有关绝对值的不等式
- 格式:docx
- 大小:36.75 KB
- 文档页数:2
绝对值不等式知识总结:1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:不等式 a >0 a =0 a <0 |x |<a (-a ,a ) ∅∅ |x |>a(-∞,-a )∪(a ,+∞)(-∞,0)∪(0,+∞)R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .题型一:绝对值不等式的解法例1:不等式1≤|2x -1|<2的解集为( )A.⎝ ⎛⎭⎪⎫-12,0∪⎣⎢⎡⎭⎪⎫1,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎝ ⎛⎦⎥⎤-12,0∪⎣⎢⎡⎭⎪⎫1,32 D .(-∞,0]∪[1,+∞)例2:若关于x 的不等式|x -1|-|x -3|>a 2-3a 的解集为非空数集,则实数a 的取值范围是( )A .1<a <2 B.3-172<a <3+172C .a <1或a >2D .a ≤1或a ≥2举一反三:变式1:设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,则a =________.变式2:不等式|x -2|+|x +2|≥5的解集为______________.题型二:利用绝对值不等式求最值例1:对于任意实数a 和b (b ≠0),不等式|a +b |+|a -b |≥|b |(|x -1|+|x -2|)恒成立,则实数x 的取值范围是________.例2:记max{p ,q }=⎩⎨⎧p ,p ≥q ,q ,p <q ,设M (x ,y )=max{|x 2+y +1|,|y 2-x +1|},其中x ,y ∈R ,则M (x ,y )的最小值是________.举一反三:变式1:若关于x 的不等式|x +t 2-2|+|x +t 2+2t -1|<3t 无解,则实数t 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-15,1 B .(-∞,0] C .(-∞,1]D .(-∞,5]变式2:(2020·浙江第二次联盟联考)定义min{x ,y }=⎩⎨⎧x ,x ≤y ,y ,x >y ,已知x 是不为2或8的实数,若S =min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2|x -2|,1|x -8|,则S 的最大值为________.题型三:绝对值不等式的综合应用例1:已知a ,b 为实数,不等式|x 2+ax +b |≤|x 2-7x +12|对一切实数x 都成立,则a +b =________.例2:已知函数f (x )=x |x -a |-1.①当a =1时,解不等式f (x )<x -1;②当x ∈(0,1]时,f (x )≤12x 2恒成立,求实数a 的取值范围.举一反三:变式1:已知函数f (x )=|x -2|,g (x )=-|x +3|+m .(1)解关于x 的不等式f (x )+a -1>0(a ∈R );(2)若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围.课后练习:1.不等式|2x -1|<3的解集是( ) A .(1,2) B .(-1,2)C .(-2,-1)D .(-∞,-2)∪(2,+∞)2.不等式|2x -1|-|x -2|<0的解集是( ) A .{x |-1<x <1} B .{x |x <-1} C .{x |x >1}D .{x |x <-1或x >1}3.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .5 B .4 C .8 D .74.已知数列{a n }为等差数列,且a 8=1,则2|a 9|+|a 10|的最小值为( ) A .3 B .2 C .1 D .05.设函数f (x )=|2x -1|,若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,则x 的取值范围是( )A .(-∞,-1]∪[3,+∞)B .(-∞,-1]∪[2,+∞)C .(-∞,-3]∪[1,+∞)D .(-∞,-2]∪[1,+∞)6.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或87.设函数f (x )=⎩⎪⎨⎪⎧2cos π2x ,|x |≤1,x 2-1,|x |>1.若|f (x )+f (x +l )-2|+|f (x )-f (x +l )|>2(l >0)对任意的实数x都成立,则正数l 的取值范围为( ) A .(0,23) B .(23,+∞) C .(0,23]D .[23,+∞)8.若a ,b ,c ∈R ,且|a |≤1,|b |≤1,|c |≤1,则下列说法正确的是( ) A.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a 2 B.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b 2 C.⎪⎪⎪⎪⎪⎪ab +bc +ca +32≥⎪⎪⎪⎪⎪⎪a -b -c 2 D .以上都不正确9.若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数a =________,b =________.10.已知f (x )=⎪⎪⎪⎪⎪⎪x +1x -a +⎪⎪⎪⎪⎪⎪x -1x -a +2x -2a (x >0)的最小值为32,则实数a =________.11.当1≤x ≤3时,|3a +2b |-|a -2b |≤|a |⎝ ⎛⎭⎪⎫x +m x +1对任意的实数a ,b 都成立,则实数m 的取值范围是________.12.