高速加工概念
- 格式:doc
- 大小:46.50 KB
- 文档页数:6
高速加工一、高速加工概述新一代的机床性能大大改进,主轴转速可以轻松达到20 000r/min以上,进给速度可以达到30 000mm/min,大大提高了加工效率以及设备的利用率,这更需要使用者研究规划工艺、优化程序、选择合适的刀具。
高速加工的概念是伴随着机床设备的发展不断更新的。
一般采用高的主轴转速、高的进给速度、较小的背吃刀量,其切削速度伴随刀具材料的超硬耐磨性的发展而不断提高。
通过了解高速加工的特点,虽然不一定能达到高速加工的要求,但在实际生产中采用高速加工的概念指导加工,还是可以取得一定效果的。
二、高速加工工艺1.高速加工程序特点:(1)全程无空刀路、无抬刀,都是在有效切削零件。
(2)所有刀路流畅,都是圆滑过渡,无拐点。
(3)刀路步距均匀、梳密一致,效率高。
(4)路径最短。
这符合优质刀路的特点,因此该加工程序很好。
2.发动机缸体高速铣削工艺发动机缸体高速铣削工艺的要求。
除了发动机缸体高速铣削工艺对精度、计算稳度的要求极高之外,其在使用中还有一些特殊的要求,主要集中在以下几点:首先发动机缸体高速铣削工艺在使用中不能和任何工装及工件发生碰撞;其次加工刀具在轨迹上必须保障绝对的平滑,以及十分均匀的切削深度;最后在发动机缸体高速铣削工艺使用中,其导致的设备振动必须控制在一定范围内。
3.发动机缸体高速镗孔工艺发动机缸体高速调头镗孔工艺的优势。
高速调头镗孔工艺的优势主要几种在三个方面,其一为在镗孔中镗杆较短,因此在切削速度上有所提升;其二为因为镗轴伸长较短,因此在精度方面更有保障;其三为切削设备占用空间较小,因此工作人员的工作活动空间更大,工作更为直观、安全。
三、高速加工刀具1.刀具的要求:高硬度、高耐磨、高强度和韧性、高耐热性、良好的工艺性。
(1)硬质合金涂层刀具最常用(2)TiC(TiN)基硬质合金金属陶瓷(3)陶瓷刀具耐热耐磨但强度韧性差(4)立方氮化硼刀具CBN 一般用来精加工高硬度淬火钢、高温合金、工具钢、高速钢,耐热耐磨但脆性大、韧性差(5)聚晶金刚石刀具PCD 不宜加工铁及其合金高速加工刀具刀柄:采用1:10 短锥柄代替传统的7:24 长锥柄成为发展趋势。
高速加工技术一.起源1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
通过长期的研究,从上世纪90年代中期起,高速加工进入实用化阶段。
用户可以享受高速加工的高效率,高精度和成本优势。
德国OPS-INGERSOLL公司是目前世界上最好的高速加工中心制造商之一。
二.高速加工的定义高速加工是指转速在30,000RPM以上,实际加工切削进给保持8-12m/min的恒定进给。
我们从定义中看出,高速加工的一个关键要素是高速恒定进给。
由于高速加工时,转速上万转,特别在加工高硬度材料时,瞬间产生大量热量,所以必须保持高速进给,使产生的85%以上的热量被铁屑带走。
但在模具加工过程中,硬度通常在HRC50以上,且为复杂的曲面或拐角,所以高速机床必须做到在加工曲面或拐角时仍能高速进给。
另外实际加工中,刀具都有一个最佳切削参数,如能保持恒定进给,对刀具寿命,切削精度和加工表面质量都有提高。
由此看出,高速加工不仅是高速主轴,而且也是机床伺服系统的综合。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能C NC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。
标题:我国高速加工技术现状及发展趋势在当前工业生产中,高速加工技术已成为了提高加工效率、降低成本、改善产品质量的重要手段。
我国作为全球最大的制造业大国,高速加工技术的现状和发展趋势备受关注。
本文将从深度和广度两个方面对我国高速加工技术进行全面评估,并探讨其发展趋势。
一、我国高速加工技术的现状1. 高速加工技术的定义和特点高速加工技术是指在高速度下对工件进行切削加工的一种先进加工技术,具有高效率、高精度、高表面质量、低热影响区等特点。
2. 国内高速加工技术的发展历程自20世纪80年代以来,我国的高速加工技术得到了迅猛的发展,尤其是在航空航天、汽车制造、模具制造等行业得到了广泛应用。
3. 我国高速加工技术的应用现状高速加工技术在航空航天、汽车制造、模具制造、医疗器械等领域得到了广泛应用,成为提高生产效率和产品质量的重要手段。
二、我国高速加工技术的发展趋势1. 技术创新推动高速加工技术的发展随着科技的进步和不断创新,高速加工技术将会更加高效、精密、稳定,能够满足更加复杂的加工需求。
