绝对值不等式的解法 教案 (1)
- 格式:doc
- 大小:108.00 KB
- 文档页数:5
含绝对值的不等式解法(一)复习思考1、复习初中学过的不等式的三条基本性质.(1)、如果b a >,那么c b c a +>+(2)、如果0,>>c b a ,那么bc ac >(3)、如果0,<>c b a .那么bc ac <注意:性质(3)是不等式两边都乘以同一个负数,不等号的方向要变。
2、复习绝对值的定义及其几何意义. {0,0,≥<-=x x x x x几何意义:x 在数轴上所对应点到原点的距离(二).探究新知1。
2=x 几何意义是什么,在数轴上在数轴上应该怎样表示?解绝对值不等式 2<x ,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?解绝对值不等 2x >,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?2x >的解集有几部分?为什么2x <-也是它的解集?2、(0)x a a <>⇔ (0)x a a >>⇔3、练习 :(1)、5x <;(2)、 7x >(3)328x -≤ (4)238x -<(一)解下列不等式:(1)51431<-x (2) 752>+x(3)5|23|3≤-<x (4)|1|2x x +>+(5)|24|3x x -<+ (6)7|52|2≤-<x(7)|9|3x -> (8)|3|1x -<9。
设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )10。
设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A U 中的元素个数是二、填空题1。
不等式|x +2|<3的解集是 ,不等式|2x —1|≥3的解集是 .2。
不等式1211<-x 的解集是___ .三、解答题1.解不等式x2- 2|x|—3>02。
1.2.2 绝对值不等式的解法一、教学目标1.理解绝对值的几何意义,掌握去绝对值的方法.2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .3.能利用绝对值不等式解决实际问题. 二、课时安排 1课时 三、教学重点理解绝对值的几何意义,掌握去绝对值的方法. 四、教学难点会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -a |+|x -b |≥c ;|x -a |+|x -b |≤c .五、教学过程 (一)导入新课解关于x 的不等式|2x -1|<2m -1(m ∈R ).【解】 若2m -1≤0,即m ≤12,则|2x -1|<2m -1恒不成立,此时,原不等式无解;若2m -1>0,即m >12,则-(2m -1)<2x -1<2m -1,所以1-m <x <m . 综上所述:当m ≤12时,原不等式的解集为∅,当m >12时,原不等式的解集为{x |1-m <x <m }.(二)讲授新课教材整理1 绝对值不等式|x |<a 与|x |>a 的解集教材整理2 |ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法 1.|ax +b |≤c ⇔ .2.|ax +b |≥c ⇔ .教材整理3 |x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 1.利用绝对值不等式的几何意义求解. 2.利用零点分段法求解.3.构造函数,利用函数的图象求解. (三)重难点精讲题型一、|ax +b|≤c 与|ax +b|≥c 型不等式的解法 例1求解下列不等式.(1)|3x -1|≤6;(2)3≤|x -2|<4;(3)|5x -x 2|<6.【精彩点拨】 关键是去绝对值符号,转化为不含绝对值符号的不等式. 【自主解答】 (1)因为|3x -1|≤6⇔-6≤3x -1≤6, 即-5≤3x ≤7,从而得-53≤x ≤73,所以原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-53≤x ≤73. (2)∵3≤|x -2|<4,∴3≤x -2<4或-4<x -2≤-3,即5≤x <6或-2<x ≤-1. 所以原不等式的解集为{x |-2<x ≤-1或5≤x <6}. (3)法一 由|5x -x 2|<6,得|x 2-5x |<6. ∴-6<x 2-5x <6.∴⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-5x -6<0,∴⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -6)(x +1)<0,即⎩⎪⎨⎪⎧x <2或x >3,-1<x <6. ∴-1<x <2或3<x <6.∴原不等式的解集为{x |-1<x <2或3<x <6}. 法二 作函数y =x 2-5x 的图象,如图所示.|x 2-5x |<6表示函数图象中直线y =-6和直线y =6之间相应部分的自变量的集合.解方程x 2-5x =6,得x 1=-1,x 2=6.解方程x 2-5x =-6,得x ′1=2,x ′2=3.即得到不等式的解集是{x |-1<x <2或3<x <6}. 规律总结:1.形如a <|f (x )|<b (b >a >0)型不等式的简单解法是利用等价转化法,即a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a .2.形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式的简单解法是等价命题法,即 (1)当a >0时,|f (x )|<a ⇔-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . (2)当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔|f (x )|≠0.(3)当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义. [再练一题] 1.解不等式: (1)3<|x +2|≤4; (2)|5x -x 2|≥6.【解】 (1)∵3<|x +2|≤4,∴3<x +2≤4或-4≤x +2<-3,即1<x ≤2或-6≤x <-5,所以原不等式的解集为{x |1<x ≤2或-6≤x <-5}.(2)∵|5x -x 2|≥6,∴5x -x 2≥6或5x -x 2≤-6,由5x -x 2≥6,即x 2-5x +6≤0,∴2≤x ≤3, 由5x -x 2≤-6,即x 2-5x -6≥0,∴x ≥6或x ≤-1, 所以原不等式的解集为{x |x ≤-1或2≤x ≤3或x ≥6}. 题型二、含参数的绝对值不等式的综合问题 例2已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 【精彩点拨】 解f (x )≤3,由集合相等,求a →求y =f (x )+f (x +5)的最小值,确定m 的取值范围【自主解答】 (1)由f (x )≤3,得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)法一 由(1)知a =2,此时f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|, 于是g (x )=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.利用g (x )的单调性,易知g (x )的最小值为5. 