Ansys nCode疲劳分析及应用
- 格式:pdf
- 大小:2.65 MB
- 文档页数:54
第十四章疲劳分析的数值计算方法及实例第一节引言零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。
这种现象称为疲劳破坏。
疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。
金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。
随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。
近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。
疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。
金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。
但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。
据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。
因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。
疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。
这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。
因此,提高构件疲劳强度的基本途径主要有两种。
一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。
利用ANSYS随机振动分析功能实现随机疲劳分析ANSYS是一款常用的工程仿真软件,具有强大的分析功能。
在进行随机疲劳分析时,可以利用ANSYS的随机振动分析功能来模拟随机加载下的疲劳损伤。
随机疲劳分析是一种考虑工作载荷随机性对结构疲劳寿命影响的方法。
通过采用随机振动分析,可以考虑到工作载荷的随机特性,进一步分析结构的疲劳损伤。
ANSYS中的随机振动分析功能可以通过以下步骤来进行:1.几何建模:首先,需要进行结构的几何建模。
使用ANSYS的几何建模工具可以创建出要进行疲劳分析的结构。
2.材料属性定义:在进行材料属性的定义时,需要确定材料的弹性模量、泊松比、密度和疲劳参数等。
可以根据材料的材料数据手册来获取这些参数。
3.边界条件设置:在进行随机振动分析时,需要设置结构的边界条件。
这些边界条件可以是结构受到的随机外载荷或者是结构与其他部件的接触情况。
4.加载设置:在进行随机振动分析时,需要设置结构受到的随机载荷。
这些载荷可以是来自于实际工况的随机载荷,也可以通过振动台试验数据等手段获取。
5.随机振动分析:利用ANSYS的随机振动分析功能,可以进行频域分析或时域分析。
频域分析可以用于计算结构的响应功率谱密度,时域分析可以用于计算结构的随机响应。
6.疲劳寿命计算:在获得结构的随机响应后,可以进行疲劳寿命计算。
根据结构的随机响应和材料的疲劳性能参数,可以使用ANSYS的疲劳分析功能来计算结构的疲劳寿命。
通过以上步骤,可以利用ANSYS的随机振动分析功能实现随机疲劳分析。
这种方法能够更全面地考虑结构在实际工作环境下的疲劳寿命,为结构的设计和改进提供准确的参考。
需要注意的是,在进行随机疲劳分析时,需要对随机载荷进行合理的统计分析,获取载荷的概率密度函数。
如果没有足够的载荷数据,也可以使用统计模型进行估计。
此外,还需要对材料的疲劳性能参数进行准确的测定,以保证疲劳寿命计算的准确性。
总之,利用ANSYS的随机振动分析功能进行随机疲劳分析是一种有效的方法,可以更准确地评估结构在随机工作载荷下的疲劳性能,为结构的设计和改进提供有力的支持。
ncode疲劳仿真操作流程ENGLISH ANSWER.Introduction.Fatigue analysis is a critical aspect of engineering design, as it helps ensure the safety and durability of structures and components. nCode Fatigue is a powerful software tool that enables engineers to perform comprehensive fatigue simulations, taking into account various loading conditions, material properties, and environmental factors. This article provides a step-by-step guide to the nCode Fatigue simulation workflow, outlining the key steps involved