电磁学论文(电磁学在生活中应用)
- 格式:doc
- 大小:21.00 KB
- 文档页数:5
电磁学的发展史摘要:电磁学是物理学的一个重要分支,有今天的地位它经过漫长的发展历程。
人类在公元500年前就发现了电磁现象,但是电磁学的发展和广泛应用在18世纪以后. 18世纪,人们通过对电和磁的定量研究,发现了许多重要的规律.19世纪,科学家们发现了电和磁的相互联系,电磁感应、电磁场、电磁波等理论得到不断发展和广泛应用。
早期的电磁学的研究比较零散,由于磁现象曾被认为是与电现象独立无关。
同时由于磁学本身的发展和应用展用等等,磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。
早期的电磁学研究早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下: 1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。
1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。
1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。
他还总结出静电相互作用的基本特征,同性排斥,异性相吸。
1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。
1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。
1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。
1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。
欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。
父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。
16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。
电磁学在生活中的应用分析
电磁学是研究电磁场和电磁力的学科,它与我们的生活息息相关,
它的应用也是极其广泛的。
一、电磁学在电子设备部分的应用
电子设备通过电磁场可以实现信号的传输和接收,无论是手机、电脑
还是电子仪器,都使用了电磁学来实现信号传输与接收。
例如,现代
智能手机可以通过电磁场和手机基站进行连接,而电脑也可以通过电
磁场实现远距离的信号传输。
二、电磁学在电力系统的应用
现代电力系统之所以能够实现远距离的供电,也是电磁学的一大应用。
交流电是主要利用电磁学来实现大距离供电,在每一处连接处,都需
要电磁学原理中的变压器来实现电压的调节。
电磁学在能源部分的应用
电磁学也是核能技术和太阳能技术的重要支撑,采用电磁学原理的发
电机可以把动能转换成电能,利用太阳能技术,可以把太阳能转换成
电能。
总而言之,电磁学的应用领域十分广泛,极大地促进了人类生活的发展,每一处应用都体现出它的重要性和实用性。
电磁学的发展及生活生产中的应用摘要:电磁学核心及发展,电磁学应用(磁悬浮列车、电磁炮) 关键字:电磁学、磁悬浮、电磁炮引言:随着电话,电视等电子产品的广泛应用,电磁学也日益受到人们的重视。
内容:简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。
并且顺序也一定如此。
这可以说与电磁学的历史发展平行。
其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。
不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。
因此,要了解电磁学的应用就必须先了解它的发展。
早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。
电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。
电磁学的进一步发展促进了电磁在生活技术当中的应用。
(一)民用--磁悬浮列车1911年,俄国托木斯克工艺学院的一位教授曾根据电磁作用原理,设计并制成一个磁垫列车模型。
该模型行驶时不与铁轨直接接触,而是利用电磁排斥力使车辆悬浮而与铁轨脱离,并用电动机驱动车辆快速前进。
1960年美国科学家詹姆斯•鲍威尔和高登•丹提出磁悬浮列车的设计,利用强大的磁场将列车提升至离轨几十毫米,以时速300公里行驶而不与轨道发生摩擦。
