高分子化学 第三章
- 格式:doc
- 大小:294.50 KB
- 文档页数:11
1. 数均分子量为1×105的聚乙酸乙烯酯水解得到聚乙烯醇。
聚乙烯醇用高碘酸氧化,断开1,2-二醇键后得到的聚乙烯醇的平均聚合度Xn=200。
计算聚乙酸乙烯酯中首-首连接的百分数(假定聚乙酸乙烯酯水解前后的聚合度不变)。
答案:聚乙酸乙烯酯或聚乙烯醇的聚合度Xn=(105/86)≈1162.8(3分)根据断开1,2-二醇键后得到的聚乙烯醇的平均聚合度Xn=200,可知,其中首-首相连的个数=(1162.8/200)-1≈4.882(3分)即1162.8个连接中,有4.882个单体以首-首相连,所以首-首连接的百分数=(4.882/1162.8)*100%≈0.41%(3分)1. 甲基丙烯酸甲酯在50℃下用偶氮二异丁腈引发聚合,已知该条件下,链终止既有偶合终止,又有歧化终止 ,生成聚合物经实验测定引发剂片断数目与聚合物分子数目之比为 1.25׃1,请问在此聚合反应中偶合终止和歧化终止各占多少?参考答案:设偶合终止消耗的引发剂片断数目为x,岐化终止消耗的引发剂片断数目为y。
根据自由基聚合反应终止特点得: x + y=1.25 ①x/2 + y=1 ②x =0.5, y=0.75 (4分)偶合终止所占比例0.5/1.25=40% (2分)歧化终止所占比例0.75/1.25=60% (2分)2. 苯乙烯以二叔丁基过氧化物为引发剂,苯为溶剂,在60℃下进行聚合。
已知:[M]=1.0 mol L-1, [I]=0.01 mol L-1, R i=4.0×10-11 mol L-1 s -1, R p=1.5×10-7 mol L-1 s -1, C m=8.0×10-5, C i =3.2×10-4, C s=2.3×10-6, 60℃下苯和苯乙烯的密度分别为0.839 g ml-1和0.887 g ml-1, 假定苯乙烯-苯体系为理想溶液, 试求fk d, 动力学链长和平均聚合度.参考答案:由R i=2fk d[I]可求得:fk d= R i/2[I]=4×10-11/2×0.01=2.0×10-910-11 S-1 (2分)动力学链长为ν= R p/R i=1.5×10-7/4×10-11=3750 (2分)因为υ=k p2[M]2/2k t R p[S]=(1-104/887)×839/78=9.5 mol L-1(2分)所以1/X n=1/2ν+Cm+ C I[I]/ [M]+ C S[S]/ [M]=1/3750×2+8.0×10-5+3.2×10-4×0.01/1.0+2.3×10-6×9.5/1.0=2.43×10-4 (2分)平均聚合度Xn≈4195(2分)1. 以二特丁基过氧化物为引发剂,在60℃下研究苯乙烯在苯中的聚合反应,苯乙烯浓度为1.0 mol dm-3。
第三章自由基聚合习题1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。
2.什么是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80O C自由基聚合时的平衡单体浓度。
3.什么是自由基聚合、阳离子聚合和阴离子聚合?4.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。
CH2=CHCl,CH2=CCl2,CH2=CHCN,CH2=C(CN)2,CH2=CHCH3,CH2=C(CH3)2,CH2=CHC6H5,CF2=CF2,CH2=C(CN)COOR,CH2=C(CH3)-CH=CH2。
5.判断下列烯类单体能否进行自由基聚合,并说明理由。
CH2=C(C6H5)2,ClCH=CHCl,CH2=C(CH3)C2H5,CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3CH=CHCOOCH3。
6.对下列实验现象进行讨论:(1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。
(2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。
(3)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。
7.以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯自由基聚合历程中各基元反应。
8.对于双基终止的自由基聚合反应,每一大分子含有1.30个引发剂残基。
假定无链转移反应,试计算歧化终止与偶合终止的相对量。