对任意的x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为________;若正实数x ,y ,z 满足x 2+2y 2+z 2=1,则t =433xy +2yz +xz 的最大值是________.13.已知函数f (x )=x -1,若|f (x )-1|+1|f (x -1)|-a >0对任意的x ∈R 且x ≠2恒成立,则实数a的取值范围为________;不等式|f (2x )|≤5-|f (2x -1)|的解集为__________.14.已知a >0,若集合A ={x ∈Z ||2x 2-x -a -2|+|2x 2-x +a -2|-2a =0}中的元素有且仅有2个,则实数a 的取值范围为______.15.已知a ,b ∈R ,f (x )=|2x +ax +b |,若对于任意的x ∈[0,4],f (x )≤12恒成立,则a +2b =________.。
绝对值不等式的证明及应用一、绝对值有关性质回顾:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②ab a b =,aa b b= (0)b ≠ ③22a a =④0a ≥ ⑤a a a -≤≤⑥x a a x a ≤⇔-≤≤ x a x a a ≥⇔≥≤-或 二、绝对值不等式:定理:绝对值三角不等式:a b a b a b-≤±≤+.(代数形式)a b a b a b -≤±≤+(向量形式)几何解释:三角形两边之和大于第三边,两边之差小于第三边.(0b a b ab +≤+≥取等号) 证明:方法一:()22+a b a b +≤, 2222+22a ab b a ab b +≤++, 22ab ab ≤,而22ab ab ≤显然成立,∴(0a b a b ab +≤+≥取等号)||||||a b a b +=====+||||||a b a b +===<==+方法二:(选修4-5证法) 当ab ≥0时, ||,ab ab =||,ab ab =-当ab <0时综上,a b a b +≤+ 0ab ≥当时,取等号, 方法三:(原人教版教材证法) ∵a a a -≤≤ ① b b b -≤≤ ②①+②:()a b a b a b -+≤+≤+, 逆用性质x a ≤得:a b a b +≤+推论1:123123.......n a a a a a a a +++≤++ ,当123,,,......n a a a a 都非正或都非负时。
a b a b -≤+.证明:方法一:当0a b -<时显然成立,当0a b -≥时,两边平方,()22a b a b-≤+, 222222a ab b a ab b -+≤++, 22ab ab -≤,而22ab ab -≤显然成立,∴a b a b -≤+,(当0ab <时取等号). 方法二:直接利用定理1a ab b a b b a b b =+-≤++-=++.当()()0a b b +-≥时,取等号.即()00a b b ab +≤⇒≤,取等号. 合在一起得:a b a b a b -≤+≤+.(当0ab ≤时左边取等号,当0ab ≥时右边取等号)(当0ab ≥时左边取等号, 当0ab ≤时左边取等号)证明:只需利用已有结论把a b a b a b -≤+≤+中的b 用b -代替即得到定理3.b ac b c -≤-+-证明:a b a c c b a c c b a c b c-=-+-≤-+-=-+-,(当()()0a c c b --≥时,取等号)几何解释:设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。
三角不等式绝对值公式
三角不等式是指对于任意两个数a和b,有:
|a + b| ≤ |a| + |b|
等号成立时,说明a和b的符号相同或者其中一个数为0。
绝对值公式指的是:对于任意实数x,有:
|x| = {x,x≥0; -x,x<0}
也就是说,绝对值函数|x|的值等于其参数的绝对值。
如果x是非
负数,则其绝对值等于该数本身;如果x是负数,则其绝对值等于该
数的相反数。
综合起来,三角不等式绝对值公式的意思是,对于任意两个数a
和b,它们的和的绝对值不大于它们各自的绝对值之和。
这个公式可以用来证明不等式和解决一些实际问题,比如测量误差、不等式证明等。
【高中数学】绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法不等式a>0a=0a<0|x|<a{x|-a<x<a}∅∅|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例](2016·全国卷Ⅰ)已知函数f(x)=|x+1|-|2x-3|.(1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.[解](1)由题意得f (x )-4,x ≤-1,x -2,-1<x ≤32,x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1|x <13或x>5所以|f (x )|>1|x <13或1<x <3或x>5[题组训练]1.解不等式|x +1|+|x -1|≤2.解:当x <-1时,原不等式可化为-x -1+1-x ≤2,解得x ≥-1,又因为x <-1,故无解;当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立;当x >1时,原不等式可化为x +1+x -1≤2,解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1].2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R .