h2在求得的需修正,若h2是不可逆过程终态的焓,则求出的不需修正。 式的适用范围是什么?是否与过程的可逆与否有关?与工质的性质有关? 返回

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系2007年03月16日星期五13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里:Q ——断面水流量(m3/s)C ——Chezy糙率系数(m1/2 /s)A ——断面面积(m2)R ——水力半径(m)S ——水力坡度(m/m)根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于这里:hf ——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2) 2 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 阻力特征区适用条件水力公式、摩阻系数符号意义水力光滑区>10 雷诺数h:管道沿程水头损失v:平均流速d:管道内径γ:水的运动粘滞系数λ:沿程摩阻系数Δ:管道当量粗糙度q:管道流量Ch:海曾-威廉系数C:谢才系数R:水力半径n:粗糙系数i:水力坡降l:管道计算长度紊流过渡区10< <500 (1)(2)紊流粗糙区>500 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。海曾—威廉公式适用紊流过渡区,其中水头损失与流速的 1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管 3 管材试验资料确定的。而现在国内采用的金属管道已普遍采用水泥砂浆和涂料做内衬,条件已发生变化,因此舍维列夫公式也基本不再采用。 1.2 输配水管道沿程水头损计算的实用公式输配水管道沿程水头计算时,先采用判别水流的阻力特征用,再选择相应的公式计算,科学合理,但操作麻烦,特别在流速是待求的未知数时,需要采用试算的方法确定雷诺数(Re)很不方便。为了使输配水管道水力计算能满足工程设计的需要,又可以方便的选择计算公式和进行简捷的计算,根据多年来管道水力计算的经验,《室外给水设计规

流量与管径、力、流速之间关系计算公式

流量与管径、力、流速之间关系计算公式 流量=管截面积X流速=0、X管内径的平方X流速(立方米/小时)。其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式这里:Q断面水流量(m3/s)CChezy糙率系数 (m1/2/s)A断面面积(m2)R水力半径(m)S水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach公式由于这里:hf 沿程水头损失(mm3/s)f Darcy-Weisbach水头损失系数(无量纲)l管道长度(m)d管道内径(mm)v 管道流速(m/s)g 重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。1、1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。

水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。沿程水头损失水力计算公式和摩阻系数 表1阻力特征区适用条件水力公式、摩阻系数符号意义水力光滑区>10雷诺数h:管道沿程水头损失v:平均流速d:管道内径γ:水的运动粘滞系数λ:沿程摩阻系数Δ:管道当量粗糙度q:管道流量Ch:海曾-威廉系数C:谢才系数R:水力半径n:粗糙系数i:水力坡降l:管道计算长度紊流过渡区10<<500(1)(2)紊流粗糙区>500 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。 海曾威廉系数Ch 海曾—威廉系数适用紊流过渡区,Ch取值范围宜大于120,否则计算成果误差较大。2、2 相应的紊流阻力特征区内不同摩阻系数间的对应关系 (1)

管径-流速-流量对照表

管径/流速/流量对照表

已知流量、管材,如何求管径? 分两种情形: 1、水源水压末定,根据合理流速V(或经济流速)确定管径d: d=√[4q/(πV)] (根据计算数值,靠近选取标准管径) 2、已知管道长度及两端压差,确定管径 流量q不但与管内径d有关,还与单位长度管道的压力降落(压力坡度)i有关, i=(P1-P2)/L.具体关系式可以推导如下: 管道的压力坡度可用舍维列夫公式计算 i=0.0107V^2/d^1.3——(1) 管道的流量 q=(πd^2/4)V ——(2) 上二式消去流速V得: q = 7.59d^2.65√i (i 以kPa/m为单位)管径:d=0.4654q^0.3774/i^0.1887 (d 以m为单位) 这就是已知管道的流量、压力坡度求管径的公式。 例:某管道长100m,管道起端压力P1=96kPa,末端压力P2=20kPa,要求管道过1.31 L/s的流量,试确定管径