遗憾的是,他们的设计没有被美国所重视,而是被日本和德国捷足先登。
德国的磁悬浮列车采用磁力吸引的原理,克劳斯•马菲公司和MBB公司于1971年研制成常导电磁铁吸引式磁浮模型试验车。
随着超导和高温超导热的出现,推动了超导磁悬浮列车的研制。
1987年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420公里。
高中物理电磁学知识在生活中的应用电磁学是高中物理课程中的重要内容,它涉及到电场、磁场和电磁感应等内容,这些知识在我们的日常生活中有着广泛的应用。
本文将从电磁学的基本原理出发,介绍一些与电磁学相关的实际应用,以及这些应用对我们生活的影响。
我们来看一下电场和静电的应用。
静电现象在我们的生活中随处可见,比如在冬天脱衣服时,我们常常会感受到衣服与皮肤之间的静电摩擦。
在工业生产中,静电也经常被用来吸附粉尘或者帮助涂装工作。
电场还可以用来驱动离子风扇、电子柔性显示屏等设备,这些设备的发明和应用都离不开对电场的深入研究和应用。
接着,我们来讨论磁场的应用。
磁场在现代工业和科技领域有着广泛的应用,比如在电机、发电机、变压器等设备中都需要用到磁场的作用原理。
在医学方面,核磁共振成像技术(MRI)就是利用磁场的作用原理来实现对人体的无损检测。
磁场在航天领域、地质勘探等领域也有着重要作用,可以说磁场的应用几乎渗透到了我们生活的各个方面。
让我们来谈谈电磁感应的应用。
电磁感应技术在发电、输电、变压等领域有着非常重要的应用。
发电机是利用电磁感应原理来将机械能转换为电能的装置。
无线充电技术也是利用电磁感应的原理来实现的,我们可以通过无线充电板给手机、电动车等设备充电。
电磁感应还被用于磁悬浮列车、感应加热设备等现代科技产品中,可以说电磁感应技术已经成为了推动社会进步的重要力量。
高中物理电磁学知识在我们的生活中有着广泛的应用,这些应用不仅改变了我们的生活方式,也推动了科技的进步。
在未来,随着科学技术的不断发展,电磁学的应用将会越来越广泛,成为人类社会发展的重要支撑。
掌握电磁学知识,了解电磁学在生活中的应用,将有助于我们更好地理解世界,推动科学技术的进步。
希望未来能有更多的年轻人对电磁学感兴趣,投身到电磁学的研究和应用中去,为社会的发展做出更大的贡献。
应用电磁学与电磁兼容论文摘要:现代人的生活,似乎离不开电.物理概念的发展而言,更有趣的,也更重要的是;人们怎么会从不知道用电,一步一步,变成了有了用电的能力,终于到了离不开它的地步。
这段历史,也最能鲜明地描绘出:以理解大自然为目标的科学研究,对全人类可能(但不必然)产生的巨大影响。
关键词:电磁学发展世界电化一、前言现代人的生活,似乎离不开电。
电灯、电话、电视、电影、计算机、电冰箱…,样样都是生活必须用品。
一旦停电,日子不知怎么过。
但世界上第一个有规模的发电厂(尼加拉水力发电厂,显示了当时电力的需求已渐普遍)开动,不过是1896年的事,距今只有一百多年。
(电视连续剧「大宅门」描写清末民初电灯、电话初到北京城的情形,相当有意思。
)一百多年间,这个世界上大部份的人的生活,从几乎没有电器用品,到充满了电器用品,这变化不但是巨大得令人难以想象,并且深入到生活、思想、感情…,所有的人生面向。
举个有诗意的例子:爱情上受挫折是古今中外诗歌中最常见的题材。
古诗中固然有怨恨情人变心的,但也很常见的是所爱之人远在他乡,衷情难诉,以致相思甚苦。
例如:古诗十九首「采之欲谁遗,所思在远道」。
李白长相思「天长路远魂飞苦」等等。
如今的流行歌曲中,第二种越来越少,第一种却很多。
──今日的手机、e-mail等等,使距离不再成为谈情说爱的障碍,但却防不了情人变心。
──这也显示了,要了解古人,就要从古人当时的情境来看才能妥切。
也许,很多人有兴趣知道最新奇的发明。
但从物理概念的发展而言,更有趣的,也更重要的是;人们怎么会从不知道用电,一步一步,变成了有了用电的能力,终于到了离不开它的地步。
这段历史,也最能鲜明地描绘出:以理解大自然为目标的科学研究,对全人类可能(但不必然)产生的巨大影响。
二、古代的电磁观察与应用1936年,考古学家在巴格达附近挖出了一些铜罐,罐中铺了沥青,沥青上插着铁条。
在大约同一地点,还发掘出了一些镀金物品。
有研究者便认为这些铜罐就是巴比伦人发明的电池,而镀金物(如果是电镀)是这些东西确是电池之证据。
电磁感应现象在生活中的应用摘要:自法拉利历经十年发现电磁感应现象后,电磁感应便开始运用于生活中。
电话筒、录音机、汽车车速表、熔炼金属等,无一不与生活息息相关,极大的方便了我们的生活,推动了社会的进步,和发展。
同时,它的利用也是理论向实践的不断进步的过程,理论唯有利用于实践才更能发挥它的作用。
动圈式话筒在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。