(1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集;(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|,两边平方,化简整理得x 2+2x ≤0,解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0≥a ,x -a ≤0<a ,x +a ≤0,≥a ,≤a 4<a ,≤-a 2.当a >0|x ≤-a 2由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0|x ≤a 4由a4=-1,得a =-4.综上,a =2或a =-4.考点二绝对值不等式性质的应用[典例](2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R .(1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解](1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,≥12,x -1<x +1x <12,-2x <x +1≤0,-2x <-x +1,得12≤x <2或0<x <12或无解.故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法]绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2019|-|x -2018|的最大值.解:因为f (x )=|x +2019|-|x -2018|≤|x +2019-x +2018|=4037,所以函数f (x )=|x +2019|-|x -2018|的最大值为4037.2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三绝对值不等式的综合应用[典例](2018·合肥质检)已知函数f (x )=|2x -1|.(1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围.[解](1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,≥12,x -1-2x -1≤1-12<x <12,-2x -2x -1≤1≤-12,-2x +2x +1≤1,解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为-14(2)由条件知,不等式|2x -1|+|2x +1|<m 有解,则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞).[解题技法]两招解不等式问题中的含参问题(1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法.[题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )x +4,x <-1,,-1≤x ≤2,2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1,当-1≤x ≤2时,显然满足题意,当x >2时,由-2x +6≥0,解得2<x ≤3,故f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且34,2⊆A ,求实数m 的取值范围.解:∵34,2⊆A ,∴当x ∈34,2时,不等式f (x )≤|2x +1|恒成立,即|x +m |+|2x -1|≤|2x +1|在x ∈34,2上恒成立,∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈34,2上恒成立,∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈34,2上恒成立,∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是-114,0.[课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:<-12,-2x -2x -1≤6-12≤x ≤12,-2x +2x +1≤6>12,x -1+2x +1≤6.解得-32≤x ≤32,|-32≤x ≤322.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a .(1)求实数a 的值;(2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a ,从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|2x +6,x ≤2,,2<x ≤4,x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立;当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5|12≤x ≤1123.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x +1|-|x -1|,即f (x )2,x ≤-1,x ,-1<x <1,,x ≥1.故不等式f (x )>1|x >12(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立.若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1|0<x <2a 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2].4.设函数f (x )=|3x -1|+ax +3.(1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围.