压力坡度 i=(P1-P2)/L=(96-20)/100=0.76kPa/m 流量 q=1.31 L/s=0.00131 m^3/s 管径d=0.4654q^0.3774/i^0.1887 =0.4654*0.00131^0.3774/0.76^0.1887= 0.0400m =400mm 还可用海森威廉公式:i=105C^(-1.85)q ^1.85/d^4.87 ( i 单位为 kPa/m )钢管、铸铁管:C=100,i=0.02095q ^1.85/d^4.87 ,q =8.08d^2.63 i ^0.54 铜管、不锈钢管:C=130,i=0.01289q ^1.85/d^4.87 ,q =10.51d^2.63 i ^0.54 塑料管:C=140,i=0.01124q ^1.85/d^4.87 ,q =11.31d^2.63 i ^0.54 C=150,i=0.009895q ^1.85/d^4.87 ,q =12.12d^2.63 i ^0.54

流量与管径、压力、流速的关系

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l——管道长度(m) d——管道内径(mm)

v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。水泵输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。

气体流量和流速与与压力的关系

For personal use only in study and research; not for commercial use 气体流量和流速及与压力的关系 流量以流量公式或者计量单位划分有三种形式: 体积流量:以体积/时间或者容积/时间表示的流量。如:m3/h ,l/h 体积流量(Q)=平均流速(v)×管道截面积(A) 质量流量:以质量/时间表示的流量。如:kg/h 质量流量(M)=介质密度(ρ)×体积流量(Q) =介质密度(ρ)×平均流速(v)×管道截面积(A) 重量流量:以力/时间表示的流量。如kgf/h 重量流量(G)=介质重度(γ)×体积流量(Q) =介质密度(ρ)×重力加速度(g)×体积流量(Q) =重力加速度(g)×质量流量(M) 气体流量与压力的关系 气体流量和压力是没有关系的。 所谓压力实际应该是节流装置或者流量测量元件得出的差压,而不是流体介质对于管道的静压。这点一定要弄清楚。举个最简单的反例:一根管道,彻底堵塞了,流量是0 ,那么压力能是0吗?好的,那么我们将这个堵塞部位开1个小孔,产生很小的流量,(孔很小啊),流量不是0了。然后我们加大入口压力使得管道压力保持原有量,此刻就矛盾了,压力还是那么多,但是流量已经不是0了。因此,气体流量和压力是没有关系的。 流体(包括气体和液体)的流量与压力的关系可以用流体力学里的-伯努利方程-来表达: p+ρgz+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度.z 为垂直方向高度;g为重力加速度,C是不变的常数。 对于气体,可忽略重力,方程简化为: p+(1/2)*ρv ^2=C 那么对于你的问题,同一个管道水和水银,要求重量相同,那么水的重量是G1=Q1 *v1,Q1是水流量,v1是水速. 所以G1=G2 ->Q1*v1=Q2*v2->v1/v2=Q2/Q1 p1+(1 /2)*ρ1*v1 ^2=C p2+(1/2)*ρ2*v2 ^2=C ->(C-p1)/(C-p2)=ρ1*v1/ρ2*v2

流量与流速的关系

论液(气)体的流量、流速与密度的关系 广东省博罗县高级中学(516100)林海兵摘要:流体特别是液体,在管道中的流动时,人们把其质量流量等效于体积流量,这是建立在不可压缩、没有粘性的“理想流体”模型基础上的理论。 关键词:流管,液(气)体,流量,流速,密度 1 人们对液体密度的认识 笔者首先摘录一段文字,来说明人们对液体密度的认识—— 无论是气体还是液体都是可压缩的,有人曾经对水和水银等液体的压缩性进行了测量,在500大气压下,每增加一大气压,水的体积的减少量不到原体积的两万分之一,水银体积的减少量不到原体积的百万分之四,因为压缩量很小,通常均可不考虑液体的可压缩性。气体的可压缩性则非常明显,譬如用不太大的力推动活塞即可使气缸中的气体压缩,又如地球表面的大气密度随高度的增加而减小,也说明气体的可压缩性。但是,因为气体密度小,即使压力差不太大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀;又若流动气体中各处的密度不随时间发生明显的变化,气体的可压缩性就可以不必考虑。然而若气体速度接近或者超过专声速,因气体运动所造成的各处密度差来不及消失,这时气体的可压缩性会变得非常明显,不能再看是不