in setting up, running, and analyzing fatigue simulations.Step 1: Model Setup.1. Import Geometry: Import the CAD geometry of the component or structure to be analyzed. nCode Fatiguesupports various CAD formats, including STEP, IGES, and Parasolid.2. Define Material Properties: Specify the material properties relevant to fatigue analysis, such as Young's modulus, Poisson's ratio, and fatigue strength coefficients.3. Create Load Cases: Define the loading conditionsthat the component will experience during its service life. Load cases can include static, dynamic, and environmental loads.4. Mesh the Model: Generate a mesh of the model using finite element analysis (FEA) techniques. The mesh density and element type should be carefully chosen to ensure accurate results.Step 2: Simulation Setup.1. Select Fatigue Criteria: Choose the fatigue criteria to be used in the simulation, such as the Goodman, Soderberg, or SWT criteria.2. Define Stress Concentration Factors: Identify any stress concentration areas in the model and apply appropriate stress concentration factors to account for their effects on fatigue life.3. Set Simulation Parameters: Specify the simulation parameters, including the number of cycles, time step, and convergence criteria.Step 3: Simulation Execution.1. Run the Simulation: Start the fatigue simulation and monitor its progress. nCode Fatigue utilizes advanced numerical algorithms to solve the fatigue equations and calculate fatigue damage accumulation.2. Monitor Results: Observe the simulation results in real-time, including the distribution of fatigue damage, stress, and strain.Step 4: Post-Processing.1. Analyze Fatigue Damage: Review the fatigue damage results and identify critical areas of the model that are prone to failure.2. Plot Damage Contours: Generate contour plots to visualize the distribution of fatigue damage throughout the model.3. Create Fatigue Life Estimates: Use the simulation results to estimate the fatigue life of the component under different loading conditions.Conclusion.By following these steps, engineers can leverage nCode Fatigue to perform comprehensive fatigue simulations, providing valuable insights into the fatigue behavior of their designs. This enables them to optimize designs for improved durability and safety, ensuring the reliability of their products in real-world applications.CHINESE ANSWER.简介。
