锅炉主要受热面
- 格式:ppt
- 大小:3.59 MB
- 文档页数:73
锅炉受热面材料解释说明以及概述1. 引言1.1 概述锅炉是一种能将水转化为蒸汽的设备,广泛应用于工业生产和能源领域。
作为锅炉的关键部件之一,受热面材料(也称为换热面)充当着将能量传递给工作介质的核心角色。
不同的受热面材料拥有各自的特点和应用场景,并且在锅炉性能和效率方面起着重要作用。
1.2 文章结构本文将从以下几个方面对受热面材料进行解释说明和概述。
首先,我们将定义受热面及其分类,并介绍不同受热面材料的特性与选择因素。
然后,我们会详细探讨钢板受热面、合金钢管受热面以及填料管束受热面的解释说明及其在实际应用中的场景。
接下来,我们将讨论受热面材料的技术要点与改进方向,包括材料强度与耐蚀性优化技术、密封性能提升技术以及耐高温材料发展方向和创新技术点。
最后,我们将对文章的要点进行总结,并展望受热面材料未来的发展趋势。
1.3 目的本文的目的是深入探讨和全面介绍受热面材料在锅炉中的重要性及其相关知识。
通过对不同受热面材料特性、应用场景以及技术要点的解释说明,读者将能够更好地理解受热面材料在锅炉中的作用,并且为未来的受热面材料改进与创新提供参考依据。
2. 受热面材料的定义与分类2.1 受热面的定义受热面是指锅炉内与燃料接触并受到高温和高压的部分,用于进行能量转移和传导。
它是锅炉中最重要的部件之一,直接影响着锅炉的性能和效率。
2.2 受热面材料的分类根据受热面材料的特性和用途,可以将其分为以下几类:2.2.1 钢板受热面:钢板是常见的受热面材料之一,具有良好的机械性能和导热性能。
常用于锅炉的壁板、头盖板等位置。
根据使用条件不同,钢板也可细分为低合金钢板、高合金钢板等。
2.2.2 合金钢管受热面:合金钢管由含有多种合金元素的特殊钢制成,具有较高的耐腐蚀性和耐高温性能。
在高温工况下,合金钢管广泛应用于锅炉中作为受热面来传达或吸收能量。
2.2.3 填料管束受热面:填料管束由多根小直径的管子组装而成,以增大受热面积,并提高能量传递效率。
第二章锅炉受热面1.水冷壁的工作特点与作用:1)强化传热,减少锅炉受热面面积,节省金属消耗量。
(辐射传热)2)降低高温对炉墙的破坏作用,起保护炉墙的作用。
3)能有效地防止炉壁结渣。
4)悬吊炉墙。
5)作为锅炉主要的蒸发受热面,吸收炉内辐射热量,使水冷壁管内的热水汽化,产生锅炉的全部或绝大部分饱和蒸汽。
2.膜式水冷壁的结构:大多是由光管或内螺纹管与鳍片(扁钢条)焊接而成;膜式水冷壁的优点:1)炉膛气密性好,减少了漏风,可降低排烟热损失,提高锅炉效率;2)降低金属耗量;3)炉墙不用耐火材料,只需轻型绝热材料,大大减少炉墙重量,从而使钢架、地基等材料减少,大大降低锅炉成本;4)便于采用悬吊结构;5)由于金属、炉墙等材料减少,使整个锅炉的蓄热能力大大减少,炉膛升温快,冷却也快,有利锅炉符合调节,及缩短启动和停炉时间。
3.过热器和再热器的特点:1)工质温度高、传热性能差、又处于高温烟气段,金属壁温高,要求使用合金材料;此外过热器管子存在热偏差,使个别管子的管壁温度非常高,达到金属使用极限。
2)整个过热器或再热器的阻力,即工质压降不能太大。
(不超过工作压力的10%)3)工质流动速度要合理,综合考虑压降和冷却需要。
4)出口汽温随锅炉负荷变化,需要调温手段。
5)管间(外)烟气流速受多种因素影响,合理选择,综合考虑传热、磨损、积灰及烟气阻力等因素。
(一般额定负荷在6m/s以上,绝不能低于3m/s。
尾部竖井烟道管间烟速不低于6m/s,水平烟道10-14m/s。
)6)在锅炉启停和甩负荷时可能发生不安全现象,需要旁路和排汽系统。