可压缩的。总之,在一定问题中,若可不考虑流体的压缩性便可将它抽象为不可压缩流体的理想模型,反之,则需看作是可压缩流体。[1]以上文字摘自漆安慎、杜婵英的高等学校试用教材《力学基础》(1982年12月第1版)第508页。从上述论述中,我们都可知道这样一个事实,任何(由原子分子构成的)物体都可以被压缩,只是不同的物体在同一条件下的压缩量不尽相同;我们还可以知道这样的第二个事实,自然界存在着大量的压缩量相当微小可以是微不足道的物体,液体也就其中的一种,人们常常把这些微不足道的形变量忽略了,把它当成不可压缩的物体;我们还可以看到第三个事实,当人们把这些压缩量很小的液体当成不可压缩的理想流体的时候,人们压根儿就没有考虑过这些被人们当成为不可压缩的理论流体是否会发生体积的膨胀。 也因为这样,在经典物理学中所研究的液体,通常都是密度从不发生变化的流体。 2 管道中液体的流量 我们见到的流体,既有开放的也有封闭的,气体也是流体,理想气体是物理学中研究得很多的液体,在研究时,人们把理想气体放入一个容器中,故这是封闭的理想气体。除了理想气体之外,人们还经常见到在管道、容器等器具中的水,这些都是具有封闭性质的液体。也许是受到这么许多实际情况的影响,使人们对液体的运动也采用封闭型的研究,即使对于原本是开放型的流体,人们也要固执地把它转化为封闭型,

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系 2007年03月16日星期五13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2)

水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。 海曾—威廉公式适用紊流过渡区,其中水头损失与流速的 1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。 谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。 另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管

流速和流量的测量

第六节 流速和流量的测量 流体的流速和流量是化工生产操作中经常要测量的重要参数。测量的装置种类很多,本节仅介绍以流体运动规律为基础的测量装置。 1-6-1 测速管 测速管又名皮托管,其结构如图1-32所示。皮托管由两根同心圆管组成,内管前端敞开,管口截面(A 点截面)垂直于流动方向并正对流体流动方向。外管前端封闭,但管侧壁在距前端一定距离处四周开有一些小孔,流体在小孔旁流过(B )。内、外管的另一端分别与U 型压差计的接口相连,并引至被测管路的管外。 皮托管A 点应为驻点,驻点A 的势能与B 点势能差等于流体的动能,即 22 u gZ p gZ p B B A A =--+ρρ 由于Z A 几乎等于Z B ,则 ()ρ/2B A p p u -= (1-61) 用U 型压差计指示液液面差R 表示,则 式1-61可写为: ()ρρρ/'2g R u -= (1-62) 式中 u ——管路截面某点轴向速度,简称点速度,m/s ; ρ'、ρ——分别为指示液与流体的密度,kg/m 3; R ——U 型压差计指示液液面差,m ; g ——重力加速度,m/s 2。 显然,由皮托管测得的是点速度。因此用皮托管可以测定截面的速度分布。管内流体流量则可根据截面速度分布用积分法求得。对于圆管,速度分布规律已知,因此,可测量管中心的最大流速u max ,然后根据平均流速与最大流速的关系(u/ u max ~Re max ,参见图1-17),求出截面的平均流速,进而求出流量。 为保证皮托管测量的精确性,安装时要注意: (1)要求测量点前、后段有一约等于管路直径50倍长度的直管距离,最少也应在8~12倍; (2)必须保证管口截面(图1-32中A 处)严格垂直于流动方向; (3)皮托管直径应小于管径的1/50,最少也应小于1/15。 皮托管的优点是阻力小,适用于测量大直径气体管路内的流速,缺点是不能直接测出平均速度,且U 型压差计压差读数较小。 1-6-2 孔板流量计 图1-32 测速管

压力和流速与流量的关系如何计算

压力和流速的关系如何计算 两管道之间的压差=a*l*p*u*u/2d 单位为pa a 为管道的摩擦系数,与管道的新旧和材质有关系。 l为你所取两点之间的距离单位为米 p为流体的密度 kg/m3 u为管内流体的流速,单位为米/秒 d为管子的管径,单位为米 请教:已知管道直径D,管道内压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道内压力P,还不能求管道中流体的流速和流量。你设想管道末端有一阀门,并关闭的管内有压力P,可管内流量为零。管内流量不是由管内压力决定,而是由管内沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格; 2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量Q:Q = (H/sL)^(1/2) 4、流速V=4Q/(3.1416d^2) 式中:Q―― 流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以m为单位。

管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C√(RJ)=C√[PR/(ρgL)] 流量:Q=CA√(RJ)=√[P/(ρgSL)] 式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。 管道的内径和压力流量的关系 似呼题目表达的意思是:压力损失与管道内径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与内径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3*n^2 * L* Q^2/d^5.33 上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中n――管内壁粗糙度;L――管长;Q――流量;d――管内径