因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5]. 法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 则实数m 的取值范围是(-∞,5]. 规律总结:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法一是运用分类讨论思想,利用函数的单调性;法二是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向.解题时应强化函数、数形结合与转化化归思想方法的灵活运用.[再练一题]2.关于x 的不等式lg(|x +3|-|x -7|)<m . (1)当m =1时,解此不等式;(2)设函数f (x )=lg(|x +3|-|x -7|),当m 为何值时,f (x )<m 恒成立?【解】 (1)当m =1时,原不等式可变为0<|x +3|-|x -7|<10,可得其解集为{x |2<x <7}. (2)设t =|x +3|-|x -7|,则由对数定义及绝对值的几何意义知0<t ≤10, 因y =lg x 在(0,+∞)上为增函数, 则lg t ≤1,当t =10,x ≥7时,lg t =1, 故只需m >1即可,即m >1时,f (x )<m 恒成立. 题型三、含两个绝对值的不等式的解法例3 (1)解不等式|x +2|>|x -1|;(2)解不等式|x +1|+|x -1|≥3.【精彩点拨】 (1)可以两边平方求解,也可以讨论去绝对值符号求解,还可以用数轴上绝对值的几何意义来求解;(2)可以分类讨论求解,也可以借助数轴利用绝对值的几何意义求解,还可以左、右两边构建相应函数,画图象求解.【自主解答】 (1)|x +2|>|x -1|,可化为(x +2)2-(x -1)2>0,即6x +3>0,解得x >-12,∴|x +2|>|x -1|的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12. (2)如图,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点间的距离为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1到A ,B 两点的距离和为3,A 1对应数轴上的x .所以-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点的距离和为3,B 1对应数轴上的x , 所以x -1+x -(-1)=3. 所以x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3,所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 规律总结:|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.[再练一题]3.已知函数f (x )=|x -8|-|x -4|.(1)作出函数f (x )的图象;(2)解不等式f (x )>2. 【解】 (1)f (x )=⎩⎪⎨⎪⎧4,x ≤4,12-2x ,4<x ≤8,-4,x >8.函数的图象如图所示.(2)不等式|x -8|-|x -4|>2,即f (x )>2. 由-2x +12=2,得x =5, 根据函数f (x )的图象可知, 原不等式的解集为 (-∞,5). (四)归纳小结绝对值不等式的解法—⎪⎪⎪⎪—绝对值的几何意义—|ax +b |≤c 与|ax +b |≥c 型不等式—含两个绝对值的不等式的解法—含参数的绝对值不等式问题(五)随堂检测1.不等式|x |·(1-2x )>0的解集是( )A.⎝⎛⎭⎫-∞,12 B .(-∞,0)∪⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫0,12 【解析】 原不等式等价于⎩⎪⎨⎪⎧x ≠0,1-2x >0,解得x <12且x ≠0,即x ∈(-∞,0)∪⎝⎛⎭⎫0,12. 【答案】 B2.不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1) D.(-2,0)∪(0,2)【解析】 由|x 2-2|<2,得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2,故解集为(-2,0)∪(0,2).【答案】 D3.不等式|x +1||x +2|≥1的实数解为________.【解析】|x +1||x +2|≥1⇔|x +1|≥|x +2|,且x +2≠0. ∴x ≤-32且x ≠-2.【答案】 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32且x ≠-2六、板书设计七、作业布置同步练习1.2.2:绝对值不等式的解法八、教学反思。
绝对值不等式教案1.3绝对值不等式的解法(一)教学目标教学知识点1.掌握|x|>a与|x|<a (a>0)型不等式的解法。
2.|ax+b|>c 与|ax+b|<c 型不等式的解法。
3.|x-a|+|x-b|>c 与|x-a|+|x-b|<c型不等式的解法。
能力训练要求1.通过不等式的求解,加强学生的运算能力。
2.提高学生在解决问题中运用整体代换的能力。
教学重点|ax+b|>c 、|ax+b|<c、|x-a|+|x-b|>c 、|x-a|+|x-b|<c型不等式的解法。
教学难点如何去掉绝对值不等式中的不等式符号,将其转化成已会解的不等式。
教学过程:一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。
在此基础上,本节讨论含有绝对值的不等式。
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
本节主要研究不等式的解法。
1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。
主要的依据是绝对值的意义.请同学们回忆一下绝对值的意义。
在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
即⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。
2、含有绝对值的不等式有两种基本的类型。
第一种类型。
设a 为正数。
根据绝对值的意义,不等式a x <的解集是 }|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示。
a - 图1-1 a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型。
设a为正数。
根据绝对值的意义,不等式ax>的解集是{|x a<}x>或ax-它的几何意义就是数轴上到原点的距离大于a的点的集合是两个开区间),(),a的并集。
试讲教案模板(含绝对值的不等式解法)第一章:绝对值概念介绍1.1 绝对值的定义与性质引入绝对值的概念,解释绝对值表示一个数与零点的距离。
探讨绝对值的性质,如非负性、奇偶性等。
1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。
举例说明绝对值不等式的形式,如|x| > 2 或|x 3| ≤1。
第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质讲解绝对值不等式的基本性质,如|a| ≤b 可以转化为-b ≤a ≤b。
引导学生理解绝对值不等式与普通不等式的区别与联系。
2.2 绝对值不等式的解法步骤介绍解绝对值不等式的步骤,包括正确理解不等式、画出数轴、分类讨论等。