ANSYS的疲劳分析方法及应用作者:高琳来源:《科技创新导报》2011年第33期摘要:文章首先介绍了大型软件ANSYS分析疲劳寿命的可以实现的功能,并阐述了ANSYS 疲劳分析的基本步骤,最后结合一个实例展示了分析的过程并给出了结果。
关键词:ANSYS 疲劳分析 S-N曲线中图分类号:TG405 文献标识码:A 文章编号:1674-098X(2011)11(c)-0057-011 引言疲劳是指结构在低于静态强度极限的载荷重复作用下出现疲劳断裂的现象。
如一根能够承受300kN拉力的杆,在100kN的循环载荷下,经历1000000次循环后可能出现破坏。
ANSYS具有以下疲劳计算功能:(1)在一系列选定的位置上,确定一定数目的事件及其载荷(一个应力状态);(2)在一个选定的位置上定义应力集中系数和定义每个应力循环的比例系数;(3)用后处理所得应力计算结果确定单元疲劳寿命耗用系数。
2 ANSYS疲劳分析的基本步骤疲劳计算在ANSYS的通用后处理器中进行,在此之前必须已经完成应力计算。
ANSYS疲劳分析一般包括下列6个步骤:(1)进行通用静力分析。
包括定义单元属性、建立几何模型、生成有限元模型、施加载荷并求解;(2)进入后处理并恢复数据库。
疲劳汁算在通用后处理器中进行,在此之前必须已经完成应力计算;(3)建立位置、事件和载荷的数目,定义材料疲劳性质,确定位置和应力集中系数。
默认情况下,一个事件内可以包含3个位置、10个事件和3个载荷。
疲劳分析时的材料性质包括:应力寿命曲线(S—N曲线)、温度应力曲线和材料的弹塑件参数M和N;(4)存储应力,指定时间循环次数和比例系数。
为了进行疲劳分析,必须知道不同事件下的应力,每个位置处得载荷和每个事件的循环次数;(5)激活疲劳计算。
完成上述设置后,即可进行疲劳计算。
选择菜单Main Menu:General Postproc——Calculate Fatigue;(6)观察结果。
ANSYS疲劳分析疲劳是指结构在低于静态极限强度载荷的重复载荷作用下,出现断裂破坏的现象。
例如一根能够承受300 KN 拉力作用的钢杆,在200 KN 循环载荷作用下,经历1,000,000 次循环后亦会破坏。
导致疲劳破坏的主要因素如下:载荷的循环次数;每一个循环的应力幅;每一个循环的平均应力;存在局部应力集中现象。
真正的疲劳计算要考虑所有这些因素,因为在预测其生命周期时,它计算“消耗”的某个部件是如何形成的。
1.ANSYS程序处理疲劳问题的过程ANSYS 疲劳计算以ASME锅炉和压力容器规范(ASME Boiler and Pressure Vessel Code)作为计算的依据,采用简化了的弹塑性假设和Mimer累积疲劳准则。
除了根据ASME 规范所建立的规则进行疲劳计算外,用户也可编写自己的宏指令,或选用合适的第三方程序,利用ANSYS 计算的结果进行疲劳计算。
《ANSYS APDL Programmer’s Guide》讨论了上述二种功能。
ANSYS程序的疲劳计算能力如下:(1)对现有的应力结果进行后处理,以确定体单元或壳单元模型的疲劳寿命耗用系数(fatigue usage factors)(用于疲劳计算的线单元模型的应力必须人工输入);(2)可以在一系列预先选定的位置上,确定一定数目的事件及组成这些事件的载荷,然后把这些位置上的应力储存起来;(3)可以在每一个位置上定义应力集中系数和给每一个事件定义比例系数。
2.基本术语位置(Location):在模型上储存疲劳应力的节点。
这些节点是结构上某些容易产生疲劳破坏的位置。
事件(Event):是在特定的应力循环过程中,在不同时刻的一系列应力状态。
载荷(Loading):是事件的一部分,是其中一个应力状态。
应力幅:两个载荷之间应力状态之差的度量。
程序不考虑应力平均值对结果的影响。
3.疲劳计算完成了应力计算后,就可以在通用后处理器POST1 中进行疲劳计算。
Ansys疲劳分析1 疲劳的定义疲劳是指结构在低于静态极限强度载荷的重复载荷作用下,出现断裂破坏的现象。
例如一根能够承受 300 KN 拉力作用的钢杆,在 200 KN 循环载荷作用下,经历 1,000,000 次循环后亦会破坏。
导致疲劳破坏的主要因素如下:载荷的循环次数;每一个循环的应力幅;每一个循环的平均应力;存在局部应力集中现象。
真正的疲劳计算要考虑所有这些因素,因为在预测其生命周期时,它计算“消耗”的某个部件是如何形成的。
1.1 ANSYS程序处理疲劳问题的过程ANSYS 疲劳计算以ASME锅炉和压力容器规范(ASME Boiler and Pressure Vessel Code)作为计算的依据,采用简化了的弹塑性假设和Mimer累积疲劳准则。
除了根据 ASME 规范所建立的规则进行疲劳计算外,用户也可编写自己的宏指令,或选用合适的第三方程序,利用 ANSYS 计算的结果进行疲劳计算。