流速与流量测量教案

1.6 流速与流量的测量 本节重点: 孔板流量计与转子流量计的原理、特点等。 难点: 流量方程的推导。 1.6.1 测速管 测速度的结构与测量原理 测速管又称皮托(Pitot )管,如图1-31所示,是由两根弯成直角的同心套管组成,内管管口正对着管道中流体流动方向,外管的管口是封闭的,在外管前端壁面四周开有若干测压小孔。为了减小误差,测速管的前端经常做成半球形以减少涡流。测速管的内管与外管分别与U 形压差计相连。 内管所测的是流体在A 处的局部动能和静压能之和,称为冲压能。 内管A 处: .2 2 1u p p A +=ρρ 由于外管壁上的测压小孔与流体流动方向平行,所以外管仅测得流体的静压能,即 外管B 处: ρ ρ p p B = U 形压差计实际反映的是内管冲压能和外管静压能之差,即 .2 .22 1)21(u p u p p p p B A =-+=-=?ρρρρρ 则该处的局部速度为 ρ p u ?=2. (1-62) 将U 形压差计公式(1-9)代入,可得 ρ ρρ) (20. -= Rg u (1-62a ) 图1-31 测速管

由此可知,测速管实际测得的是流体在管截面某处的点速度,因此利用测速管可以测得流体在管内的速度分布。若要获得流量,可对速度分布曲线进行积分。也可以利用皮托管测量管中心的最大流速m a x u ,利用图1-32所示的关系查取最大速度与平均速度的关系,求出管截面的平均速度,进而计算出流量,此法较常用。 测速管的安装 1.必须保证测量点位于均匀流段,一般要求测量点上、下游的直管长度 最好大于50倍管内径,至少也应大于8~12倍。 2.测速管管口截面必须垂直于流体流动方向,任何偏离都将导致负偏差。 3.测速管的外径d 0不应超过管内径d 的1/50,即d 0

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系 分类:机械 | 标签:流量管径压力流速关系 2012-09-05 10:37阅读(741)评论(0) 流量与管径、压力、流速的一般关系 2007年03月16日星期五 13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s)

f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管网建模之基本公式篇 一、管渠沿程水头损失 谢才公式 圆管满流,沿程水头损失也可以用达西公式表示: h f——沿程水头损失(mm3/s) λ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm)

气体流量和流速及与压力的关系

气体流量和流速及与压力的关系 流量以流量公式或者计量单位划分有三种形式: 体积流量:以体积/时间或者容积/时间表示的流量。如:m3/h ,l/h 体积流量(Q)=平均流速(v)×管道截面积(A) 质量流量:以质量/时间表示的流量。如:kg/h 质量流量(M)=介质密度(ρ)×体积流量(Q) =介质密度(ρ)×平均流速(v)×管道截面积(A) 重量流量:以力/时间表示的流量。如kgf/h 重量流量(G)=介质重度(γ)×体积流量(Q) =介质密度(ρ)×重力加速度(g)×体积流量(Q) =重力加速度(g)×质量流量(M) 气体流量与压力的关系 气体流量和压力是没有关系的。 所谓压力实际应该是节流装置或者流量测量元件得出的差压,而不是流体介质对于管道的静压。这 点一定要弄清楚。举个最简单的反例:一根管道,彻底堵塞了,流量是0 ,那么压力能是0吗? 好的,那么我们将这个堵塞部位开1个小孔,产生很小的流量,(孔很小啊),流量不是0了。 然后我们加大入口压力使得管道压力保持原有量,此刻就矛盾了,压力还是那么多,但是流量已 经不是0了。因此,气体流量和压力是没有关系的。 流体(包括气体和液体)的流量与压力的关系可以用里的--来表达: p+ρgz+(1/2)*ρv^ 2=C 式中p、ρ、v分别为流体的、密度和速度.z 为垂直方向高度;g为,C是不变的。对于气体,可忽略重力,简化为: p+(1/2)*ρv ^2=C 那么对于你的问题,同一个管道水和水银,要求重量相同,那么水的重量是G1=Q1*v1,Q1是水流量,v1是水速. 所以G1=G2 ->Q1*v1=Q2*v2->v1/v2=Q2/Q1 p1+(1/2)*ρ1*v1 ^2 =C p2+(1/2)*ρ2*v2 ^2=C ->(C-p1)/(C-p2)=ρ1*v1/ρ2*v2 ->(C-p1)/(C-p2)=ρ1*v 1/ρ2*v2=Q2/Q1 ->(C-p1)/(C-p2)=Q2/Q1 因此对于你的问题要求最后流出的重量相同,根据推导可以发现这种情况下,流量是由压力决定的,因为p1如果很大的话,那么Q1可以很小,p1如果很小的话Q1就必须大.如果你能使管道内水的压强与水银的压强相同,那么Q2=Q1 补充:这里的压强是指管道出口处与管道入口处的流体压力差. 压力与流速的计算公式