通过具体例子演示解绝对值不等式的过程,如解|x 2| ≤3。
第三章:绝对值不等式的应用3.1 绝对值不等式在实际问题中的应用通过实际问题引入绝对值不等式的应用,如距离问题、温度问题等。
引导学生运用绝对值不等式解决实际问题,培养学生的数学应用能力。
3.2 绝对值不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为绝对值不等式。
引导学生运用解绝对值不等式的技巧,求解综合应用问题。
第四章:含绝对值的不等式组4.1 不等式组的定义与性质引入不等式组的概念,即由多个不等式组成的集合。
探讨不等式组的性质,如解的交集、解的传递性等。
4.2 含绝对值的不等式组的解法讲解含绝对值的不等式组的解法,如先解每个绝对值不等式,再求交集。
提供例子,演示解含绝对值的不等式组的过程。
第五章:含绝对值的不等式解的应用5.1 含绝对值的不等式在实际问题中的应用通过实际问题引入含绝对值的不等式应用,如几何问题、物理问题等。
引导学生运用含绝对值的不等式解决实际问题,培养学生的数学应用能力。
5.2 含绝对值的不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为含绝对值的不等式。
引导学生运用解含绝对值的不等式的技巧,求解综合应用问题。
第六章:绝对值不等式的图形解法6.1 绝对值不等式与数轴介绍如何利用数轴来解绝对值不等式。
绝对值不等式教案一、教学目标:1.理解 |x|≤ a ,|x|≥ a (a >0)型不等式的意义并掌握其解法。
2.掌握 |ax+b| ≤ c ,|ax+b|≥ c (c >0)型不等式的解法,并学会运用“ ”。
3.通过本节课的学习,了解数形结合,分类讨论的思想。
二、教学重点:|x| ≤ a ,|x|≥ a (a>0)型不等式解法,关键是对绝对值意义的理解。
三、教学难点: |ax+b| ≤ c ,|ax+b|≥ c (c >0)型不等式的解法。
四、教学流程1、课题引入:商店出售的标明500g 的袋装食盐,按商品质量规定,其实际数与所标数的差不能超过5g ,如果设实际数是Xg ,那么怎样表示这个数量关系呢?2、引出课题:绝对值不等式3、巩固知识与探索新知:问题(一)1.绝对值的代数和几何意义。
(数形结合思想的铺垫)几何意义:实数a 的绝对值表示在数轴上所对应的点A 到原点的距离。
问题(二)1.解方程|x|=2?|x|=2的几何意义是什么?(从具体出发,体现数学问题与图形之间的直观联系)(1)代数法:当 x ≥0 时, x = 2;当 x< 0 时,-x = 2,即 x = -2。
∴ x= 2 或 -2(2)几何法:|x|=2的几何意义是到原点的距离等于2的点。
2.对于|x|>2, |x|<2能用绝对值定义分析讨论吗?能表述其几何意义吗?其解集是什么?(与课题绝对值不等式衔接,旧知与新知的自然过度)(1)代数法:① 解 |x| > 2:当 x ≥ 0 时,x > 2 ;当 x < 0 时,-x > 2 ,即 x < -2。
代数意义:|a|= a, a ≥0-a, a <0-aa X 0 -2 2 X∴ |x| > 2 的解集为 { x| x < -2 或 x > 2} ② 解 |x| < 2:当 x ≥ 0时,x < 2;当 x < 0时,-x < 2 ,即 x > -2。
人教B版选修4-51.1.3 绝对值不等式的解法(1)教学设计一、教材分析(一)教材内容本节课是数学选修4-5第1章第3节的第一课时.主要内容是从绝对值几何意义出发,介绍两种含有绝对值不等式的解法.绝对值的几何意义、性质是学习的重要基础,两种类型的绝对值不等式解法属于新生成的程序性知识.本节课的上位知识为初中数学已经学习的绝对值概念及一元一次不等式解法;下位知识是含有两个绝对值的不等式解法、绝对值的三角不等式等内容,因此本节课可以说既是对绝对值的升华应用,又是学习双绝对值不等式解法的必备基础.(二)教学目标1.知识与技能目标掌握|x|>a(a>0),|x|<a(a>0)型不等式的意义及其解法;会求|ax+b|>c(c>0),|ax+b|<c(c>0)型不等式的解法.2.过程与方法目标学生经历从具体到抽象的过程,体会几何意义的应用,探索绝对值不等式的多种解法,得出解决绝对值问题的基本方法.3.情感态度与价值观目标通过经历数学发现的过程,发展学生对整体代换、分类讨论、数形结合的理解和运用能力,进一步渗透转化与化归的思想.(三)教学重难点教学重点:掌握|x|>a(a>0),|x|<a(a>0)和|ax+b|>c(c>0),|ax+b|<c(c>0)型不等式的解法.教学难点:如何去掉绝对值符号.二、学情分析学生初中学习过绝对值知识,但仅限于定义,对绝对值几何意义的认识还不够深刻,对去掉绝对值符号的应用较少.所以本节课在注重深化几何意义的基础上,多角度探索去掉绝对值符号的方法,经过对比,帮助学生熟练掌握解决绝对值不等式问题的基本方法.1三、教学策略本节课采用小组合作探究、辅助问答的教学模式.从|x|=2展开,深入挖掘绝对值的几何意义,以探索|x-1|<2的多种解法为主体组织教学,在学生深刻理解绝对值几何意义的基础上,思考去掉绝对值符号的方法.经过实践对比后,再回归到解决绝对值不等式问题的通性通法—代数法上,真正达到深入浅出的教学效果.四、教学过程(一)情景引入,复习提问1.情景引入:生活中,我们会发现,超市出售的500g食盐,有的会在包装上印有500±10g 的字样.大家想,食盐的实际质量一定是500g吗?如果设实际质量为x g,你能用绝对值表达x与500g和10g之间的数量关系吗?师生活动:教师描述生活经验,直接引出绝对值不等式.学生回答后,教师多媒体展示数量关系,并引出课题.设计意图:将教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,体现数学的应用价值.2.复习提问:问题1解一元一次不等式ax+b>0(a≠0)时用到的不等式性质有哪些?问题2去掉|x|绝对值符号的结果怎么表示?问题3数轴上点x与原点的距离如何表示?师生活动:教师多媒体展示3个问题,让学生思考,同时板书课题.学生回答,教师展示问题2和问题3答案,追问|-a|=a?并进一步说明|x-a|表示数轴上点x 与点a的距离,|x+a|表示数轴上点x与点-a的距离,这实际上就是绝对值的几何意义.设计意图:不等式性质、绝对值的性质、几何意义是学习本节课的重要基础知识,复习回顾,为知识迁移做准备.(二)新课讲授,练习归纳教师多媒体展示例1:例1(1)方程|x|=2的解是多少,几何意义是什么?(2)满足不等式|x|<2的解在数轴上如何表示?解集如何表示?那么|x|>2呢?(3)不等式|3x|<6怎么利用几何意义来解释?总结一下|x|>a,|x|<a型不等式的解集吗?师生活动:学生口答,教师用多媒体依次展示解集在数轴上的表示,并注意规范绝对值几何意义的术语.(3)的解释是:|3x|表示点3x到原点的距离,可以看成是点x到原点距离的3倍,即|3x|=3|x|,即|x|<2;因此要使用几何意义解决系数不是1的绝对值问题,实际上根据不等式的性质先将系数化为1.对结论的归纳,学生容易忽略对参数a取值的讨论,教师通过让学生对x>-2、x<-2、x>0、x<0四个不等式的实践操作,得出正确答案;同时,教师板书|x|>a⇔x>a或x<-a和|x|<a⇔-a<x<a(a>0),并强调:一般情况下,只研究a>0的情形,将绝对值不等式等价转化为常规一次不等式,进而求出它的解集。
含绝对值不等式优秀教案第一章:绝对值不等式的基本概念1.1 绝对值的概念解释绝对值的概念,即一个数的绝对值是它到原点的距离。
通过图形和实例来展示绝对值的意义。
1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。
解释绝对值不等式的性质,如非负性和对称性。