9.在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接?10.自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系?11.自由基聚合常用的引发方式有几种?举例说明其特点。
12.写出下列常用引发剂的分子式和分解反应式。
其中哪些是水溶性引发剂,哪些是油溶性引发剂,使用场所有何不同?(1)偶氮二异丁腈,偶氮二异庚腈。
第三章 自由基聚合1.以过氧化二苯甲酰作引发剂,在60℃进行苯乙烯聚合动力学研究,数据如下: (1)60℃苯乙烯的密度为0.887g/mL (2)引发剂用量为单体重的0.109% (3)R p =0.255×10-4 mol/ L·s (4)聚合度=2460 (5)f =0.80(6)自由基寿命τ=0.82s试求k d 、k p 、k t ,建立三个常数的数量级概念,比较[M]和[M·]的大小,比较R i 、R p 、R t 的大小。
全部为偶合终止,a =0.5解:设1L 苯乙烯中:苯乙烯单体的浓度[M]=0.887×103/104=8.53mol/L (104为苯乙烯分子量) 引发剂浓度[I]= 0.887×103×0.00109/242=4.0×10-3mol/L (242为BPO 分子量)代入数据 ⎪⎪⎩⎪⎪⎨⎧⨯=⨯⨯⨯=⨯⨯=⨯----)10255.0/53.8)(2/(0.8210255.0/53.8246053.8)104()/80.0(10255.044222/132/14t p t p t d p k k k k k k k解得:k d =3.23×10-6 s -1 10-4~10-6R p =k p (f k d k t)1/2[I]1/2[M]5.022][)(22=+==D Ca R aK M K pt p k n χpt p R M k k ][2⋅=τk p =1.76×102 L/mol·s 102~104 k t =3.59×107 L/mol·s 106~108[M·]=R p / k p [M]=0.255×10-4/(1.76×102×8.53)=1.70×10-8mol/L 而[M]=8.53mol/L 可见,[M]>>[M·]R i =2fk d [I]=2×0.80×3.23×10-6×4×10-3=2.07×10-8mol/L·s R t =2k t [M·]2=2×3.59×107×(1.70×10-8)2=2.07×10-8mol/L·s 而已知R p =2.55×10-5mol/L·s,可见R p >>R i =R t2.以过氧化二特丁基为引发剂,在60℃下研究苯乙烯聚合。
第三章参考答案2.下列烯类单体适于何种机理聚合?自由基聚合,阳离子聚合或阴离子聚合?并说明理由。
解:①.氯乙烯,适于自由基聚合。
Cl-是吸电子基团,有共轭效应,但均较弱②.偏二氯乙烯,适于自由基聚合,但也可进行阴离子聚合。
两个Cl-原子的共同作用使其可进行两种聚合。
③.丙稀腈,适于自由基聚合和阴离子聚合。
CN-基是强吸电子基团,并有共轭效应。
④. 2-腈基丙稀腈,适于阴离子聚合。
两个CN -基的吸电子基团倾向过强,只能阴离子聚合。
⑤. 丙稀,由于烯丙基效应,使其易向单体转移,不能进行自由基聚合。
一般采取配位聚合的方式合成聚合物。
⑥. 异丁烯,适于阳离子聚合。
3CH -是供电子基团,且与双键有超共轭效应,而且两个3CH -的共同作用,使其可以阳离子聚合。
⑦. 苯乙烯,适于自由基聚合,阳离子和阴离子聚合。
因为共轭体系π电子容易极化并易流动。
⑧. 四氟乙烯,适于自由基聚合。
F -原子体积小,结构对称。
⑨. 2-腈基丙烯酸酯,适于阴离子聚合和自由基聚合。
CN -基和COOR -两个吸电子基团使其易于阴离子聚合,同时又具有共轭效应,可进行自由基聚合。
⑩. 异戊二烯,适于自由基聚合,阳离子和阴离子聚合。
因为共轭体系π电子容易极化并易流动。
3.判断下列烯类能否进行自由基聚合,并说明理由。
解:①. CH 2=C(C 6H 5)2 偏二苯乙烯,不能。
因为二苯基的空间位阻过大,只能形成二聚体。
②. ClHC=CHCl 1,2-二氯乙烯,不能。
因为单体结构对称,1,2-二取代又具有较大的空间位阻。
③. CH 2=C(CH 3)C 2H 5 2-甲基丁烯,不能。
由于双键上的电荷密度过大,不利于自由基的进攻,且易转移生成稳定的烯丙基自由基。
④. CH 3CH=CHCH 3 2-丁烯,不能。
因为单体结构对称,空间位阻较大,且易生成烯丙基自由基。
⑤. CH 2=CHOCOCH 3 丙烯酸甲酯,能。
酯基有弱的吸电子效应及共轭效应。
⑥. CH 2=C(CH 3)COOCH 3 甲基丙烯酸甲酯,能。
1,1-二取代空间位阻小,且酯基有共轭效应。
⑦. CH 3CH==CHCOOCH 3 2-丁烯酸甲酯,不能。
由于 1,2-二取代具有较大的空间位阻。
⑧.CF 2=CFCl 三氟氯乙烯,能。
由于氟的原子半径小,位阻效应可以忽略。