流速和流量的测定

1.7 流速和流量的测定 1.7.1 毕托管 (1)毕托管的测速原理 (2)毕托管的安装 1.7.2孔板流量计 (1)孔板流量计的测量原理 孔板:与管轴成45℃角,锐孔(千万不能倒转方向安装) 缩脉:2-2截面,u 最大,p 最低。因此流体流经孔口前后产生一定 v ,,p q p ?↑?↑,利用测p ?方法测流量。 先略去 f h ∑(以后校正),在1-1,2-2截面间列柏努利方程 22 1 21222u u ρρ+=+p p 222222 12212122 2222 (1)(1)222u u u u u A u A ρ--==-=-p p 2u = ① 缩脉在何处?22?,?A u ==,很难准确确定。孔口面积A 。是已知的,希望用0A 取代2A ,0u 取代2u (0 20 2 A u u A =) ② 设角接法(取压口开在法兰前后),径接法(上游取压口距孔板l d =,下游取压口距孔板下游 1 2 l d = 处)测出虚拟压强差为 A B ()i Rg ρρ-=-p p ,用此取代12-p p ③ 有阻力损失f h 考虑上述①、②、③点后,列入一校正系数c ,并令0 1 A m A = 0u = = 令 0c = 0u c = v 000q u A c A == (1-119 ) 从以上推导过程可知,0c 与下列因素有关:

① 0c 与f h 有关,即与1d Re du ρ μ =有关(1u 不是0u ,而是流股未收缩时管道1-1面处的平均速度。) ② 0c 与0 1 A m A = 有关 ③ 0c 与取压法有关(角接法称标准孔板) 0d (Re ,c f m =取压法,) ,其关系由试验测定,如图1-54所示。 在测量范围,0c 为常数与Re d 无关即与v q 无关为好,此时v q ∝1-54查出0c (此时0c 只 取决与m )代入式(1-119)求v q 若0c 与v q 即与d Re 有关,怎么办?试差法求v q 。 (2)孔板流量计的安装和阻力损失 ① 安装:上游(15~40)d 、下游5d 的直管距离,为什么? ② 阻力损失f h (由流体流径孔口边界层分离形成大量漩涡造成的) 220f 0()2i u Rg h c ρρζζρ-== f 0.8,0.4h ζ≈= f 000,,,,,h R A m u c R ∝↓↓↑↓↑,读数准确,但f h ↑;000,,,,A m u c R ↑↑↓↑↓,读数不易准确, 但f h ↓。选用孔板的中心问题是选择适当面积比m ,兼顾适宜读数和f h 。 (3)文丘里流量计 渐缩渐扩管(文丘里管)代替阻力大的孔板,仍用式(1-119)计算v q ,但用v c 代替0c ,v 0.98~0.99c =, f 0.1h =,f h ↓↓。 例1-10 以上几种流量计均是恒截面变压差(变阻力)流量计。变阻力式流量计是人为设置一阻力构件(如孔板),造成局部阻力(压降),利用能量守恒原理及连续性方程关联此压降与流速及至流量的关系。 1.7.3转子流量计 (1)转子流量计的结构原理 浮力 f 21f ()V g z z A g ρρ=- 1 2f f f 220112120 101()22p p A V g u p u p gz gz A u u A ρρρ? ?-=??? ++=++???=??? 12f f 2 20 112010 1()()22f p p A V g u p u p A u u A ρρρρ? ?-=-? ?+ =+???=?? 0u C =v 00q u A =

流速计算

请教:已知管道直径D,管道内压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道内压力P,还不能求管道中流体的流速和流量。你设想管道末端有一阀门,并关闭的管内有压力P,可管内流量为零。管内流量不是由管内压力决定,而是由管内沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格; 2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量Q:Q = (H/sL)^(1/2) 4、流速V=4Q/(3.1416d^2) 式中:Q―― 流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以 m为单位。 管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C√(RJ)=C√[PR/(ρgL)] 流量:Q=CA√(RJ)=√[P/(ρgSL)] 式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。 管道的内径和压力流量的关系 似呼题目表达的意思是:压力损失与管道内径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与内径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示:

液体流量与流速的关系

论液(气)体的流量、流速与密度的关系摘要:流体特别是液体,在管道中的流动时,人们把其质量流量等效于体积流量,这是建立在不可压缩、没有粘性的“理想流体”模型基础上的理论。 关键词:流管,液(气)体,流量,流速,密度 1 人们对液体密度的认识 笔者首先摘录一段文字,来说明人们对液体密度的认识—— 无论是气体还是液体都是可压缩的,有人曾经对水和水银等液体的压缩性进行了测量,在500大气压下,每增加一大气压,水的体积的减少量不到原体积的两万分之一,水银体积的减少量不到原体积的百万分之四,因为压缩量很小,通常均可不考虑液体的可压缩性。气体的可压缩性则非常明显,譬如用不太大的力推动活塞即可使气缸中的气体压缩,又如地球表面的大气密度随高度的增加而减小,也说明气体的可压缩性。但是,因为气体密度小,即使压力差不太大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀;又若流动气体中各处的密度不随时间发生明显的变化,气体的可压缩性就可以不必考虑。然而若气体速度接近或者超过专声速,因气体运动所造成的各处密度差来不及消失,这时气体的可压缩性会变得非常明显,不能再看是不可压缩的。总之,在一定问题中,若可不考虑流体的压缩性便可将它抽象为不可压缩流体的理想模型,反之,则需看作是可压缩流体。[1]

以上文字摘自漆安慎、杜婵英的高等学校试用教材《力学基础》(1982年12月第1版)第508页。从上述论述中,我们都可知道这样一个事实,任何(由原子分子构成的)物体都可以被压缩,只是不同的物体在同一条件下的压缩量不尽相同;我们还可以知道这样的第二个事实,自然界存在着大量的压缩量相当微小可以是微不足道的物体,液体也就其中的一种,人们常常把这些微不足道的形变量忽略了,把它当成不可压缩的物体;我们还可以看到第三个事实,当人们把这些压缩量很小的液体当成不可压缩的理想流体的时候,人们压根儿就没有考虑过这些被人们当成为不可压缩的理论流体是否会发生体积的膨胀。 也因为这样,在经典物理学中所研究的液体,通常都是密度从不发生变化的流体。 2 管道中液体的流量 我们见到的流体,既有开放的也有封闭的,气体也是流体,理想气体是物理学中研究得很多的液体,在研究时,人们把理想气体放入一个容器中,故这是封闭的理想气体。除了理想气体之外,人们还经常见到在管道、容器等器具中的水,这些都是具有封闭性质的液体。也许是受到这么许多实际情况的影响,使人们对液体的运动也采用封闭型的研究,即使对于原本是开放型的流体,人们也要固执地把它转化为封闭型,在本没有管道的流体中人为地假设了一条一条的管道,把它称为流管,流体就在这些子无虚有的流管中运动。

压力 流速 管径 流量的关系

压力流速管径流量的关系 流量=流速×(管道内径×管道内径×π÷4); 压力对于液体来说,对流速、管径、流量没有关系,因为液体认为是不可压缩性的;但对气体来说,影响较大,可用气态方程式去换算P×V=RT; 压力与管径对管道的壁厚有要求,由简化强度公式:壁厚=P×管道直径÷(2σ)可知。 流量、管径、压力之间的关系 单凭这点条件很难较准确地计算出流量。 现只考虑压力能全部转化为动量,可推出: Q=πR^2√(2P/ρ) 式中,Q为流量,R为管半径,P的压力,ρ为液体密度。 1、首先要确定流体是液体还是气体。如是液体,在流速一样的情况下,压力的变化不会影响流量,但压力高时,可以提高流速,而使流量增加,因为我们认为液体是不可压缩的。如是气体,当压力增加时,气体的体积为按绝对压力的比例成正比减小,如流速不变,其流量也成比例增加。 2、如果你是在不同压力下、同管径放出流体的话,按V=f×√2gH计算可得(H 为气液柱压力),其压力与流量的关系也相应确定。 管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏D^2)/ 4 ·v ·3600 `(`m^3` / h ) 式中Q —流量(`m ^3` / h 或t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。

相关主题
文本预览
相关文档 最新文档