第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质介绍绝对值不等式的基本性质,如同号相加、异号相减等。
2.2 绝对值不等式的解法展示如何解绝对值不等式,包括分情况讨论和解不等式的步骤。
通过实例来说明解绝对值不等式的过程。
第三章:含绝对值不等式的应用题3.1 含绝对值不等式的线性应用题介绍如何将含绝对值不等式的线性应用题转化为绝对值不等式。
通过实例来说明如何解决这类问题。
3.2 含绝对值不等式的几何应用题介绍如何将含绝对值不等式的几何应用题转化为绝对值不等式。
通过实例来说明如何解决这类问题。
第四章:含绝对值不等式的综合练习4.1 含绝对值不等式的混合运算练习含绝对值不等式的混合运算,包括加减乘除等。
4.2 含绝对值不等式的综合问题解决含绝对值不等式的综合问题,包括几何和实际应用背景。
第五章:含绝对值不等式的提高练习5.1 含绝对值不等式的证明题解决含绝对值不等式的证明题,练习运用逻辑推理和数学证明。
5.2 含绝对值不等式的创新题解决含绝对值不等式的创新题,培养学生的创新思维和解题能力。
第六章:含绝对值不等式的阅读理解6.1 绝对值不等式与实际问题的结合解释如何将绝对值不等式应用于实际问题,如距离、温度等。
通过实例来展示如何从实际问题中抽象出绝对值不等式。
6.2 含绝对值不等式的阅读理解练习提供阅读理解练习题,要求学生从文段中提取关键信息,建立绝对值不等式。
引导学生学会从问题描述中识别和应用绝对值不等式的性质。
第七章:含绝对值不等式的转换与化简7.1 绝对值不等式的转换介绍如何将绝对值不等式转换为其他类型的不等式,如一元一次不等式。
含绝对值不等式优秀教案一、教学目标1. 让学生理解绝对值不等式的概念和性质。
2. 培养学生解决含绝对值不等式问题的能力。
3. 提高学生对数学逻辑思维和运算能力的培养。
二、教学内容1. 绝对值不等式的定义和性质2. 含绝对值不等式的解法3. 含绝对值不等式的应用问题三、教学重点与难点1. 绝对值不等式的性质和解法2. 含绝对值不等式的应用问题四、教学方法1. 采用讲解法,引导学生理解绝对值不等式的概念和性质。
2. 采用案例分析法,让学生通过例题掌握含绝对值不等式的解法。
3. 采用练习法,培养学生解决实际问题的能力。
五、教学准备1. 课件和教学素材2. 练习题和答案3. 黑板和粉笔教案内容:第一课时:绝对值不等式的概念和性质一、导入(5分钟)提问:什么是绝对值?绝对值有什么性质?二、新课讲解(20分钟)1. 讲解绝对值不等式的概念举例:解不等式|x| > 2分析:根据绝对值的性质,|x| > 2 等价于x > 2 或x < -22. 讲解绝对值不等式的性质性质1:如果a 是实数,|a| = a 当a ≥0,|a| = -a 当a < 0 性质2:如果a 和b 是实数,|a + b| ≤|a| + |b|性质3:如果a 和b 是实数,|ab| = |a| |b|三、案例分析(10分钟)举例:解不等式|2x 3| ≤12x 3 ≤1 和2x 3 ≥-1解得:x ≤2 和x ≥1原不等式的解集为1 ≤x ≤2四、课堂练习(5分钟)1. 解不等式|3x + 2| > 42. 解不等式|x 5| ≤3第二课时:含绝对值不等式的解法一、导入(5分钟)提问:如何解决含绝对值不等式的问题?二、新课讲解(20分钟)1. 讲解含绝对值不等式的解法步骤1:将含绝对值的不等式转化为两个不等式组步骤2:分别解出每个不等式组的解集步骤3:求出两个解集的交集,即为原不等式的解集2. 举例讲解举例:解不等式组|2x 1| ≤3 和|x + 2| > 1-1 ≤2x 1 ≤3 和x + 2 > 1 或x + 2 < -1根据步骤2和步骤3,解得:x ≤2 和x > -1原不等式组的解集为-1 < x ≤2三、案例分析(10分钟)举例:解不等式|3x 4| + |x + 1| ≤5当x ≤-1 时,3x 4 ≤-x 1当-1 < x ≤4/3 时,3x 4 + x + 1 ≤5当x > 4/3 时,3x 4 + x + 1 > 5四、课堂练习(5分钟)1. 解不等式|x 2| + |x + 3| ≥52. 解不等式|2x + 1x 3| ≤4第三课时:含绝对值不等式的应用问题一六、教学目标1. 让学生能够应用绝对值不等式的解法解决实际问题。
绝对值不等式的解法 ( 一)教学目标教学知识点1. 掌握 |x|>a与|x|<a (a>0)型不等式的解法。
2.|ax+b|>c与|ax+b|<c型不等式的解法。
3.|x-a|+|x-b|>c与|x-a|+|x-b|<c型不等式的解法。
能力训练要求1.通过不等式的求解,加强学生的运算能力。
2.提高学生在解决问题中运用整体代换的能力。
教学重点|ax+b|>c、 |ax+b|<c 、 |x-a|+|x-b|>c、|x-a|+|x-b|<c型不等式的解法。
教学难点如何去掉绝对值不等式中的不等式符号,将其转化成已会解的不等式。
教学过程:一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。
在此基础上,本节讨论含有绝对值的不等式。
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
本节主要研究不等式的解法。
1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。
主要的依据是绝对值的意义.请同学们回忆一下绝对值的意义。
在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
即x,如果 x0x0,如果 x 0 。
x,如果 x 02、含有绝对值的不等式有两种基本的类型。
第一种类型。
设 a 为正数。
根据绝对值的意义,不等式x a 的解集是{ x | a x a} ,它的几何意义就是数轴上到原点的距离小于 a 的点的集合是开区间(- a,a),如图所示。
a图 1-1a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型。
设 a 为正数。
根据绝对值的意义,不等式x a 的解集是{x | x a 或 x a }它的几何意义就是数轴上到原点的距离大于a的点的集合是两个开区间(, a), (a, ) 的并集。
如图1-2 所示。
– a a图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。
绝对值不等式的解法教案教学目的:(1)巩固c b ax <+与)0(>>+c c b ax 型不等式的解法,并能熟练地应用它解决问题;掌握分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式;(2)培养数形结合的能力,分类讨论的思想,培养通过换元转化的思想方法,培养抽象思维的能力;(3)激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想.教学重点:分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式.教学难点:如何正确分类与分段,简单的参数问题.授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:(略)教学过程:一、复习引入:a x <与)0(>>a a x 型不等式cb ax <+与)0(>>+c c b ax 型不等式的解法与解集 不等式)0(><a a x 的解集是{}a x a x <<- 不等式)0(>>a a x 的解集是{}x x a x a ><-或 不等式)0(><+c c b ax 的解集为{})0(|><+<-c c b ax c x 不等式)0(>>+c c b ax 的解集为{}|(0)x ax b c ax b c c +<-+>>或二、讲解范例:例1解不等式1≤|2x-1|<5分析:怎么转化?