话筒是把声音转变为电信号的装置。
动圈式话筒是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。
磁带录音机磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。
录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随音频电流变化的磁场。
磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。
放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。
在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。
③汽车车速表汽车驾驶室内的车速表是指示汽车行驶速度的仪表。
它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。
车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。
其中永久磁铁与驱动轴相连。
在表壳上装有刻度为公里/小时的表盘。
电磁波在实际中的应用电磁波无所不在,不可不知电磁波〔又称〕是由同相振荡且彼此垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场组成的平面,有效的传递能量和动量。
电磁辐射可以依照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、X-射线和等等。
人眼可接收到的电磁辐射,波长大约在380至780纳米之间,称为可见光。
只如果本身温度大于绝对零度的物体,都可以发射电磁辐射,而世界上并非存在温度等于或低于绝对零度的物体。
电磁波是的一种形态。
可说是一体两面,电流会产生,变更的磁场那么会产生电流。
转变的和转变的磁场组成了一个不可别离的统一的[1],这就是电磁场,而转变的电磁场在的传播形成了电磁波,电磁的变更就犹如轻风轻拂水面产生水波一般,因此被称为电磁波,也常称为。
实际生活和军事等领域对电磁波的应用及其普遍,以下按波的长短举出假设干例子。
1.无线电波进展调制后就载有各类信息,用来通信.无线电波。
无线电播送与电视都是利用电磁波来进展的。
在无线电播送中,人们先将声音信号转变成电信号,然后将这些信号由高频振荡的电磁波带着向周围空间传播。
而在另一地址,人们利用接收机接收到这些电磁波后,又将其中的电信号恢复成声音信号,这就是无线播送的大致进程。
而在电视中,除要像无线播送中那样处置声音信号外,还要将图像的光信号转变成电信号,然后也将这两种信号一路由高频振荡的电磁波带着向周围空间传播,而电视接收机接收到这些电磁波后又将其中的电信号恢复成声音信号和光信号,从而显示出电视的画面和喇叭里的声音。
2.微波是波长较无线电波短的电磁波,传播时直线性好用来作为雷达波红外线用于遥控、热成像仪、导弹.雷达(radar)原是“无线电探测与定位〞的英文缩写。
雷达的根本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。
雷达主要由天线、发射机、接收机〔包括信号处置机〕和显示器等局部组成。
雷达发射机产生足够的电磁能量,通过收发转换开关传送给天线。
高中物理电磁学在生活中的实际运用分析在生活中,我们经常会接触到电磁现象,如手机的信号、电视的信号、火车的电能传输等等。
这些现象都离不开电磁学。
而在高中物理学习中,电磁学也是一个非常重要的章节。
本文将介绍一些高中物理电磁学在生活中的实际运用,以及分析电磁学对我们日常生活的重要性。
电磁波在通信中的应用电磁波在通信中的应用是电磁学在生活中最为常见和重要的应用之一。
现代通讯技术离不开电磁波,如手机、电视、网络等设备,都离不开电磁波的传输。
在通讯中,我们需要用到无线电波,它们是一种电磁波,能够传输信息。
手机通讯需要依靠手机与基站之间的信息传输,而这种信息传输方式就是通过电磁波实现的。
此外,无线电波还应用于广播电台、卫星通讯、雷达等领域。
电磁感应在电力传输中的应用电磁感应是电磁学一个非常重要的概念,广泛应用于电力传输和变换中。
电力传输中需要将发电厂产生的电能传输到我们的家庭和企业中,这就需要借助变压器。
变压器通过电磁感应的原理,将高压变成低压,使电能通过输电线路到达用户。
同时,在变压器中,电能被存储在磁场中。
当电线圈中的电流变化时,磁场也会随之变化,这就实现了电磁感应。
另外,电磁感应也应用于电磁炉、电感灯、电机等领域中。