4.省煤器的布置特点:1)蛇形管水平布置,便于疏水,减少停炉期间的腐蚀;2)蛇形管错列布置,结构紧凑,且可提高对流换热能力和减少积灰;3)管内给水由下向上流动,管外烟气由上向下流动,呈逆流传热方式,具有最大的传热温差;4)大型电站锅炉的省煤器一般为蛇形管垂直于前后墙布置;5)为便于检修和清灰,对省煤器管组的高度有一定的限制。
锅炉蒸发设备的任务是利用炉膛高温火焰的辐射热加热经省煤器预热后的给水,使水在水冷壁中汽化,从而产生一定数量和品质的饱和蒸汽,送入过热器系统继续加热。
锅炉蒸发设备主要由汽包、下降管、水冷壁、联箱及其连接管道组成。
工质在由这些蒸发设备组成的闭合回路中流动,叫做水循环。
Rankine cycleBrayton cycle在近代动力锅炉中,炉墙上均敷设了水冷壁。
¾中压锅炉的水冷壁是蒸发受热面。
¾高压和超高压锅炉的水冷壁主要是蒸发受热面,但炉膛顶部常布置辐射过热器。
¾直流锅炉中,一部分水冷壁用作加热受热面和过热受热面,但水冷壁仍然主要是蒸发受热面。
¾在超临界压力直流锅炉中,水冷壁是加热水和过热蒸汽。
因此在低于临界压力的各种动力锅炉中,蒸发受热面一般指炉膛水冷壁,传热方式主要是辐射传热。
蒸发受热面炉膛水冷壁——辐射传热 凝渣管束——对流传热 锅炉管束——对流传热12水在回路中循环流动时,下降管侧压差Y xj 等于上升管侧压差Y ssxj xj xj p hg p p Y Δ−=−=ρ12下降管侧ss ss ss p hg p p Y Δ+=−=ρ12上升管侧ss xj ss xj p p hg hg Δ+Δ=−ρρ自然循环的实质:由重位压差造成的循环推动力克服上升系统和下降系统的流动阻力,推动工质在循环回路中改变成为汽流动。
即由于水冷壁管吸热,使水的密度ρxj,并在高度为h的回路中形成了重位压水混合物的密度ρss差。
回路高度越高,且工质密度差越大,形成的循环推动力越大。
工质密度差不仅与压力有关,而且与水冷壁管吸热强度有关。
在正常循环情况下,吸热越多,密度差越大,工质循环流动速度越高;而压力越高,汽、水的密度差降低,工质循环流动速度越低。
ρF构水冷壁的三种类型:光管水冷壁销钉式水冷壁膜式水冷壁焊接的膜式水冷壁、轧制的膜式水冷壁在中小容量锅炉上用得比较广泛的是光管水冷壁。
锅炉蒸发受热面的结构介绍进入锅炉的工质(如给水)在锅炉中吸热汽化的受热面称为锅炉蒸发受热面。
在热水锅炉和超临界压力锅炉中不存在蒸发受热面,水冷壁用作加热工质的辐射受热面.锅炉蒸发受热面以布置在炉膛中的吸收辐射热的水冷壁为主,称为辐射蒸发受热面.在低压锅炉中,由于水冷壁吸热不能满足全部工质汽化热的需要,因而在对流烟道中还需布置吸收对流传热量的锅炉管束,称为对流蒸发受热面.另一种对流蒸发受热面为中、高压锅炉中的凝渣管束.凝渣管束由炉膛后水冷壁出口烟窗处“拉稀”形成,其作用为保护炉膛出口处的对流过热器不结渣堵塞(文章来源:河南永兴锅炉集团转载请注明!)一、对流式过热器结构?对流式过絷器由一系列蛇形钢管和两个或更多的集箱构成。
蛇形管由无缝钢管弯制而成。
过热器管束常作顺列布置。
过热器管一般为光管,这种管子具有积灰少,易制造和价廉的特点,但如烟速低时,则光管的传热效果差。
为了强化烟气的传热,可采用带纵肋的鳍片管或带环状圆肋的肋片管作为过热器,这样可减小过热器的受热面和尺寸。
二、辐射式过热器结构?辐射式过热器主要布置在炉膛壁面上,吸收炉膛中辐射热量加热蒸汽,所以也称墙式过热器。
如与对流式过热器一起采用,有利于改善汽温调节特性。
这种过热器金属耗量少但因炉膛热负荷高和管内蒸汽冷却性能差,应注意运行安全性。
在起动时应采用给水冷却或用其他锅炉的蒸汽冷却等方法来保证辐射式过热器管得到冷却。
辐射式过热器管的我么范围与对流过热器的相同。
三、锅炉管束与凝渣管束结构凝渣管束布置在炉膛出口处,由后墙水冷壁管拉稀成为*列的几排对流管束。
凝渣管束管子外直径与后水冷壁管管径相同。