怎么去掉绝对值?方法1:原不等式等价于⎩⎨⎧≥-<-1|12|5|12|x x ⇒⎪⎩⎪⎨⎧≥-->-<-112512512x x x ① 或⎪⎩⎪⎨⎧-≤-->-<-112512512x x x ②解①得:1≤x<3;解②得:-2<x ≤0∴原不等式的解集为{x|-2<x ≤0或1≤x<3}方法2:原不等式等价于1≤2x-1<5或–5<2x-1≤-1即2≤2x<6或–4<2x ≤0解得1≤x<3或–2<x ≤0∴原不等式的解集为{x|-2<x ≤0或1≤x<3}小结:比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是a ≤|x|≤b ⇒a ≤x ≤b 或-b ≤x ≤-a(a ≥0)练习:解下列不等式:7522≤-<x ⎭⎬⎫⎩⎨⎧≤<<≤-627231|x x x 或 例2解不等式:|4x-3|>2x+1分析:关键是去掉绝对值方法1:原不等式等价于⎩⎨⎧+>--<-⎩⎨⎧+>-≥-12)34(0341234034x x x x x x 或, 即⎪⎪⎩⎪⎪⎨⎧<<⎪⎩⎪⎨⎧>≥3143243x x x x 或,∴x>2或x<31, ∴原不等式的解集为{x|x>2或x<31} 方法2:整体换元转化法分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x-3|>2x+1⇒4x-3>2x+1或4x-3<-(2x+1)⇒x>2或x<31, ∴原不等式的解集为{x|x>2或x<31} 例3解不等式:|x-3|-|x+1|<1分析:关键是去掉绝对值方法1:零点分段讨论法(利用绝对值的代数定义)①当1-<x 时,01,03<+<-x x∴1)1()3(<++--x x ∴ 4<1 φ∈⇒x②当31<≤-x 时∴1)1()3(<+---x x ⇒21>x ,∴}321|{<<x x ③当3≥x 时 1)1()3(<+--x x ⇒-4<1R x ∈⇒ ∴}3|{≥x x 综上,原不等式的解集为}21|{>x x也可以这样写:解:原不等式等价于①⎩⎨⎧<++---<1)1()3(1x x x 或②⎩⎨⎧<+---<≤-1)1()3(31x x x 或③⎩⎨⎧<+--≥1)1()3(3x x x ,①的解集为φ,②的解集为{x|21<x<3},③的解集为{x|x ≥3}, ∴原不等式的解集为{x|x>21} 方法2:数形结合 从形的方面考虑,不等式|x-3|-|x+1|<1表示数轴上到3和-1两点的距离之差小于1的点.∴原不等式的解集为{x|x>21} 练习:解不等式:|x+2|+|x|>4分析1:零点分段讨论法.解法1:①当x ≤-2时,不等式化为-(x+2)-x>4即x<-3,符合题意.②当–2<x<0时,不等式化为x+2-x>x 即2>4,不合题意,舍去.③当x ≥0时,不等式化为x+2+x>4即x>1,符合题意.综上,原不等式的解集为{x|x<-3或x>1}分析2:从形的方面考虑,不等式|x+2|+|x|>4表示数轴上到-2和0两点的距离之和大于4的点. 解法2:因取数轴上点1右边的点及点-3左边的点到点-2、0的距离之和均大于4.∴原不等式的解集为{x|x<-3或x>1}例4解关于x 的不等式①)(R a a x ∈<,②)(R a a x ∈>解:∵R a ∈,分类讨论如下①Ⅰ,0∅≤时,解集为当aⅡ},|{0a x a x a <<->时,解集为当①Ⅰ,0R a 时,解集为当<Ⅱ},0|{0≠=x x a 时,解集为当Ⅲ},|{0a x a x x a >-<>或时,解集为当 例5解关于x 的不等式)(132R a a x ∈<-+解:原不等式化为:132+<+a x ,在求解时由于a+1的正负不确定,需分情况讨论.①当a+1≤0即a ≤-1时,由于任何实数的绝对值非负,∴解集为∅②当a+1>0即a>-1时,-(a+1)<2x+3<a+1=>24+-a <x<22-a 综上得:①;时,解集为∅-≤1a ②}2224|{1-<<+-->a x a x a 时,解集为 练习:课本第16页练习1、2备用例题例1.解下列不等式:(1)7522≤-<x (2)1122+<-x x解(1)⎭⎬⎫⎩⎨⎧≤<<≤-∈627231|x x R x 或;(2){}0|≠∈x R x 例2.已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值)5,3(==c a 例3.解关于的不等式a x <-+132)(R a ∈三、课内练习:课本第16页练习1、2四、小 结:1.对含有绝对值的不等式的解法,通过上面的例子我们可以看到,其关键就在于去掉绝对值,而去掉绝对值,则需要对绝对值中的零点进行讨论,一般来说一个零点分两个范围,两个零点分三个零点,依次类推.2.对于含有绝对值的不等式,如果其中含有字母参数,则根据基本的绝对值不等式的解法进行分类讨论,讨论时,不重复,也不要遗漏.五、作 业:课本第16页习题4,课本第42页复习参考题7六、板书设计:(略)七、教学反思:重点讲清含一个绝对值不等式的零点分段法;讲清绝对值连不等式的解法.含有两个绝对值的不等式暂不涉及为宜.。
第一章第四节含绝对值的不等式解法教案示例●课题§1.4 含绝对值的不等式解法●教学目标(一)教学知识点1.掌握|x|<a,|x|>a(a>0)的解法.2.了解其他类型不等式解法.(二)能力训练要求1.通过求解不等式,加强学生运算能力训练.“等价转化”的数学思想.(三)德育渗透目标渗透由特殊到一般的思想,能准确寻求事物的一般规律.●教学重点|x|>a及|x|<a(a>0)型不等式的求解.●教学难点1.如何将实际问题转化为不等式问题.2.如何将未解过不等式等价转化为已求解过的不等式.3.正确求得不等式的解时,数形结合的思想运用是必要的.4.分类讨论思想在解含有绝对值两个或两个以上不等式问题中的应用.●教学方法发现式教学法通过复习巩固旧知识,发现新问题,并在已有知识的基础上寻求解决问题的方法.再进一步引导学生深入思考讨论其他类型的含绝对值不等式的解法,从而为解决实际问题奠定理论基础.●教具准备幻灯片四X第一X:第一组问题(记作§A)第二X:第二组问题(记作§1.4B)第三X :第三组问题(记作§)第四X :第四组问题(记作§1.4D)●教学过程Ⅰ.含绝对值不等式的引入第一组问题——复习巩固提问(幻灯片§A)1.不等式的基本性质有哪些?2.绝对值的定义及其几何意义是什么?3.按商品质量规定,商店出售的标明500 g 的袋装食盐,其实际数与所标数相差不能超过5 g ,如何表达实际数与所标数的关系呢?上述问题学生基本能够准确回答,教师强调:(1)不等式的基本性质虽是初中所学过的内容,它是解决不等式有关问题的基础,因此必须熟练掌握.(2)绝对值的定义,即|a |=⎩⎨⎧<-≥0 0 a a a a 是用分类讨论思想定义的,它可以帮助我们理解绝对值的定义,也可以用来去掉绝对值的符号.(3)实数a 的绝对值表示在数轴上所对应点A 到原点的距离,并且可以得到|a |≥0这一结论.(4)对于问题3,依据条件列出⎩⎨⎧≤-≤-55005500x x ,进而利用绝对值定义及其几何意义将其表述成|x -500|≤5,即一个含绝对值的不等式.(让学生通过对旧知识的探索发现新问题,同时使学生理解“理论源于实践”明白学习含绝对值不等式的解法的必要性).Ⅱ.含绝对值不等式解法的探究第二组问题——类比旧知识,提出新问题(幻灯片§1.4B)1.如何求解方程|x |=2?|x |=2的几何意义是什么?2.能表述|x |>2,|x |<2的几何意义吗?其解集是什么?3.请尝试归纳出一般情况下|x |>a ,|x |<a (a >0)的几何意义及其解集?