《ANSYS APDL Programmer‘s Guide》讨论了上述二种功能。
ANSYS程序的疲劳计算能力如下:对现有的应力结果进行后处理,以确定体单元或壳单元模型的疲劳寿命耗用系数(fatigue usage factors)(用于疲劳计算的线单元模型的应力必须人工输入);可以在一系列预先选定的位置上,确定一定数目的事件及组成这些事件的载荷,然后把这些位置上的应力储存起来;可以在每一个位置上定义应力集中系数和给每一个事件定义比例系数。
1.2 基本术语位置(Location):在模型上储存疲劳应力的节点。
这些节点是结构上某些容易产生疲劳破坏的位置。
事件(Event):是在特定的应力循环过程中,在不同时刻的一系列应力状态。
载荷(Loading):是事件的一部分,是其中一个应力状态。
应力幅:两个载荷之间应力状态之差的度量。
程序不考虑应力平均值对结果的影响。
2 疲劳计算完成了应力计算后,就可以在通用后处理器 POST1 中进行疲劳计算。
Ansys疲劳分析影响疲劳的主要因素包括:●载荷循环的次数●每一个载荷循环中应力值的范围●每一个载荷循环周期中平均应力值●是否存在局部应力集中(local stress concentrations)ANSYS疲劳分析计算基于ASME Boiler和pressure vessel code(压力容器程序),第三节,来指导范围计算,简化弹塑性适用条件,并根据Miner’s准则累积计算实效总和。
ANSYS可进行下列疲劳计算:●可以通过后处理已有的应力结果,来确定实体单元或壳单元的疲劳因子(也可以手动输入应力值来计算线单元模型的疲劳)●对于某工况可以存储其应力和载荷。
●对于每一个位置可以定义其应力集中系数和每一个工况的缩放因子其中,位置是指模型中的一个节点,将存储此处的疲劳应力。
位置一般选在易发生疲劳破坏的点处。
工况是指在一个特定应力循环周期内,不同时间出现的一系列应力条件。
载荷是指一种应力条件,是工况的一部分。
交变应力集度(alternating stress intensity)用来度量两个不同载荷之间应力状态的差别。
进行疲劳分析通常由5个步骤:1.调用ANSYS数据,进入后处理模块2.确定大小(位置的数量,工况和载荷),定义疲劳材料属性,确定应力位置,并定义应力集中系数。
3.存储各种工况和载荷条件下的关注点的应力值;赋予工况重复和缩放因子。
4.激活疲劳计算。
5.查看结果。
14.3.1调用ansys数据,进入后处理模块具体的过程为:1.进入后处理模块,Command(s): /POST1GUI: Main Menu> General Postproc2.调用ansys数据,Command(s): RESUMEGUI: Utility Menu> File> Resume from14.3.2确定大小,疲劳材料属性和位置需要定义如下数据:●位置、工况和载荷的最大值●疲劳材料属性●应力的位置和应力集中系数。
ncode常用的应力疲劳计算方法应力疲劳是指物体在反复加载和卸载过程中发生的疲劳损伤,常见于机械结构和材料中。
为了预测和评估物体在长期使用中的疲劳寿命,工程师们需要进行应力疲劳计算。
ncode是一种常用的应力疲劳计算软件,它提供了多种计算方法,包括应力振幅法、极限载荷法和应变振幅法等。
应力振幅法是一种常见的应力疲劳计算方法,它基于应力振幅和材料的疲劳强度。
在这种方法中,工程师首先需要确定物体的应力振幅,即最大应力和最小应力之差。
然后,根据材料的疲劳强度曲线,可以得到与应力振幅相对应的疲劳寿命。
通过反复加载和卸载的过程,可以累积计算物体的总疲劳寿命。
极限载荷法是另一种常用的应力疲劳计算方法,它基于物体在不同载荷下的破坏寿命。
在这种方法中,工程师需要确定物体在各种载荷下的破坏寿命。
然后,通过将物体在不同载荷下的破坏寿命与实际工作载荷进行比较,可以预测物体的疲劳寿命。
这种方法适用于那些在工作过程中承受不同载荷的物体,如桥梁、飞机和汽车零部件等。
应变振幅法是一种基于材料的应变和疲劳寿命之间关系的计算方法。
在这种方法中,工程师需要确定物体在反复加载和卸载过程中的应变振幅。
然后,通过将应变振幅与材料的疲劳强度曲线进行比较,可以预测物体的疲劳寿命。
应变振幅法适用于那些在工作过程中承受较小载荷但应变较大的物体,如弹簧和橡胶制品等。
除了以上提到的方法,ncode还提供了其他一些应力疲劳计算方法,如Smith-Watson-Topper方法、Rainflow计数法和Fracture Mechanics方法等。
这些方法可以根据具体的应用需求选择使用。
而且,ncode还提供了友好的用户界面和强大的计算功能,使工程师能够更方便地进行应力疲劳计算和结果分析。
ncode是一种常用的应力疲劳计算软件,提供了多种计算方法,包括应力振幅法、极限载荷法和应变振幅法等。
这些方法可以帮助工程师预测和评估物体的疲劳寿命,从而确保结构和材料的可靠性和安全性。
振动疲劳—ansys随机振动疲劳分析随机振动疲劳分析流程图随机振动疲劳分析将第一步频率响应分析得到的结果文件作为输入,并在疲劳软件中输入振动过程中的PSD曲线,经计算得到零件的振动疲劳寿命。