其纵向节距和横向节距与管子外直径的比值一般为3~5。
凝渣管束用于中、低压锅炉和旧式高压锅炉。
在现代高压和超高压锅炉中常采用屏式过热器降低炉膛出口烟气温度以防止后置的密集过热器受热面管束结焦堵塞。
四、自然循环锅炉的水冷壁结构一般锅炉水冷壁回路均由不受热的下降管和作为上升管的受热水冷壁管构成。
锅炉受热面发热率解释说明以及概述1. 引言1.1 概述锅炉受热面发热率是评估锅炉工作效率的重要指标之一。
它反映了锅炉受热面吸收能量并将其转化为蒸汽或热水的能力。
高效的锅炉需要具备较高的发热率,以确保充分利用供给的燃料和能源资源。
本文将对锅炉受热面发热率进行解释说明,并概述其重要性和应用前景。
1.2 文章结构本文主要分为四个部分进行阐述:引言、锅炉受热面发热率解释说明、锅炉受热面发热率概述和结论部分。
引言部分对文章进行总体概述,介绍了本文主题、目的及文章结构安排。
1.3 目的本文旨在深入探讨锅炉受热面发热率的定义、计算方法以及影响因素,并从实际应用角度概述了不同类型锅炉的发热率特点。
通过对国内外发展现状和趋势的综合分析,评价了该指标在工业生产中的重要性和应用前景,为相关研究提供指导意见。
请根据需要进行修改和完善,以确保符合你的要求。
2. 锅炉受热面发热率解释说明:2.1 受热面定义与分类:锅炉的受热面是指传递热能给水和蒸汽的部分,它们接触到高温废气并从中吸收热量。
根据位置和功能,锅炉的受热面可以分为水冷壁、过热器、再热器、省煤器等几大类。
- 水冷壁是位于锅筒内设有水管,用于吸收爆槽内或爆管处洩漏的高温废气,同时保护锅筒免受直接火焰辐射的伤害。
- 过热器主要用于加热从锅筒来的饱和蒸汽,将其升温至设定温度以上以满足使用要求。
- 再热器是在过热后继续增加蒸汽温度的装置,通过对蒸汽进行二次加热来提高能量利用效率。
- 省煤器则是通过将废弃的高温废气散发给进入锅筒的新进风来预先加热供给给水系统并提高整体能效。
2.2 发热率计算方法:发热率是锅炉受热面的重要性能参数,表示单位面积受热面积在单位时间内向水和蒸汽释放的热量。
其常用的计算方法是通过测量锅炉输入和输出的热量、流体质量以及温度来进行估算。
一种常见的计算方法是利用传热方程来推导发热率。
该方程基于传导、对流和辐射三种传热方式,并根据受热面材料特性、工况参数等因素进行修正。
锅炉受热面施工顺序
锅炉受热面施工是锅炉制造的重要环节,施工顺序的正确与否对于锅炉的运行效率和安全性有着重要的影响。
下面,我将介绍锅炉受热面施工的顺序以及每个施工环节的作用,希望对大家有所帮助。
首先要介绍的是锅炉受热面的种类,根据不同的传热方式,可以将锅炉受热面分为对流受热面和辐射受热面两种。
对流受热面包括锅炉的几个部分,如锅筒、烟道、烟气净化器等,主要的作用是传导热量,让水进行加热。
而辐射受热面主要指的是锅炉的炉膛墙,它的作用是利用火焰的辐射热量将水加热。
在施工时,先进行的是对流受热面的施工。
对流受热面的施工包括焊接和翻边。
焊接是将管子和头部进行焊接,形成一个完整的受热面,而翻边则是将管子的边缘翻起,使其稳定固定在头部上。
这样能够保证受热面的牢固度和强度。
接下来进行的是辐射受热面的施工。
辐射受热面的施工主要分为两个部分,即耐火砖的铺设和水冷壁的焊接。
耐火砖是为了在高温环境下能够保证炉膛的结构安全,而水冷壁则是为了保证炉膛壁面的冷却和防腐。
在施工过程中,铺设耐火砖的工作需要先完成,而后进行水冷
壁的焊接。
最后进行的是受热面的试压与检测。
在受热面施工过程结束后,进行试压与检测可以保证受热面的安全性和完整性。
试压主要是通过水力的方式对受热面进行压力测试,检测则是通过一系列的检测手段对受热面进行盘点。
总之,施工顺序的正确与否对于锅炉运行效率和安全性有着极其重要的影响。
以上就是锅炉受热面施工顺序以及每个施工环节的作用,希望对大家有所帮助。