上述问题1 学生很容易能答对,教师应引导学生结合绝对值的定义继续思考问题2并总结出:|x |>2,|x |<2表示数轴上到原点的距离大于2,小于2的点,其解集分别为{x |x >2或x <-2}与{x |-2<x <2}.在问题2的基础上学生可类比地得到:一般地,|x |>a ,|x |<a (a >0)表示数轴上到原点的距离大于a ,小于a 的点,其解集为{x |x >a 或x <-a }与{x |-a <x <a }.第三组问题——继续探究,归纳结论(幻灯片§)“x ”应怎样理解?可举例说明吗?2.解不等式|x -500|≤5.3.能否归纳一般形式不等式|ax +b |>c ,|ax +b |<c (c >0)的解法?上述问题学生能够从代数角度理解“x ”代表代数式并能举出一些例子,教师指出,一般情况下,只要求掌握“x ”是一次式时的解法.提醒学生借数学中的整体代换思想理解不等式|x -500|≤5,并求出其解集,进而由特殊到一般归纳出:一般地,|ax +b |>c ,(c >0)的解法是:先化不等式组ax +b >c 或ax +b <-c ,再由不等式的性质求出原不等式的解集,|ax +b |<c (c >0)的解法是:先化不等式组-c <ax +b <c ,再由不等式的性质求出原不等式的解集.第四组问题——深入探究,解决新问题(幻灯片§1.4D)1.解不等式|x -1|+|2-x |>3+x2.解不等式|x +1|+|x -1|<1AE 行驶,AE 是由AB (长10 km ),BC (长5 km ),CD (长5 km ),DE (长6 km)组成,根据时刻表,汽车于9时从A 处出发,经过B 、C 、D 等处的时刻分别951时,983,932时,如果汽车以匀速v 行驶,为了使它经过B 、C 、D 等处的时刻与汽车时刻表的差的绝对值之和,再加上从A 到E 的行驶时间不超过51.7分钟,那么汽车行驶的速度v 应是怎样的?对于上述问题1、2,学生可分组讨论,教师提示:绝对值符号的存在是解含有绝对值不等式的一大障碍,所以如何将绝对值符号去掉,使其转化为等价的,不含绝对值符号的不等式是解这一类问题的关键.学生讨论研究可得:欲去掉绝对值符号,需先找出零点,划分区间,利用零点分段讨论,去掉绝对值符号.1.解:把原不等式变为|x -1|+|x -2|>3+x若|x -1|=0,x =1;若|x -2|=0,x =2.至此,1,2把数轴分成了三部分.(1)当x ≤1时,x -1≤0,x -2<0原不等式变为-(x -1)(x -2)>3+x ,即x <0此时,得{x |x ≤1}∩{x |x <0}={x |x <0}(2)当1<x ≤2时,x -1>0,x -2≤0原不等式变为x -1-(x -2)>3+x ,即x <-2此时,得{x |1<x ≤2=∩{x |x <-2}=∅(3)当x >2时,x -1>0,x -2>0原不等式变为x -1+x -2>3+x ,即x >6.此时,得{x |x >2|∩|x |x >6}={x |x >6}∴取(1)(2)(3)的并集得原不等式解集为{x |x <0或x >6}(学生口述,教师板书)学生练习2题,教师巡视查看,可能会发现大部分学生都会采取与1题相同的分段讨论法,教师应及时引导学生观察题目本身特征,结合绝对值几何意义去处理,即设数轴上的点P 表示数x ,点A 表示1,点B 表示-1,这样|x +1|,|x -1|分别表示数轴上的线段PB 、PA 的长,而线段AB 的长为2,可直观地发现数轴上找不到这样的P 点,使得PB 、PA 的长度和小于1,故本题的解集为∅.师生共同小结:(1)含绝对值二个或二个以上的不等式,常用零点分段讨论法求解,首先找到绝对值为零的点,然后划分区间,分段讨论,再求各段结果的并集.(2)解含有绝对值的不等式,对于有的问题,利用绝对值的几何意义来处理,有时使问题变得简便、直观、明了.对于上述问题3是一个利用分类讨论思想处理的实际生活问题,提醒学生:(1)将整体问题化为部分来解决,化成部分后,从而增加题设条件,是解分类讨论问题的实质.(2)解分类讨论问题要做到分类不重复,不遗漏.学生经过思考,利用熟练的基础知识,基本方法及分类讨论思想做指导不难解决实际问题. 解:依题意,得v v v v 26|3220||835||5110|+-+-+-≤600517 设m =v 5,则|2m -51|+|3m -83|+|4m -32|+526m ≤600517 (1)当m ≤101时,不等式为:51-2m +83-3m +32-4m +526m ≤600517 解得,m ≥101.∴m =101,v =50 km/h. (2)当101<m ≤81时,不等式为2m -51-3m +83-4m +52632 m ≤600517 解得,m ≤101,无解. (3)当81<m ≤61时,不等式为2m -51+3m -83-4m +32+526m ≤600517 解得m ≤62077<81与m >81矛盾.无解. (4)当m >61时,不等式为2m -51+3m -83+4m -32+526m ≤600517 解得m ≤6260631<61与m >61矛盾,无解. 综上,v =50 km/h 时满足题意要求.(通过以上实际问题的分析、解决,使学生体会“理论用于实践”,学会数学地处理实际应用问题)Ⅲ.课堂练习课本P 16练习 1,2(1)|x |<5解:由原不等式可得-5<x <5所以,原不等式解集为{x |-5<x <5}(2)|x |>10解:由原不等式可得 x <-10或x >10所以,原不等式解集为{x |x <-10或x >10}(3)2|x |≤8解:由不等式性质可知:|x |≤4即 -4≤x ≤4所以,原不等式解集为{x |-4≤x ≤4}(4)5|x |≥7解:由不等式性质可知 |x |≥57即x ≤-57或x ≥57 所以,原不等式解集为{x |x ≤-57或x ≥57} (5)|3x |<12解:由原不等式可得-12<3x <12由不等式性质可知-4<x <4所以,原不等式解集为{x |-4<x <4}(6)|4x |>14解:由原不等式可得4x <-14或4x >14由不等式性质可知x <-27或x >27) 所以,原不等式解集为{x |x <-27或x >27}(1)|x +4|>9解:由原不等式可得x +4<-9或x +4>9整理,得x <-13或x >5所以,原不等式解集为{x |x <-13或x >5}(2)|41+x |≤21 解:由原不等式可得 -21≤41+x ≤21 由不等式性质可知-43≤x ≤41 所以,原不等式的解集为{x |-43≤x ≤41} (3)|2-x |≥3解:由原不等式可得2-x ≤-3或2-x ≥3由不等式性质可知x ≤-1或x ≥5所以,原不等式解集为{x |x ≤-1或x ≥5}(4)|x -32|<31 解:由原不等式可得 -31<x -32<31 由不等式性质可得31<x <1 所以,原不等式解集为{x |31<x <1} (5)|5x -4|<6解:由原不等式可得-6<5x -4<6 由不等式性质可知-52<x <2 所以,原不等式解集为{x |-52<x <2} (6)|21x +1|≥2 解:由原不等式可得21x +1≤-2或21x +1≥2 由不等式性质可知x ≤-6或x ≥2所以,原不等式解集为{x |x ≤-6或x ≥2}Ⅳ.课时小结1.含绝对值不等式解法关键是去掉绝对值符号.2.注意在解决问题过程中绝对值不等式的几何意义.3.其他形式的含有绝对值不等式解法要知道其依据.Ⅴ.课后作业(一)课本P 16习题1.4 1~41.