5.是否所有的自由基都可以用来引发烯类单体聚合?试举活性不等自由基3~4例,说明应用结果。
(P.67)不是。
过于活波和过于稳定的自由基都不能引发烯类单体聚合。
只有活性适中的自由基才能引发单体聚合。
例如:⋅⋅3 CH H 和过于活波,易引起爆聚,很少在自由基聚合中应用;⋅⋅256 RCH H C 和自由基都可以用来引发烯类单体聚合;而()⋅C H C 356有三个苯环与P 独电子共轭,非常稳定,无引发能力,而成为阻聚剂。
14.氯乙烯、苯乙烯、甲基丙烯酸甲酯聚合时,都存在自动加速现象,三者有何异同?这三种单体聚合的链终止方式有何不同?氯乙烯聚合时,选择半衰期约2h 的引发剂,可望接近匀速反应,解释其原因。
当转化率达一定值时,随转化率的增加,反应速率会突然增加,这种现象称自动加速。
这是由于凝胶效应所致,体系的粘度增大,使链终止过程中链的重排受阻,链自由基双基终止速率降低,同时链增长速率变化不大,导致自动加速。
单体的种类不同,聚合物在单体中的溶解情况不同,凝胶效应也不同,三种单体出现自动加速的转化率不同,即自动加速的程度不同。
以本体聚合为例,苯乙烯是其聚合物的良溶剂,其出现自动加速的转化率较高,约为50%,甲基丙烯酸甲酯的是其聚合物的不良溶剂,其自动加速的转化率较低,在约大于10%时出现,而氯乙烯单体在聚合时由于聚氯乙稀-氯乙烯是部分互溶体系,氯乙烯溶胀体中单体的含量约为30%,类似于沉淀聚合,凝胶效应严重,因此,其自动加速将更早到来。
链终止方式与单体的种类和聚合温度有关,一般偶合终止的活化能低,低温有利于偶合终止,升高温度,歧化终止增多。
⑴ 氯乙烯:其链转移常数较高,约310-,其转移速率超过了链终止速率,所以其终止方式主要是向单体转移。
氯乙烯聚合时,选择半衰期约2h 的引发剂,可使其接近匀速反应,是由于正常聚合使速率减少的部分与自动加速部分互补,从而达到匀速。
⑵ 苯乙烯:其链转移常数较小,为5410~10--,其终止方式主要是正常终止为主,DC X n +=2ν。
如:60℃时苯乙烯以偶合终止为主,占77%,而歧化终止占23%。
⑶ 甲基丙烯酸甲酯:其链转移常数较小,为5410~10--,其终止方式主要是正常终止为主,D2C X n +=ν。
如:60℃时甲基丙烯酸甲酯以歧化终止为主,占79%,而歧化终止占21%。
17.动力学链长的定义是什么?与平均聚合度的关系?链转移反应对动力学链长和聚合度有何影响?动力学链长是指一个活性种从引发到终止所消耗的单体分子数。
[]pt 22p R k 2M k =ν数均聚合度是指平均每个聚合物分子所包含的重复单元数。
稳态条件下:∑∑++=+=trtd tc ptrt p n R R R R R R R X 2⑴.无链转移时 tdtc p n R R R X +=2,如果活性链均为偶合终止:ν2X n =,歧化终止:ν=n X , 两种终止方式:D2C X n +=ν(C 、D 是偶合、歧化终止分率)⑵.对容易发生向单体、引发剂、或溶剂转移的体系:歧化终止:[][][][][][][][][]M S C M I C C M k R k M S C M I C C X SI M p pt S IM n +++=++++=22211ν偶合终止:[][][][][][][][][]M S C M I C C M k R k M S C M I C C X SI M p p t S I M n+++=++++=22211ν链转移反应对动力学链长和聚合度的影响:链转移反应通常包括链自由基向单体、引发剂和溶剂等转移,发生链转移会导致自由基提前终止,使聚合度降低,向大分子转移的结果是使大分子链产生支化(分之间转移一般产生长支链,分子内转移一般产生短支链)。
计算题8.用过氧化二苯甲酰作引发剂,苯乙烯聚合时各基元反应活化能为6.125=d E ,6.32=p E ,mol kJ E t 10=,试比较50℃增至60℃,以及80℃增至90℃,总反应速率常数和聚合度变化的情况怎样?光引发的情况又如何?????10 6.32 6.1255060506080905060=======n n n n t p d X X X X k k k kmol kJ E mol kJ E mol kJ E 求:已知:[][]molkJ E E E E e k k Aek M I k fk k R t d p T T R E RTEt d p p 4.9021212111122121=-+==∴=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--总活化能:总反应速率常数:34.275.2 80905060==k k k k 升高温度,速率常数增大。