感应电流在电子设备中的应用感应电流是电磁学中的另一个重要概念,也广泛应用于电子设备中。
电子设备中的感应电路包括变压器、工业电机、发电机,以及各种各样的传感器和控制电路。
在电子设备中,感应电流可以帮助传输信号,控制电流的流动,从而实现电能的转换。
静电对电子设备的影响静电是电磁学中一个比较常见的现象,也对我们的生活造成了影响。
静电会对电子设备造成损坏,如电脑、手机、电视等设备。
而这些设备在工作时都会产生静电,静电对这些设备的损害也就不可避免。
为了避免这种影响,我们可以在设备上安装电磁波屏障,同时还可以使用防静电手环等防静电设备,从而保护我们的电子设备。
结论电磁学在我们的生活中无处不在,我们时刻都在接触和应用电磁学。
高中物理电磁学知识在生活中的应用【摘要】电磁学是高中物理课程中一个重要的领域,其知识在我们的日常生活中有着广泛的应用。
在电器制造领域,电磁学知识被用于设计和制造各种电子设备,如手机、电视等;在通讯技术中,电磁学知识则是实现无线通讯的基础;在交通工具和医疗设备中,电磁学的应用也不可或缺,如磁悬浮列车和核磁共振成像技术。
家用电器中也广泛应用了电磁学知识,如微波炉和吹风机等。
电磁学对现代社会的发展做出了重要贡献,同时也提醒我们继续学习电磁学知识的重要性。
展望未来,电磁学将有更广泛的应用,为各行各业带来更多的便利和进步。
通过深入学习电磁学知识,我们可以更好地理解和应用这一领域的知识,促进科技的发展和社会的进步。
【关键词】电磁学、应用、生活、电器制造、通讯技术、交通工具、医疗设备、家用电器、社会贡献、学习、未来应用。
1. 引言1.1 电磁学在日常生活中的应用电磁学在日常生活中的应用是非常广泛的。
从我们的家用电器到交通工具,从通讯设备到医疗设备,都离不开电磁学知识的应用。
我们日常使用的电视、手机、洗衣机等电器制造都需要利用电磁学知识来实现。
在通讯技术领域,无线电通讯、电磁波传输、卫星通信等都是基于电磁学原理构建的。
在交通工具方面,列车的磁悬浮技术、电动汽车的电磁感应充电等都是电磁学知识的应用。
在医疗设备领域,核磁共振成像、超声波检查等医疗设备都是基于电磁学原理工作的。
而在家用电器中,微波炉、电磁炉、吸尘器等设备也都是利用电磁学知识实现的。
电磁学知识在日常生活中的应用无处不在,为我们的生活带来了极大的便利和效益。
1.2 电磁学知识在生活中的重要性电磁学是物理学中的重要分支,它研究电荷和电流之间的相互作用及电磁场的性质。
在当今现代社会,电磁学知识在生活中扮演着至关重要的角色。
电磁学知识在电器制造中的应用无处不在。
从家用电器如电视、冰箱、空调,到工业设备如发电机、变压器,都离不开电磁学原理。
电磁学的知识帮助我们设计和制造出更加高效、便捷、节能的电器产品,提高了人们的生活质量。
社会生活中的电磁波摘要:电磁波为横波,可用于探测、定位、通信等等。
生活中的无线电广播与电视都是利用电磁波来进行的;微波炉在我国广泛应用。
那么你了解电磁波的本质吗?关键词:调幅广播调频广播微波炉生活原理引言从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。
正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波。
电磁波就是这样一位人类素未谋面的“朋友”。
页脚.正文一、微波炉利用微波炉中的微波来烹调食物现在已经很普及,由于微波烹调具有加热快、节能、不污染环境、保鲜度好等优点,因此微波炉在我国被广泛推广应用.(一)微波炉工作原理微波炉由电源,磁控管,控制电路和烹调腔等部分组成。
电源向磁控管提供大约4000伏高压,磁控管在电源激励下,产生微波,然后将微波照射到六面都用金属组成的空箱(又叫谐振腔)中,食物放在箱中,微波在箱壁上被来回反射,同时从各个方向穿到被烹调的食物中去,对食物进行加热,箱壁不吸收微波,只有箱中的容器和食物被加热,因此效率高、速度快.由于加热速度快,因此对食物营养的破坏很少1.什么是微波微波是一种频率为 300MHZ~300GHZ 的电磁波,它的波长很短,具有可见光的性质,沿直线传播。
由于微波的频率较高,它的传输需要用高导电率的波导管来传输。
(二)微波加热原理当微波辐射到食品上时,食品中总是含有一定量的水分,而水是由极性分子组成的,微波通过食物时,微波的电场就对水分子产生作用力,令水分子的正负两端急剧的扭转震动。
这震动就引致摩擦生热,使水温升高,因此,食品的温度也就上升了。
用微波加热的食品,因其部也同时被加热,使整个物体受热均匀,升温速度也快。
它以每秒24.5亿次的频率,也是使水分子振动的最有效频率,深入食物5cm进行加热,加速分子运转。
1.微波器具微波一碰到金属就发生反射,金属根本没有办法吸收或传导它;微波可以穿过玻璃、瓷、塑料等绝缘材料,但不会消耗能量;而含有水分的食物,微波不但不能透过,其能量反而会被吸收。