(1){x |x >1}(2)解:由⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x 知x -3(x -2)≥4的解为x ≤1 321x +>x -1的解为x <4原不等式组的解应是上述两不等式解集的交集,故原不等式组的解集为{x |x ≤1}(3)解:由⎪⎪⎩⎪⎪⎨⎧+<++<21512512x x x x 知2x <51+x 的解为 x <32 512-x <21+x 的解为x >-7 原不等式组的解集应是上述两个不等式解集的交集,故原不等式组的解集为{x |-7<x <32} (4)⎪⎩⎪⎨⎧-+≥-+-≤+-)3)(3()1(322211x x x x x x 解:由⎪⎩⎪⎨⎧-+≥-+-≤+-)3)(3()1(322211x x x x x x 知 不等式1-21+x ≤2-32+x 变形为 21+x ≥31-x 得x ≥-5 不等式x (x -1)≥(x +3)(x -3)变形为x 2-x ≥x 2-9其解为x ≤9故原不等式解集为{x |-5≤x ≤9}2.(1){x |x ≤-21或x ≥21}(2){x |-3511<x <3511} (3){x |5.999<x <6.001}(4){x |x ≤5或x ≥11}注:将3≤|8-x |变形,|x -8|≥3.3.(1){x |-211<x <21} (2){x |x ≤-2或x ≥25} (3){x |-35<x <7} (4){x |x ≤34或x ≥4}(5){x |x <-314或x >-310} (6){x |-207≤x ≤203} x 的不等式(1)|x -a |<b (b >0)解:由原不等式可知-b <x -a <b利用不等式性质-b +a <x <b +a故原不等式解集为{x |-b +a <x <b +a }(2)|x -a |>b (b >0)解:由原不等式可知x -a <-b 或x -a >b利用不等式性质x <-b +a 或x >b +a故原不等式解集为{x |x <-b +a 或x >b +a }(二)1.预习内容:课本P 17~P 202.预习提纲:(1)“三个一次”,即一元一次方程,一元一次不等式,一次函数及其相互关系.(2)“三个二次”,即一元二次方程,一元二次不等式,二次函数及其相互关系.(3)一元二次不等式解法依据及步骤.试举一例说明结论.●板书设计。
课 题:1.4绝对值不等式的解法(一)教学目的: (1)理解并掌握c b ax <+与)0(>>+c c b ax 型不等式的解法,并能初步地应用它解决问题;(2)了解数形结合,分类讨论的思想,培养数形结合的能力,培养通过换元转化的思想方法,培养抽象思维的能力;(3)绝对值的几何意义的应用;(4)激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想 教学重点:a x <与)0(>>a a x 型不等式的解法教学难点:绝对值意义的应用,和应用a x <与)0(>>a a x 型不等式的解法解决c b ax <+与)0(>>+c c b ax 型不等式授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:(略)教学过程:一、复习引入: 1.什么叫不等式?什么叫不等式组的解集?2.初中已学过的不等式的三条基本性质是什么?你能用汉语语言叙述这三条性质吗?⑴. 如果a>b,那么a+c>b+c;⑵. 如果a>b,c>0,那么 ac > bc;⑶. 如果a>b,c<0,那么ac < bc.3.实数的绝对值是如何定义的?几何意义是什么?绝对值的定义: | a | = ⎪⎩⎪⎨⎧<-=>0,0,00,a a a a a|a|的几何意义:数轴上表示数a 的点离开原点的距离|x-a|(a ≥0)的几何意义是x 在数轴上的对应点a 的对应点之间的距离实例:(课本第14页)按商品质量规定,商店出售的标明500g 的袋装食盐,按商品质量规定,其实际数与所标数相差不能超过5g ,设实际数是x g ,那么,x 应满足怎样的数量关系呢?能不能用绝对值来表示?.5500≤-x(⎩⎨⎧≤-≤-.5500,5500x x 由绝对值的意义,也可以表示成.5500≤-x ) 意图:体会知识源于实践又服务于实践,从而激发学习热情引出课题二、讲解新课:1.)0(><a a x 与)0(>>a a x 型的不等式的解法先看含绝对值的方程|x|=2几何意义:数轴上表示数x 的点离开原点的距离等于2.∴x=±2 提问:2<x 与2>x 的几何意义是什么?表示在数轴上应该是怎样的? 数轴上表示数x 的点离开原点的距离小(大)于2即 不等式 2<x 的解集是{}22<<-x x 不等式 2>x 的解集是{}2,2>-<x x x 或.类似地,不等式)0(><a a x |与)0(>>a a x 的几何意义是什么?解集又是什么?即 不等式)0(><a a x 的解集是{}a x a x <<-;不等式)0(>>a a x 的解集是{}a x a x x -<>或,小结:①解法:利用绝对值几何意义 ②数形结合思想2.c b ax <+,与)0(>>+c c b ax 型的不等式的解法把 b ax + 看作一个整体时,可化为)0(><a a x 与)0(>>a a x 型的不等式来求解即 不等式)0(><+c c b ax 的解集为 {})0(|><+<-c c b ax c x ; 不等式)0(>>+c c b ax 的解集为{})0(,|>>+-<+c c b ax c b ax x 或三、讲解范例:例1(课本第15页)解不等式5500≤-x .解:由原不等式可得55005≤-≤-x ,各加上500,得505495≤≤x , ∴原不等式的解集是{}505495≤≤x x .例2(课本第15页)解不等式752>+x .解:由原不等式可得752-<+x ,或752>+x .整理,得6-<x ,或1>x . ∴原不等式的解集是{}1,6>-<x x x 或.例3(课本第16页练习2(3))解不等式32≥-x . 解:原不等式可化为32≥-x ,于是,得32-≤-x ,或32≥-x .整理,得1-≤x ,或5≥x . ∴原不等式的解集是{}5,1≥-≤x x x 或.备用例题例1.解不等式组⎩⎨⎧<->111x x ({}2112|<<-<<-∈x x R x 或例2.求使4123-+-x x 有意义的取值范围(⎭⎬⎫⎩⎨⎧≤<-<≤-∈323253|x x R x 或) 例3.若313<-x 则41291624922++++-x x x x 化简的结果为 6 .四、课内练习课本第16页练习1、2五、小结:本节课学习了以下内容:1.a x <与)0(>>a a x 型不等式c b ax <+与)0(>>+c c b ax 型不等式的解法与解集;2.数形结合、换元、转化的数学思想六、作业:课本第16页习题2、3补充解不等式:2<|x|<5.法1:利用绝对值的几何意义并借助数轴解;法2:化为与之同解的不等式组⎩⎨⎧<>5||2||x x ,利用公式解,解集为 {x|-5<x<-2,或2<x<5}.七、板书设计(略)八、课后记:。