解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f(x)≤4的解集为0,12.(2)因为f(x)3+a)x+2,x≥13,a-3)x+4,x<13,所以f(x)+3≥0,-3≤0,解得-3≤a≤3,即实数a的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f(x)=|x-2|-|x+1|.(1)解不等式f(x)>-x;(2)若关于x的不等式f(x)≤a2-2a的解集为R,求实数a的取值范围.解:(1)原不等式等价于f(x)+x>0,不等式f(x)+x>0可化为|x-2|+x>|x+1|,当x<-1时,-(x-2)+x>-(x+1),解得x>-3,即-3<x<-1;当-1≤x≤2时,-(x-2)+x>x+1,解得x<1,即-1≤x<1;当x>2时,x-2+x>x+1,解得x>3,即x>3,综上所述,不等式f(x)+x>0的解集为{x|-3<x<1或x>3}.(2)由不等式f(x)≤a2-2a可得|x-2|-|x+1|≤a2-2a,∵|x-2|-|x+1|≤|x-2-x-1|=3,当且仅当x∈(-∞,-1]时等号成立,∴a2-2a≥3,即a2-2a-3≥0,解得a≤-1或a≥3.∴实数a的取值范围为(-∞,-1]∪[3,+∞).6.已知函数f(x)=|x-a|+|x+1|.(1)若a=2,求不等式f(x)>x+2的解集;(2)如果关于x的不等式f(x)<2的解集不是空集,求实数a的取值范围.解:(1)当a=2时,f(x)2x+1,x<-1,,-1≤x<2,x-1,x≥2,不等式f(x)>x+2<-1,2x+1>x+21≤x<2,>x+2≥2,x-1>x+2,解得x<1或x>3,故原不等式的解集为{x|x<1或x>3}.(2)∵f(x)=|x-a|+|x+1|≥|(x-a)-(x+1)|=|a+1|,当(x-a)(x+1)≤0时取等号.∴若关于x的不等式f(x)<2的解集不是空集,只需|a+1|<2,解得-3<a<1,即实数a的取值范围是(-3,1).7.已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.解:(1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6,得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3,即|x -a 2|+|12-x |≥3-a2.又x -a 2|+|12-x=|12-a 2|,所以|12-a2|≥3-a2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R .(1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3<1,-2x ≤3≤x ≤2,≤3或>2,x -3≤3,解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)M ,所以当x f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x |x -a |≤1,即x -1≤a ≤x +1,由题意,知x -1≤a ≤x +1对于任意的x 所以12≤a ≤2,故实数a 的取值范围为12,2.。
绝对值与绝对值不等式绝对值是数学中的一个重要概念,它表示一个数与零之间的距离。
绝对值可以用符号“| |”来表示,其内部的数值可为正数或负数。
绝对值有时会与不等式一起讨论,这就是我们所说的绝对值不等式。
一、绝对值的定义绝对值的定义非常简单,对于任意的实数a,它的绝对值为|a|,表示数a与0之间的距离,计算公式如下:若a ≥ 0 ,则|a| = a若a < 0 ,则|a| = -a例如,|5| = 5,|-3| = 3,|0| = 0。
绝对值的本质是将一个数的正负情况抹去,只关注它与零之间的距离。
二、绝对值不等式的定义绝对值不等式是指将绝对值与不等式相结合,表示一个数与另一个数之间的关系。
绝对值不等式的一般形式为:|a - b| < c其中a、b、c为实数,且c > 0。
这种不等式的含义是,表示a与b之间的距离小于c。
例如,|x - 2| < 3,表示x与2之间的距离小于3。
三、绝对值不等式的求解方法要解决绝对值不等式,我们需要掌握一些基本的求解技巧。
1. 消去绝对值符号当绝对值不等式中只含有一个绝对值符号时,我们可以通过判断绝对值内部的值的范围来消去绝对值符号。
例如,对于不等式|2x - 3| < 5,我们可以考虑两种情况:当2x - 3 ≥ 0时,|2x - 3| = 2x - 3,原不等式变为2x - 3 < 5,解得2x < 8,x < 4。
当2x - 3 < 0时,|2x - 3| = -(2x - 3),原不等式变为-(2x - 3) < 5,解得2x > -2,x > -1。
综合以上情况可得,x的取值范围为-1 < x < 4。
2. 利用绝对值的性质绝对值有一个重要的性质:|a - b| ≤ c等价于 -c ≤ a - b ≤ c。
例如,对于不等式|3x - 1| ≤ 2,我们可以利用这个性质进行求解:-2 ≤ 3x - 1 ≤ 2,-1 ≤ 3x ≤ 3,-1/3 ≤ x ≤ 1。