电磁学的应用及原理论文引言电磁学是物理学的重要分支,研究电荷之间的相互作用以及电场和磁场对物体的影响。
电磁学的应用十分广泛,涵盖了许多领域,包括工业、通信、医学等。
本论文将介绍电磁学的应用及其原理,探讨其在各个领域中的重要性和影响。
电磁学的基本原理电磁学的研究基于两个基本方程:电场的高斯定律和磁场的法拉第定律。
根据这些基本方程,我们可以推导出许多电磁学的定律和理论。
以下是一些电磁学的基本原理:•库仑定律:描述了两个电荷之间的力和它们之间的相互作用。
电磁力的大小与电荷之间的距离成反比,与它们的电荷量的乘积成正比。
•安培定律:描述了电流通过导线时产生的磁场。
根据安培定律,电流的大小和方向决定了所产生磁场的强度和方向。
•法拉第定律:描述了磁场对电流产生的感应力。
根据法拉第定律,当一个导体在磁场中运动时,磁场会对导体中的电荷产生力,从而产生感应电流。
电磁学的应用电磁学在工业领域中的应用电磁学在工业领域中有着广泛的应用。
以下是一些示例:1.电动机:电动机是将电能转化为机械能的设备,它利用电磁场中的相互作用来产生转矩。
电动机广泛应用于各种机械设备中,如风力发电机、电动汽车等。
2.发电机:发电机是将机械能转化为电能的设备,它利用电磁学原理来产生电流。
发电机广泛应用于电力系统中,为我们提供稳定的电力供应。
3.变压器:变压器是将交流电的电压变换为不同电压的装置,它利用电磁学原理来实现电压的转换。
变压器在电力系统中起到重要的作用,帮助实现电能的传输和分配。
电磁学在通信领域中的应用电磁学在通信领域中起着至关重要的作用。
以下是一些示例:1.电磁波传输:无线电、电视、手机等通信设备都是利用电磁波进行信息传输的。
电磁学原理帮助我们理解电磁波的传播和调制技术,从而实现高效的通信。
2.天线技术:天线是接收和发送无线电波的设备,它利用电磁学原理来实现无线通信。
不同类型的天线可以接收和发射不同频率的电磁波,如Wifi、蓝牙等。
3.电磁兼容性:电磁兼容性是指设备在电磁环境中能够正常工作,而不会相互干扰。
电磁学的应用电磁学是物理学中一个重要的分支,涉及电荷、电场、磁场和电流等概念。
电磁学的理论基础贯穿于现代科学技术的各个领域,广泛应用于电子、通信、能源、医疗等行业。
本文将详细介绍电磁学在各个领域的应用,展示电磁学对现代社会的重要意义。
电磁学在电子领域的应用电磁学在电子领域有着广泛的应用,电磁波的产生与传播是现代通信技术的基础。
无线电、微波通信、卫星通信等都是建立在电磁学原理之上的。
例如,手机的通信原理就是利用电磁波在空间中传播信息,实现人与人之间的即时通讯。
另外,电磁学还在电子器件的设计和制造中扮演着关键角色。
电感、电容、电阻等元件都是基于电磁学原理设计的,它们构成了电路的基本组成部分,实现了电子设备的功能。
电磁学在能源领域的应用电磁学在能源领域也有着重要的应用,尤其是在发电和输电方面。
发电厂利用磁场感应现象产生电流,将机械能转化为电能。
输电线路则利用电磁感应原理,将电能从发电厂输送到各个城市和乡村,为人们生活提供了便利。
此外,电磁学还被应用于太阳能、风能等新能源领域。
利用光伏效应和风力发电原理,将自然能源转化为电能,为环境保护和可持续发展做出了贡献。
电磁学在医疗领域的应用电磁学在医疗领域有着广泛的应用,如核磁共振成像(MRI)技术就是基于电磁学原理。
MRI利用磁场和无线电波对人体进行成像,可以观察人体内部器官和组织的结构,对疾病的诊断和治疗起到关键作用。
另外,电磁学在放射治疗和物理治疗中也有着重要应用。
放射治疗利用电磁辐射杀灭恶性肿瘤细胞,物理治疗则利用电磁场对受伤组织进行修复和治疗,提高了治疗效果和患者的生存率。
结语综上所述,电磁学作为一门重要的物理学分支,在现代社会中有着广泛的应用。
从电子领域到能源领域再到医疗领域,电磁学的应用无处不在,推动着科技的进步和社会的发展。
相信随着科学技术的不断发展,电磁学的应用将会越来越广泛,为人类创造出更加美好的未来。
电磁场与电磁波在生活中的应用————————————————————————————————作者:————————————————————————————————日期:电磁场与电磁波在生活中的应用黄瑞 2013050201021【摘要】:磁是人类生存的要素之一。
地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。
外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。
所以,现在地球的磁场强度只有500年前的50%了,许多人出现种种缺磁症状。