故随机振动疲劳分析可分为如下步骤:1.频率响应分析结果输入2.功率谱密度PSD输入3.材料疲劳特性设置4.各工况与PSD关联设置5.振动疲劳求解器参数设置6.输出设置7.分析结果处理频率响应分析结果输入功率谱密度PSD输入振动疲劳求解器Ncode云图显示输出设置Ncode随机振动疲劳分析流程图1.频率响应分析结果输入频率响应分析应与PSD 的单位相对应,比如PSD 单位为g^2/Hz ,则进行频率响应分析时可输入1g 的加速度激励来分析。
(如采取单位制ton-mm-s-N ,此时1g 的加速度激励为9800mm/s^2,应在分析中输入9800大小的加速度激励)1.1单位问题1.2频率响应分析结果输出设置为了避免输出结果过大,可以在输出中设置需要进行疲劳分析的部件,以set 形式输出,同时可设置输出频次Frequency=n ,只输出频响分析应力结果即可。
*OUTPUT, FIELD, Frequency=5 *ELEMENT OUTPUT, ELSET = ele_setS, 以Abaqus 进行频响分析为例,输出设置如下:每5步输出一次只输出单元集合名为ele_set 的应力结果2.功率谱密度PSD输入PSD可以用以下2种方式输入:1.通过MultiColumnInput读入定义好的CSV文件输入2.通过VibrationGenerator生成PSD 曲线CSV文件格式如下:(可在帮助文档中找一个PSD的CSV文件作为模板)。
车床结构疲劳分析车床结构如下图所示,框架整体材料为Q235B,各部件间通过螺栓连接,各部件板材通过焊接成为整体,车床结构受力与边界条件如下所示。
如上所示部件,在ANSYSWorkbench中进行静力学分析,将结果耦合到nCode中进行疲劳强度分析,整体流程如下所示。
第一步,几何清理;去除不必要的圆孔和倒角,螺栓和焊接连接均采用共节点和绑定想形式来表示,最终几何模型如下所示。
第二步,有限元网格划分:采用高阶单元,四面体划分,即带有中间节点,保证计算精度第三步,材料属性定义;不可以直接用Workbench中的材料,因为他们不带SN曲线,需要调用NCode中的材料,建议在workbench 的Engineering Data中做好材料,然后再nCode中直接使用该材料在选用nCode材料的时候需要注意如下几点:部件材料为Q235,但是nCode中均为欧标,没有国标对应的牌号,所以需要选择相近的;首先要选择同一类型的,比如都是钢类型的;选择的材料其弹性模量和屈服极限最好和Q235接近,最终选择的材料如下第四步,加载分析;约束如下,底部固定,对称部分采用无摩擦约束结构在工作中受上下两个载荷作用,所以在Workbench中进行疲劳分析的时候,需要分两个载荷步,每个载荷步设置对应一个载荷。
如下所示第一个载荷步,设置为向下的压力,第二个载荷步时候,设置该力为0.第二个载荷设置为向上的力,且第一个载荷步时候设置该力为0 ,这样便于在ncode中分别对这两个载荷设置通道进行应力循环第五步,完成静力分析以后,新建疲劳分析模块,安装ncode以后,会自动和Workbench 匹配,采用SN Constant分析模块,如下所示,双击nCode中的Solution进入ncode第五步:nCode中载荷设置因为已经在Workbench中设置好材料,在nCode中默认使用Workbench中设置好的材料,所以只需要进行载荷修改。
ANSYS 疲劳分析 (资料摘编) (续 2)2011-10-21 08:49:43| 分类: ANSYS 一般 | 标签:ansys 疲劳分析事件结果 |字号订阅2.3.1.2 从结果文件中提取应力该方法把包含有 6 个分量的节点应力向量直接储存在结果的数据库内。
随后可以用 FS 命令修正存入的应力分量。
注意 - 在执行 FSNODE 命令之前,必须使用 SET 命令,可能还有 SHELL 命令。
SET 命令从数据库的 Jobname.RST 文件中读取某一特殊载荷子步下的结果,SHELL 命令可选择从壳单元的顶面、中面或底面读取结果 (缺省是从顶面读取结果)。
命令:FSNODEGUI:Main Menu > General Postproc > Fatigue > -Store Stresses-From rst File 下面给出用 FSNODE 命令在一个事件的一个节点位置输入应力结果的例子: SET,1 ! Define data set for load step 1FSNODE,123,1,1 ! Stress vector at node 123 assigned to event 1, ! loading 1.SET,2 ! Define data set for load step 2FSNODE,123,1,2 ! ...event 1, loading 2SET,3 ! ...load step 3FSNODE,123,1,3 ! ...event 1, loading 32.3.1.3 横截面应力本选项计算和存储截面路径 (它是由以前的 PATH 和 PPATH 命令定义的) 端点的线性化应力。
因为通常线性化应力计算是在能代表两个表面的最短距离的线段上进行的,因此,只需在两个表面上各取一个点来描述 PPATH 命令中的路径。
这一步骤将从计算结果的数据库中获得应力;因此必须在 SET 命令之前使用 FSSECT 命令。