绝对值不等式一、绝对值三角不等式1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.2.定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.二、绝对值不等式的解法 1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0 a =0 a <0 |x |<a-a <x <a ∅ ∅ |x |>a x >a 或x <-a x ≠0 R2.|a x +b|≤c(c>0)和|a x +b|≥c(c>0)型不等式的解法(1)|a x +b|≤c ⇔-c ≤a x +b ≤c ;(2)|a x +b|≥c ⇔a x +b ≥c 或a x +b ≤-c .3.|x -a |+|x -b|≥c(c>0)和|x -a |+|x -b |≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法 1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式 a >0 a =0a <0 |x |<a -a <x <a ∅∅ |x |>a x >a 或x <-a x ≠0 R 2.|a x +b|≤c(c>0)和|a x +b|≥c(c>0)型不等式的解法(1)|a x +b|≤c ⇔-c ≤ax +b ≤c ;(2)|a x +b|≥c ⇔ax +b ≥c 或ax +b ≤-c .3.|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.例1:解不等式x +|2x -1|<3.解:原不等式可化为⎩⎪⎨⎪⎧ 2x -1≥0, x +(2x -1)<3或⎩⎪⎨⎪⎧2x -1<0,x -(2x -1)<3.解得12≤x <43或-2<x <12. 例2:已知函数f(x)=|x -2|-|x -5|.(1)证明:-3≤f(x)≤3;(2)求不等式f(x)≥x2-8x +15的解集.解:(1)证明:f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧ -3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5}; 当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}. 例3:对于任意实数a (a≠0)和b ,不等式|a +b|+|a -b|≥|a |(|x -1|+|x -2|)恒成立,求实数x 的取值范围.解:由题知,|x -1|+|x -2|≤|a -b |+|a +b ||a |恒成立,故|x -1|+|x -2|不大于|a -b |+|a +b ||a |的最小值. ∵|a +b |+|a -b |≥|a +b +a -b |=2|a |,当且仅当(a +b )(a -b )≥0时取等号,∴|a -b |+|a +b ||a |的最小值等于2.∴x 的取值范围即为不等式|x -1|+|x -2|≤2的解.解不等式得12≤x ≤52. 1.不等式|a|-|b|≤|a +b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a -b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x -a|+|x -b|≥c 表示到数轴上点A(a),B(b)距离之和大于或等于c 的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解. 例4:若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a≤3即可. 若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a≤3. 例5:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________.解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log3(|x -4|+|x +5|)≥2所以要使不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短. 解:设格点(x ,y)(其中x ,y ∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x +2|+|y -2|+(|x -3|+|y -1|)+(|x -3|+|y -4|)+(|x +2|+|y -3|)+(|x -4|+|y -5|)+(|x -6|+|y -6|)=[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]+[|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|]取得最小值的格点(x ,y)(其中x ,y ∈Z).注意到[(|x +2|+|x -6|)+(|x +2|+|x -4|) +2|x -3|]≥|(x +2)-(x -6)|+|(x +2)-(x -4)|+0=14,当且仅当x =3取等号;|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|=(|y -1|+|y -6|)+(|y -2|+|y -5|+(|y -3|+|y -4|)≥|(y -1)-(y -6)|+|(y -2)-(y -5)|+|(y -3)-(y -4)|=9,当且仅当y =3或y =4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y =|x -a|+|x -b|或y =|x +a|-|x -b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x -a|+3x ,其中a>0.(1)当a =1时,求不等式f(x)≥3x +2的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a 的值.解:(1)当a =1时f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1.故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2)由f(x)≤0得|x -a|+3x≤0.此不等式化为不等式组⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0,或⎩⎪⎨⎪⎧ x ≤a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4, 或⎩⎪⎨⎪⎧x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a 2}.由题设可得-a 2=-1,故a =2. 例8:不等式|x +1|+|x -1|<3的实数解为________.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