科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’就是因缺磁而造成的。
由此可见磁对于生命的重要性。
磁场疗法,又称“磁疗法”“磁穴疗法”是让磁场作用于人体一定部位或穴位,使磁力线透入人体组织深处,以治疗疾病的一种方法。
磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。
【关键词】:磁疗磁疗保健生物电磁学电磁对抗电磁环境运用发展引言:生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。
其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。
电磁对抗主要是运用在军事方面,利用电磁波的特性制造出一系列的战争武器或战略武器。
主要涉及各种频段的电磁波的运用。
【正文】:一、电磁学在医疗上的应用生物电磁学在医疗上的应用,简称磁疗。
是20世纪九十年代才广泛兴起的一种自然疗法,用磁能作用于人体,通过磁的一系列生物与生物电磁学效应达到调整人体生理活动、实现身体保健和治疗疾病的目的。
确切地说,磁疗是一种物理能量疗法。
由于磁疗安全、方便、简捷、省时、无毒副作用、疗效肯定受到人们的认可和喜爱,被世界卫生组织推荐为最有前途的绿色疗法。
从严格意义上说,磁疗还未真正地走进现代生命科学的殿堂,尚处于研究、探索、试用阶段,属于生命科学中一门崭新的边缘学科。
电磁感应现象及电磁在生活中的应用摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。
此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。
电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。
是经过很多人的探索和努力一步一步走到现在的。
正文:电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。
本质是闭合电路中磁通量的变化。
由电磁感应现象产生的电流叫做感应电流。
电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。
法拉第发现,铁环并不是必须的。
拿走铁环,再做这个实验,上述现象仍然发生。
只是线圈B中的电流弱些。
为了透彻研究电磁感应现象,法拉第做了许多实验。
1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。
法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。
正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。
这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。
电磁感应是指因磁通量变化产生感应电动势的现象。
电磁感应现象的发现,乃是电磁学中伟大的成就之一。
它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。
电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。
事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。
电磁改变生活
一LC振荡电路应用----校园一卡通:
我们生活离不开货币,但是在校园内随时拿着一把现金很不方便,尤其还要找零,就更繁琐了。
但现在我们有了校园一卡通,无论是吃饭打水,还是坐车买东西,只要在校园内有卡就能行!那么,一卡通的原理是什么呢?
其实校园一卡通的结构并不是十分复杂,运用的都是电磁学知识,其实质是以射频识别技术为核心的非接触式IC卡。
卡内主体就是一个集成电路芯片(IC)和一个感应线圈(LC振荡器)。
但是与其配套的读卡器,也就是我们平时刷卡的机器结构就复杂得多了。
内部结构分为射频区和接口区:射频区内含调制解凋器和电源供电电路,直接与天线连接;接口区有与单片机相连的端口,还具有与射频区相连的收/发器、16字节的数据缓冲器、存放64对传输密钥的ROM、存放3套密钥的只写存储器,以及进行3次证实和数据加密的密码机、防碰撞处理的防碰撞模块和控制单元。
读卡器随时都在发着频率和LC振荡器固有频率相同的脉冲,当卡靠近时,产生电磁激励,LC振荡器产生共振,导通芯片工作,读写数据。
一、涡流的应用----电磁炉
科大食堂在冬天就会卖一些煮菜,当你买的时候菜还在电磁炉上
煮着,这样在寒冷的冬天,我们就可以一直有热乎乎的菜吃,这是多么幸福的事!