2. 智能制造与高速加工技术的融合智能制造将成为未来高速加工技术发展的重要方向,通过智能化、自动化技术,提高生产效率和产品质量。
3. 绿色制造与高速加工技术的结合高速加工技术在减少碳排放、节能减排方面将会有更大的发展空间,应用于绿色制造领域。
4. 人工智能在高速加工技术中的应用随着人工智能技术的快速发展,其在高速加工技术中的应用将会成为新的发展趋势,将提高生产效率和产品质量。
三、总结与展望我国高速加工技术在不断发展创新的过程中,已经取得了令人瞩目的成绩,但与发达国家相比仍有一定差距。
在未来发展中,需要加大科技投入力度,加强技术研发和创新,培养更多高端技术人才,不断提升我国的高速加工技术水平,推动制造业向高质量发展。
个人观点:高速加工技术作为先进制造技术的代表,将会对我国工业生产产生深远影响。
在未来,我相信随着科技的进步和不断创新,我国的高速加工技术将不断迈向更加高效、精密、稳定的发展方向,并为我国制造业的转型升级和智能制造提供重要支撑。
高速加工(HSM)通常指的是在合理的速度和较高的表面进给速度下进行的立铣加工。
例如,在铝制飞机框架部分掏糟的特形铣削加工中,材料去除率很高,这种加工就是高速加工。
在过去60年的时间里,高速加工已经在很宽范围的金属和非金属工件材料上得到应用,包括对要求采用特定表面拓扑结构的零部件进行的生产以及硬度为50HRC或50HRC以上材料进行的加工。
1.高速加工的历史及发展高速切削的起源可追溯到20世纪20年代末期。
德国的切削物理学家萨洛蒙(Carl 压lomon )博士于1929 年进行了超高速切削模拟试验。
1931年4月发表了著名的超高速切削理论,提出了高速切削假设。
萨洛蒙指出:在常规的切削速度范围内,切削温度随着切削速度的增大而提高。
对于每一种工件材料,存在一个速度范围,在这个范围内,当切由于切削温度太高,任何刀具都无法承受,切削加工不可能进行。
但是,切削速度进一步提高,超过这个速度范围后,切削温度反而降低。
同时,切削力也会大幅度下降。
按照他的假设,在具有一定速度的高速区进行切削加工,会有比较低的切削温度和比较小的切削力,有可能用现有的刀具进行超高速切削,从而大幅度减少切削时间,成倍地提高机床的生产率。
美国于1960年前后开始进行超高速切削试验。
试验将刀具装在加农炮里,从滑台上射向工件;或将工件当作子弹射向固定的刀具。
1977 年美国在一台带有高频电主轴的加工中心上进行了高速切削试验,其主轴转速可以在180 ~18000r / min 范围内无级变速,工作台的最大进给速度为7 . 6m / min。
1979年美国防卫技术研究总署(DARPA )发起了一项“先进加工研究计划”,研究切削速度比塑性波还要快的超高速切削,为快速切除金属材料提供科学依据。
在德国,1984 年国家研究技术部组织了以Darmstadt 工业大学的生产工程与机床研究所PTW )为首,包括41 家公司参加的两项联合研究计划,全面而系统地研究了超高速切削机瓜刀具、控制系统以及相关的工艺技术,分别对各种工件材料(钢、铸铁、特殊合金、铝合金、铝镶铸造合金、铜合金和纤维增强塑料等)的超高速切削性能进行了深入的研究与试验,取得了切削热的绝大部分被切屑带走国际公认的高水平研究成果,并在德国工厂广泛应用,获得了好的经济效益.日本于20世纪60年代就着手超高速切削机理的研究。
高速加工工艺高速加工是一种高效的切削方法,它以高切削速度进行小切削量加工,其金属去除率比普通数控加工要高,并且延长了刀具寿命、减少了非加工时间,它适应了现代生产快速反应的应用特点。
高速加工采用全新的加工工艺,在刀具、切削用量、走刀路径及程序编制等方面,都不同于传统的数控加工。
1.高速加工刀具选择高速加工对刀具材料要求更高。
在实际加工中一般按照下列原则选用合适的刀具材料:粗加工时优先考虑刀具材料的韧性;精加工时优先考虑刀具材料的硬度。
高速加工的刀具材料有立方氮化硼(CBN)、金刚石(PCD)、陶瓷等。
使用CBN刀具铣削端面时,其切削速度可高达5000m/min,主要用于灰口铸铁的切削加工。
聚晶金刚石刀具特别适用于切削含有SiO2的铝合金材料,目前,用聚晶金刚石刀具铣削铝合金端面时,5000m/min的切削速度已达到实用化水平。
此外,陶瓷刀具也适用于灰口铸铁的高速切削加工。
CBN和PCD刀具尽管具有很好的高速切削性能,但成本相对较高,釆用涂层技术的刀具价格低廉,又具有优异性能,可以有效降低加工成本,所以高速加工采用的立铣刀,大都釆用氮化铝钛(TiAlN)系的复合多层涂镀技术进行处理。
不同工件材料的高速加工需要选择与其匹配的刀具材料和加工方式,才能获得最佳的切削效果。
铝合金高速加工时,可以选用金刚石刀具。