绝对不等式的基本公式
绝对值不等式的基本公式为:∣∣a ∣ −∣b ∣∣≤∣a±b∣≤∣a∣+∣b∣|\left | a \right |- \left | b \right |\leq \left | a\pm b \right |\leq \left | a \right |+\left | b \right |∣∣a∣−∣b∣∣≤∣a±b∣≤∣a∣+∣b∣。
这个公式描述了绝对值不等式的基本性质,其中∣a∣\left | a \right |∣a∣表示数a 的绝对值,即a在数轴上对应的点到原点的距离。
公式的左边表示两个绝对值之差的绝对值,总是小于等于两个数之和或之差的绝对值,而右边则表示两个绝对值之和,总是大于等于两个数之和或之差的绝对值。
这个公式在解决绝对值不等式问题时非常有用,可以帮助我们理解和处理涉及绝对值的复杂不等式。
同时,也需要注意等号成立的条件,以便在求解时得到最准确的结果。
绝对值三角不等式
1、绝对值三角不等式定理:|a|-|b|≤|a±b|≤|a|+|b|。
三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。
2、三角不等式等号成立的条件。
(1)|a|-
|b||≤|a+b|≤|a|+|b|的不等式当a、b同方向时(如果是实数,就是正负号相同)|a+b|=|a|+|b|成立;当a、b异向(如果是实数,就是ab正负号不同)时,||a|-|b||=|a±b|成立。
(2)绝对值三角不等式|a|-|b||≤|a+b|≤|a|+|b|当a、b同号时,|a+b|=|a|+|b|成立;当a、b异号时,绝对值三角不等式||a|-|b||=|a±b|成立。
||a|-|b||≤|a-b|≤|a|+|b|相反。
(3)||a|-|b||≤|a-b|≤|a|+|b|的不等式,当a、b异向(如果是实数,就是ab正负号不同)时,|a-b|=|a|+|b|成立.当a、b同方向时(如果是实数,就是正负号相同)时,||a|-|b||=|a-b|成立。
(4)绝对值三角不等式公式||a|-
|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。
绝对值与绝对值不等式绝对值是数学中常见的一个概念,它用来表示一个数离0点的距离。
在数学中,绝对值的定义通常如下:若a是一个实数,那么(|a|)的值满足以下两个条件之一:当a≥0时,|a|=a;当a<0时,|a|= -a。
绝对值不等式则是对含有绝对值的不等式进行推导和求解。
关于绝对值不等式,我们可以分为以下几个方面进行讨论。
一、绝对值不等式的基本性质在研究绝对值不等式时,我们首先需要了解绝对值不等式的一些基本性质,以便于后续的推导和求解。
1. 非负性:对于任意实数a,有|a|≥0。
2. 正定性:对于任意实数a,有当且仅当a=0时,|a|=0。
3. 反对称性:对于任意实数a,有当且仅当a=0时,|-a|=|a|。
4. 三角不等式:对于任意实数a和b,有|a+b|≤|a|+|b|。
二、绝对值与绝对值不等式的运算接下来,我们来研究绝对值与绝对值不等式的运算规则。
在推导和求解绝对值不等式时,我们经常需要运用到以下两个常用的运算法则:1. 绝对值的开放性质:对于任意实数a和b,有|ab|=|a||b|。
2. 绝对值的分割性质:对于任意实数a和b,如果|a|<b,那么-a<b<a。
三、绝对值不等式的求解方法在实际求解绝对值不等式的过程中,我们可以根据不等式的形式进行分类讨论与推导。
下面,我们举例介绍两种常见的绝对值不等式及其求解方法。
1. 不等式形式:|x-a|<b,其中a和b为已知实数,x为未知数。
解法:根据绝对值不等式的定义,我们可以得到两个方程组。
当a≥0时,得到 -b<x-a<b;当a<0时,得到 -b<a-x<b。
综合以上两种情况,我们可以得到 -b<x-a<b,即|x-a|<b。
所以,不等式|x-a|<b的解集为(a-b,a+b)。
2. 不等式形式:|ax+b|≥c,其中a、b和c为已知实数,x为未知数。
解法:根据绝对值不等式的定义,我们可以分别得到两个方程组。
绝对值不等式公式有哪些该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。
下面是由编辑为大家整理的“绝对值不等式公式有哪些该如何解”,仅供参考,欢迎大家阅读本文。
绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。
1设函数f(x)中含有绝对值,则(1)绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|(2)|a+b+c|≤|a|+|b|+|c|.2.f(x)>a有解⇔f(x)max>a.(2)f(x)>a恒成立⇔f(x)min>a.(3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.3.不等式恰成立问题(1)不等式f(x)>A在区间D上恰成立,等价于不等式f(x)>A的解集为D;(2)不等式f(x)<B在区间D上恰成立,等价于不等式f(x)<B的解集为D.定理1:如果a,b是实数,则|a+b| ≤|a|+|b|,当且仅当ab≥0时,等号成立;定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法1.