时至今日,电磁炉在我们的生活中已经必不可少,它无需明火或传导式加热而让热直接在锅底产生,因此热效率得到了极大的提高。
它是一种高效节能橱具,完全区别于传统所有的有火或无火传导加热厨具。
电磁炉是利用电磁感应加热原理制成的电气烹饪器具。
使用时,加热线圈中通入交变电流,线圈周围便产生一交变磁场,交变磁场的磁力线大部分通过金属锅体,在锅底中产生大量涡流,从而产生烹饪所需的热。
在加热过程中没有明火,因此安全、卫生。
电磁炉的功率一般在700~1800W之间,它的结构主要由外壳、高级耐热晶化陶瓷板、PAN 电磁线盘、加热电路板、控制电路板、显示电路板、风扇组件及电源等组成。
电磁炉使我们的生活更加美好舒适!
二、电磁波应用----微波炉
现在人们生活很忙碌,饭不一定能准时吃,经常到工作完成了饭也已经凉了,这时候微波炉就是我们的最好选择,因为只需食物放进去一会就热了,简单方便!在我们学校每个食堂和宿舍门口都有一个微波炉供我们使用!
微波炉里没有火,是靠微波,即高频电磁波,作为微波炉的热源。
微波是频率为300兆赫到30万兆赫的电磁波。
微波炉实际上就是一台微波发生器, 它产生的微波频率是2450兆赫。
这种微波有一个非常有趣的习性,遇到像肉类、禽蛋、蔬菜这些饱含水分的食物,微波会
“留驻”下来,并且“拖住”食物中的水分子和它一起以相同的频率振荡,引起分子与分子之间互相摩擦,摩擦能够产生热量。
振荡频率越高,振幅越大,分子间摩擦越剧烈,产生的热量自然越多。
2450兆赫的微波,即就是每秒钟振荡24.5亿次。
这就意味着食物中的水分子也随着微波每秒钟振荡24.5亿次。
这种振荡几乎是在食物里里外外各个部分同时发生的,因此被加热的食品能够在很短的时间里,里外各个部分统统热起来,温度上升足以把食物由生变熟直至枯焦的程度
同时还要注意,用微波加热食物,不能让它盛入金属容器。
原因很简单:微波遇到金属立即全部反射回去。
如果将食物盛入金属容器中用微波炉加热,微波被金属全部反射回去,食物得不到热源加热,不会变热、变熟。
当然,实际上是不允许这样做的,因为不等你看到结果,微波炉已经烧毁了。
因为高频率微波没有一点损耗而全部反射去,在电子技术上叫高频短路,后果是使发射微波的电子管阳极产生高温,直至烧红损坏。
三、蓝牙技术
我们经常用手机蓝牙传歌,传电影,其实这用的是电磁学原理!蓝牙是一种支持设备短距离通信(一般10m内)的无线电技术。
能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。
利用“蓝牙”技术,能够有效地简化移动
通信终端设备之间的通信,也能够成功地简化设备与因特网Internet 之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道
五磁力应用----磁悬浮列车
磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。
由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。
磁悬浮列车的最高速度可以达每小时500公里以上,比轮轨高速列车的300多公里还要快!随着世界工业化国家经济实力的不断加强,磁悬浮列车为提高交通运输能力以适应其经济发展做出了重要贡献!
磁浮有3个基本原理。
第一个原理是当靠近金属的磁场改变,金属上的电子会移动,并且产生电流。
第二个原理就是电流的磁效应。
当电流在电线或一块金属中流动时,会产生磁场。
通电的线圈就成了一块磁铁。
磁浮的第三个是磁铁间会彼此作用,同极性相斥,异极性相吸。
磁铁从一块金属的上方经过,金属上的电子因磁场改变而开始移动(原理一)。
电子形成回路,所以接着也产生了本身的磁场(原理二)。
移动中的磁铁使金属中出现一块假想的磁铁。
这块假想磁铁具有方向性,因是同极性相对,因此会对原有的磁铁产生斥力。
也就是说,如果原有的磁铁是北极在下,假想磁铁则是北极在上;反之亦然。
因为磁铁的同极相斥(原理三),让磁铁在一块金属上方移动,结果会对移动中的磁铁产生一股往上推动的力量。
如果磁铁移动得足够
快,这个力量会大得足以克服向下的重力,举起移动中的磁铁。
这就使得列车悬浮起来,从而减小摩擦力!
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。