如果刀具复杂,可采用整体超细晶粒硬质合金、粉末高速钢、高性能高速钢及其涂层刀具进行高速加工。
加工钢和铸铁及其合金时,采用Al2O3基陶瓷刀具较合适;立方氮化硼适于HRC45-65以上的高速硬切削;氮化硅基和立方氮化硼更适于铸铁及其合金的高速切削,但不宜于切削以铁素体为主的钢铁;WC基超细硬质合金及其TiCN、TiAlN、TiN涂层刀具和TiC/TiN基硬质合金刀具也可加工钢和铸铁。
加工钛合金时,一般可用WC基超细晶粒硬质合金和金刚石刀具。
2.高速加工切削用量选择高速加工的切削速度通常为常规切削速度的5~10倍左右。
高速高效加工理论与技术1概论高速高效加工是近年来迅速发展起来的集高效、优质和低耗于一身的先进制造工艺技术,是机械加工技术的重要发展方向,其主要目的就是提高生产效率、加工质量和降低成本,在航空、航天、汽车、模具、高速机车等行业中应用已取得重大经济效益,对提高加工技术水平,推动机械制造技术的进步具有深远的意义。
大力发展高速高效加工理论和技术,对于我国在机械加工领域摆脱以往的落后局面,促进我国装备制造业发展具有重要的意义。
相对于传统的机械加工来说,高速切削加工技术中的“高速”是一个相对概念,随着切削加工技术的不断发展其速度范畴也发生着变化,对于不同的加工方法和工件材料与刀具材料,高速切削加工时应用的切削速度也不相同。
从切削速度方面,一般以高于5~10倍的普通切削速度的切削加工定义为高速切削加工。
从切削机理上,高速切削加工可以定义为:切削加工过程通过能量转换,高硬刀具(切削部分)对工件材料的作用,导致其表面层产生高应变速率的高速切削变形和刀具与工件之间的高速切削摩擦学行为,形成的热、力耦合不均匀强应力场的制造工艺。
高速切削过程具有非线性、时变、大应变、高应变率、高温、高压及多场耦合等特点。
它包括高速切削加工、高进给切削加工、大余量切削和高效复合切削加工、高速与超高速磨削、高效深切磨削、快速点磨削和缓进给深切磨削等[1]。
2高速高效加工技术研究现状目前,对于高速高效加工理论的研究主要集中在两个方面:一是对高速高效加工机理的研究,二是对于高速高效加工装备制造技术的研究。
下面,我们就这两个方面分别做出介绍。
2.1高速高效加工机理研究高速切削技术起源可追溯到上个世纪20年代末期。
德国的切削物理学家萨洛蒙(Carl J. Salomon)博士于1929年进行了超高速模拟实验,1931年发表了著名的超高速切削理论,提出了高速切削假设。
Carl J .Salomon的理论指出,在常规的切削速度范围内,在初期切削温度会随着切削速度的增加而提高,但是温度升到一个峰值后,随着切削速度的继续增加而会下降,同时切削力也大幅下降,但该切削速度值与工件材料的种类有关[2]。
高速切削加工技术的概念高速切削加工技术是一种在机械加工中使用高速旋转刀具来去除材料的工艺。
它可以提高加工效率、减少加工成本,提高切削质量,并延长刀具寿命。
在高速切削加工技术中,切削速度通常比传统切削速度高出几倍,达到可达到切削极限的速度。
高速切削加工技术的基本原理是通过尽可能高的转速来提高切削速度,以减小切削过程中的切削时间。
高速切削加工技术的发展需要满足以下几个条件:高速切削的刀具材料需要具备良好的硬度、热稳定性和刚性;高速切削需要使用高速转子以提供所需的切削速度;高速切削需要使用高速切削液以冷却和润滑刀具和切削床面。
高速切削加工技术的优点主要体现在以下几个方面:1. 高加工效率:高速切削加工可以提高切削速度,减少切削时间,从而提高加工效率。
与传统切削相比,高速切削可以将加工时间减少50%以上。
2. 高表面质量:高速切削加工可以减小切削过程中的机床振动和切削力,从而获得更高的表面质量。
切削过程中,高速转子产生的离心力可以抑制刀具的振动,提高切削表面的光洁度。
3. 刀具寿命长:高速切削加工可以减小切削温度,减小切削热对刀具的影响,从而延长刀具的使用寿命。
高速切削可以在减小切削温度的同时提高切削速度,从而有效地降低刀具的受热面积,减小刀具的磨损。
4. 减少加工成本:高速切削加工可以提高加工效率,减少切削时间,从而减少加工成本。
高速切削还可以减小切削力和切削温度,减少切削液的消耗,降低切削液的成本。
高速切削加工技术的应用范围广泛,包括航空航天、汽车制造、模具制造、电子制造等领域。
例如,在航空航天制造中,高速切削可以快速精确地加工复杂的零部件;在汽车制造中,高速切削可以提高发动机零部件的加工效率和精度;在模具制造中,高速切削可以提高模具的加工效率和精度;在电子制造中,高速切削可以提高电路板的加工效率和精度。
总之,高速切削加工技术是现代制造业的一个重要发展方向。
通过提高切削速度,高速切削加工可以提高加工效率、减少加工成本,并提高切削表面的质量。