若关于x的不等式|a|≥|x+1|+|x-2|,存在实数解,则实数a的取值范围是________.2.不等式3≤|5-2x|<9的解集为()A.[-2,1)∪[4,7)B.(-2,1]∪(4,7]C.(-2,-1]∪[4,7)D.(-2,1]∪[4,7)3.不等式|x-5|+|x+3|≥1的解集是()A.[-5,7]B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,+∞)4.已知不等式|2x-5|+|2x+1|>ax-1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的取值范围.5.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.6.设函数f(x)=5-|x+a|-|x-2|.①当a=1时,求不等式f(x)≥0的解集;②若f(x)≤1,求a的取值范围.7. (1)若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.(2)若a≥2,x∈R,证明:|x-1+a|+|x-a|≥3.8.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.9.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.10(1)已知函数f (x )=|x -a |+|x -3a |.①若f (x )的最小值为2,求a 的值;②若对∀x ∈R ,∃a ∈[-1,1],使得不等式m 2-|m |-f (x )<0成立,求实数m 的取值范围.11.已知函数f (x )=|x +1|+|x -3|-m 的定义域为R . (1)求实数m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.12.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范13. 已知函数f (x )=|x -a |+|2x -a |(a ∈R ).(1)若f (1)<11,求a 的取值范围;(2)若∀a ∈R ,f (x )≥x 2-x -3恒成立,求x 的取值范围.14.设函数f (x )=|2x +3|+|x -1|.(1)解不等式f (x )>4;(2)若存在x ∈⎣⎡⎦⎤-32,1使不等式a +1>f (x )成立,求实数a 的取值范围. 14.已知函数f (x )=|x -a |+12a(a ≠0).(1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值; (2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围. 15..已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.16.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值.17..已知函数f (x )=|2x -a |+|x -1|,a ∈R .(1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;(2)当a <2时,函数f (x )的最小值为3,求实数a 的值.18.设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围. 19.设函数f (x )=⎪⎪⎪⎪x +8m +|x -2m |(m >0).(1)求证:f (x )≥8恒成立; (2)求使得不等式f (1)>10成立的实数m 的取值范围.20.设a ,b 为满足ab <0的实数,那么( )A.|a +b |>|a -b |B.|a +b |<|a -b |C.|a -b |<||a |-|b || D .|a -b |<|a |+|b |21..不等式|2x -a |<b 的解集为{x |-1<x <4},则a +b 的值为( )A.-2B.2C.8D.-822.设函数f (x )=x 2-x -15,且|x -a |<1.(1)解不等式|f (x )|>5.(2)求证:|f (x )-f (a )|<2(|a |+1).23.已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围24.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.25.设函数f(x)=|x-3|,g(x)=|x-2|.(1)解不等式f(x)+g(x)<2;(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.。
含绝对值的不等式及其解法一.知识要点:1.绝对值不等式的类型及解法(1)b x f a R b a b x f a <<⇔∈<<+)(,()(或a x f b -<<-)((2))()()()()()(x g x f x g x f x g x f -<>⇔>或 (3))()()()()(x g x f x g x g x f <<-⇔<(4)[][]0)()()()()()()()(22<-⋅+⇔<⇔<x g x f x g x f x g x f x g x f(5)含多个绝对值符号的不等式——采用零点分段法来求解。
2.绝对值的几何意义:(1)x ——表示数轴上的动点x 到原点的距离.(2)b x a x -+-——表示数轴上的动点x 到两定点a 与b 的距离之和,且b x a x -+-b a -≥(3)b x a x ---——表示数轴上的动点x 到两定点a 与b 的距离之差,且≤--b a b x a x ---≤b a -3.绝对值的性质(1)b a ab ⋅=,(2))0(≠=b b a b a ,(3)b a b a b a +≤+≤-当且仅当o ab ≥时右“=”成立,0≤ab 左“=”成立。