()[][]molkJ E E E E I M k fk k X t d p n t d p n 2.3521212 2121-=--=⋅==ν:无链转移,歧化终止时⎪⎪⎭⎫⎝⎛-=211112T T R E n n n e X X719.0675.080905060==n n n n X X X X 升高温度,聚合度减小。
molkJ E E E E t p n 6.2721=-==光引发时:3.136.1 8090809050605060====n n n n X X k k X X k k 升高温度,速率常数和聚合度均增加。
12.以过氧化叔丁基作引发剂, 60℃时苯乙烯在苯中进行溶液聚合,苯乙烯溶液浓度为()10.1-⋅L mol ,过氧化物浓度为()101.0-⋅L mol ,初期引发速率和聚合速率分别为11711105.1100.4----⋅⋅⨯⨯s L mol 和。
苯乙烯为理想体系,计算()d fk ,初期聚合度,初期动力学链长和聚合度,求过氧化物分解所产生的自由基平均要转移几次,分子量分布宽度如何?计算时采用下列数据和条件:5100.8-⨯=M C ,4102.3-⨯=I C ,6103.2-⨯=S C , 60℃下苯乙烯密度为1887.0-⋅ml g ,苯的密度为1839.0-⋅ml g 。
[][]????103.2102.3100.8105.1,100.4 01.0 ,0.1 645711====⨯=⨯=⨯=⋅⨯=⋅⨯===-----d X fk C C C s L mol R s L mol R L mol I L mol M n d S I M p i 分布宽度转移次数=?求:,,,已知:ν[][]911100.201.02100.422--⨯=⨯⨯==∴=I R fk I fk R i d d i 解:3750100.4105.1117=⨯⨯==--i pR R ν动力学链长:[]L mol S 50.97883988710411=⎪⎭⎫ ⎝⎛⨯-=溶剂浓度:聚合度:苯乙烯一般为偶合终止。
[][][][]45654nn S IM n 1035.2102.2102.3100.8103.1X 14255X M S C M I C C 21X 1-----⨯=⨯+⨯+⨯+⨯==+++=聚合度:偶合终止时:ν每个自由基平均转移的次数:偶合终止生成大分子占55%(55.01035.2103.144=⨯⨯=--大分子总数偶合终止形成大分子数),对应链转移终止占45%(45.01035.21005.144=⨯⨯=--大分子总数链转移形成大分子数)。
即,有2×55个链自由基偶合终止,就有45次链转移终止,因此每个增长链在消活前平均转移0.41次。
即:()41.055245=⨯=消失速率转移速率分子量分布宽度:41.1425560006000139995.021,425512====-==-==-=n w w nn X X d pX X p pX 偶合终止:如果是歧化终止:[][][][]456541075.3102.2102.3100.8107.21266711-----⨯=⨯+⨯+⨯+⨯==+++=nn S IM n X X M S C M I C C X 聚合度:歧化终止时:ν歧化终止生成的大分子占72%,对应转移终止占28%。
即有72个链自由基歧化终止,就有28次链转移终止,因此每个增长链在消活前平均转移0.39次。
()39.07228=87.1266749994999119996.011,266711====-+==-==-=n w w nn X X d pp X X p pX 歧化终止: 15.用过氧化二苯甲酰作引发剂,苯乙烯在60℃进行本体聚合,试计算链引发、向引发剂转移、向单体转移三部分在聚合度倒数中各占多少百分比?对聚合度有什么影响?计算时需选用下列数据:[]104.0-⋅=L mol I ,8.0=f ,16100.2--⨯=s k d ,11176--⋅⋅=s mol L k p ,117106.3--⋅⋅⨯=s mol L k t ,1887.0-⋅=ml g ρ,05.0=I C ,41085.0-⨯=M C[]L molM 53.81041000887.0=⨯=单体浓度:解:[][]521211033.6I -⨯=⎪⎪⎭⎫ ⎝⎛=M kk f k R tdP p 聚合反应速率: []5.4941033.6106.3253.81762572222=⨯⨯⨯⨯⨯==-pt pR k M k ν动力学链长:[][]341032.153.804.005.01085.05.49421211--⨯=⨯+⨯+⨯=++=M I C C X IM n ν偶合终止时:—欢迎下载 11 ()()[][]()%44.6 1085.0%4.17 103.2 %8.75100.121 414131占,的贡献:向单体转移部分对占的贡献:向引发剂转移部分对占的贡献:正常偶合终止对------⨯=⨯=⨯=M n I n n C X M I C X X ν。