(4)b a b a b a +≤-≤-当且仅当0≤ab 时右“=”成立, o ab ≥左“=”成立。
练习题:1. 不等式243<-x 的整数解的个数为( )A . 0B . 1C . 2D .大于22. 若两实数y x ,满足0<xy ,那么总有( ) A y x y x -<+ B y x y x ->+ C y x y x -<-D x y y x -<+3. 已知0,<+>b a b a ,那么( )A . b a >B . b a 11>C . b a <D . ba 11< 4. 不等式13-<-x x 的解是( )A . 52<<xB . 36≥xC . 2>xD . 32≤<x5. 已知,b c a <-且,0≠abc 则( )A . c b a +<B . b c a ->C . c b a +<D . c b a ->6. 不等式652>-x x 的解集为( ). A 1{-<x x 或}6>x B . }32{<<x x C . ∅ D . 1{-<x x 或32<<x 或}6>x7. 若1lg lg ≤-b a ,那么( )A . b a 100≤<B . a b 100≤<C . b a 100≤<或a b 100≤<D .b a b 1010≤≤ 8. 函数22--=x x y 的定义域是( )A . ]2,2[-B . ),2[]2,(+∞--∞C . ),1[]1,(+∞--∞D . ),2[+∞9. 使不等式a x x <-+-34有解的条件是( )A . 1>aB . 1101<<aC . 101<aD . 1010<<a 10. )(13)(R x x x f ∈+=,当b x <-1有),,(4)(+∈<-R b a a x f 则b a ,满足( ) A . 3a b ≤ B . 3b a ≤ C . 3a b > D . 3b a ≥ 11. 不等式b a b a +≤+取等号的条件是 , b a b a +≤-取等号的条件 .12. 不等式x x ->+512的解集是13. 如果不等式21<x 和31>x 同时成立,则x 的取值范围是 14. 不等式xx x x ->-11的解是 13.函数xx x y -+=0)21(的定义域是 14.不等式331≤-<x 的解集是 15.解下列不等式:(1)xx 1<(2)321>++-x x16.解不等式:x x +<-1log 2log 4141。
绝对值解不等式绝对值是数学中的一种运算符号,表示一个数与零之间的距离。
在解不等式时,绝对值经常被用到。
下面我将以绝对值解不等式为题,为大家详细解释这一概念。
我们需要明确绝对值的定义。
一个数a的绝对值,记作|a|,表示a 与0之间的距离。
如果a大于等于0,则|a|等于a本身;如果a小于0,则|a|等于-a。
例如,|3|等于3,|-5|等于5。
接下来,我们来看一些简单的绝对值不等式的解法。
首先,考虑如下不等式:|2x + 3| < 5要解这个不等式,我们可以将其分解成两个部分:2x + 3 < 5 以及 -(2x + 3) < 5解这两个不等式,我们可以得到:2x < 2 和 -(2x + 3) < 5进一步计算,得到:x < 1 和 -2x - 3 < 5解这两个不等式,我们可以得到:x < 1 和 -2x < 8最终解得:x < 1 和 x > -4接下来,我们来看一个稍微复杂一些的绝对值不等式:|3x - 2| > 7同样地,我们将这个不等式分解为两个部分:3x - 2 > 7 以及 -(3x - 2) > 7解这两个不等式,我们可以得到:3x > 9 和 -3x + 2 > 7进一步计算,得到:x > 3 和 -3x > 5需要注意的是,当我们将不等式中的绝对值去掉时,需要考虑到绝对值内的数值可能为正或负,所以要分别解两个不等式。
现在,我们来看一个稍微复杂一些的绝对值不等式组:|2x + 1| < 3 且 |3x - 2| > 4要解决这个不等式组,我们需要分别解两个不等式:2x + 1 < 3 且 -(2x + 1) < 33x - 2 > 4 且 -(3x - 2) > 4解这四个不等式,我们可以得到:2x < 2 且 -2x < 23x > 6 且 -3x > 6进一步计算,得到:x < 1 且 x > -1x > 2 且 x < -2需要注意的是,这是一个不等式组,所以我们需要找出满足所有不等式的解。
有关绝对值的不等式
一、绝对值的定义
我们知道,绝对值的定义为数与零的距离,即:
- 当一个实数x大于或等于0时,|x|=x;
- 当一个实数x小于0时,|x|=-x。
二、绝对值的性质
绝对值有以下几个性质:
1. 非负性:|x|≥0,即绝对值是非负数;
2. 正反性:若x≥0,则|x|=x;若x<0,则|x|=-x;
3. 三角不等式:|a+b|≤|a|+|b|,即两数之和的绝对值不大于它们绝对值的和;
4. 乘法性:|ab|=|a|×|b|,即两数之积的绝对值等于它们绝对值的积;
5. 倒数性:若a≠0,则|1/a|=1/|a|。
三、绝对值的应用
绝对值在数学中有着广泛的应用,特别是在不等式中的应用更为常见。
下面介绍几个绝对值不等式的例子。
例1:|x-a|<b的解集为(a-b,a+b)。
解析:首先,我们假设a≥0(a<0同理可证),那么由于|x-a|≥0,所以
|x-a|<b等价于-a<x-a<a。
解不等式得到 x<a+b 且 x>a-b,即x∈(a-b,a+b)。
例2:|x|<a的解集为(-a,a)。
解析:当a>0时,由|x|≥0,得出|x|<a等价于-x<a且x<a,即解不等式得到x∈(-a,a)。
例3:|x-2|-|x+2|≤0的解集为[-2,2]。
解析:当x≤-2或x≥2时,|x-2|-|x+2|≤0显然成立,因为两个绝对值的差
值不大于0。
当-2<x<2时,不等式可化为(x-2)-(x+2)≤0,即-4≤0,也是
成立的。
所以,综合起来,解集为[-2,2]。
总结:以上是一些关于绝对值不等式的例子,通过这些例子可以体会
到绝对值在不等式中的应用和威力,希望对大家学习数学有所帮助。