《绝对值不等式的解法》教案教学目标1、理解并掌握x a <和x a >型不等式的解法.2、充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明.教学重、难点重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用.难点:绝对值三角不等式的发现和推导、取等条件.教学过程一、复习引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解. 请同学们回忆一下绝对值的意义.在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值.即⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果.在此基础上,本节讨论含有绝对值的不等式.二、新课学习:关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式.下面分别就这两类问题展开探讨.1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式.主要的依据是绝对值的几何意义.2、含有绝对值的不等式有两种基本的类型.第一种类型:设a 为正数.根据绝对值的意义,不等式a x <的解集是}|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示.a - a如果给定的不等式符合上述形式,就可以直接利用它的结果来解.第二种类型:设a 为正数.根据绝对值的意义,不等式a x >的解集是{|x a x >或a x -<},它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集.如下图所示.-a a同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解.3、c b ax ≤+和c b ax ≥+型不等式的解法.c b ax c c b ax ≤+≤-⇔≤+c b ax c b ax c b ax ≥+-≤+⇔≥+或例3 解不等式31 2.x -≤例4 解不等式237.x -≥4、c b x a x ≤-+-和c b x a x ≥-+-型不等式的解法.例5 解不等式12 5.x x -++≥思考:例5中给出了三种绝对值不等式的方法,你能概括一下它们各自的特点吗? 从例5的解题过程看到,上述三种方法各有特点.解法一利用了绝对值不等式的几何意义,体现了数形结合思想.从中可以发现,理解解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.解法二利用10,20x x -=+=的解,将数轴分为三个区间,然后在这三个区间上将原不等式转化为不含绝对值的不等式而解之,体现了分类讨论的思想.从中可以看出,以绝对值的“零点”为分界点,将数轴分为几个区间的目的是为了确定各个绝对值符号内多项式取值得正、负性,进而去掉绝对值符号.解法三通过构造函数,利用了函数的图象,体现了函数与方程的思想.从中可以发现,正确求出函数的零点并画出函数图象(有时需要考察函数的增减性)是解题的关键.5、课堂小结回顾本课学习了哪些知识?。
含绝对值的不等式的教案一、教学目标1. 理解含绝对值的不等式的概念,掌握解含绝对值的不等式的基本方法。
2. 能够熟练地运用绝对值解含不等式,并能够根据不等式的解集画出简单的图像。
3. 培养学生对问题分析、解决的能力,进一步加深对绝对值的理解。
二、教学重点掌握解含绝对值的不等式的方法,能够熟练地运用绝对值解含不等式。
三、教学难点对含绝对值的不等式解集的判断和理解,以及图像的画法。
四、教学步骤1. 导入新课:绝对值是我们在解不等式时经常会遇到的一个概念,而含绝对值的不等式又是绝对值应用中的一个难点。
那么,如何解含绝对值的不等式呢?这就是我们今天要学习的内容。
2. 概念讲解:绝对值是一种带有“界限”意义的符号,它可以表示两个数之间距离的度量。
在数学中,绝对值是指一个数在数轴上对应的点到原点的距离。
对于一个含有绝对值的不等式,解法需要根据其具体形式来确定。
3. 实例讲解:我们以一个简单的含绝对值的不等式为例,如|x|<3,通过画图和讨论,引导学生理解不等式的解集。
然后通过变式训练和例题讲解,让学生熟悉解含绝对值的不等式的方法。
4. 知识拓展:我们可以将绝对值符号看作是一个“屏障”,它屏蔽掉了不等式左右两侧的部分。
因此,在解含有其他符号的不等式时,也可以采用类似的方法。
通过练习和讨论,让学生掌握解这类不等式的方法和技巧。
5. 课堂小结:回顾本节课所学的解含绝对值的不等式的方法和技巧,让学生加深对知识的理解和记忆。
同时,也要提醒学生注意,解含绝对值的不等式时,要特别注意绝对值的含义和取值范围。
五、作业布置1. 针对本节课所学内容,让学生完成相关练习题。
2. 让学生自己动手解一些含绝对值的简单不等式,进一步巩固所学的知识。
六、教学反思解含绝对值的不等式是数学中的一个难点,需要学生有一定的数学基础和思维能力。
在教学过程中,要注意引导学生理解绝对值的含义和取值范围,以及不等式的解集和图像之间的关系。
同时,也要注意培养学生的解题能力和思维能力,让学生能够灵活运用所学知识解决实际问题。
绝对值不等式的解法教案
教学目标
(1)掌握与()型的绝对值不等式的解法.
(2)掌握与()型的绝对值不等式的解法.
(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力。
(4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力。
教学重点:型的不等式的解法;
教学难点:利用绝对值的意义分析、解决问题.
教学过程设计
教师活动
一、导入新课
【提问】正数的绝对值什么负数的绝对值是什么零的绝对值是什么举例说明【概括】
【不等式的代数意义及几何意义】
学生活动
口答:代数意义
几何意义
|a|的意义是a在数轴上的相应点到原点的距离。
设计意图
绝对值的概念是解与()型绝对值不等式的概念,为解这种类型的绝对值不等式做好铺垫.
【不等式的性质】:
①若a>b ;c∈R 则 a+c>b+c
②若a>b ;c>0 则 ac>bc
③若a>b ;c<0 则 ac<b
二、新课
1、考察、研究特殊情况
【导入】2的绝对值等于几-2的绝对值等于几绝对值等于2的数是谁在数轴上表示出来.
【讲述】求绝对值等于2的数可以用方程来表示,这样的方程叫做绝对值方程.显然,它的解有二个,一个是2,另一个是-2.
【提问】如何解绝对值方程.
【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示
【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式的解集就是表示数轴上到原点的距离小于2的点的集合.
口答.画出数轴后在数轴上表示绝对值等于2的数.
画出数轴,思考答案
不等式的解集表示为
【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示
【质疑】的解集有几部分为什么也是它的解集
【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分.在解时容易出现只求出这部分解集,而丢掉这部解集的错误.
画出数轴思考答案
不等式的解集为或表示为,或
2、自主演练:解下列不等式
1) | x | < 4
| x | < -1
| x | ≤ 0
2) | x | > 4
| x | > -3
| x | >0
3、抽象概括绝对值不等式的解集答案:{ x | -4 < x < 4 }
Ф
答案:{ x | x>4,或x<-4 }
R
一般地,不等式|x|<a(a>0)的解集是{x|-a<x<a};
不等式|x|>a(a>0)的解集是{x|x>a或x<-a}。
【思考】上述绝对值不等式中的x能否代表一个“代数式”,像|ax+b|>c或|ax+b|<c(c>0) 请举例说明。
【设问】如果在中的,也就是怎样解
【点拨】可以把看成一个整体,也就是把看成,按照
的解法来解.
所以,原不等式的解集是
【设问】如果中的是,也就是怎样解
【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.
,或,
由得由得
所以,原不等式的解集是
三、例题选讲
【例】:(1) |x-2|<3 (2) |x+1|>3
(3) 2| x-1 |< 5 (4) |2-x|>3
(5) |3x-1|>4 (6) |x-a|< b (b>0)
【拓展练习】解下列不等式
(1) |2-3x| -1> 0
(2) |x-3| > 5x+1
(3) |2x+1| < x+3
四、小结
1、的解集是;的解集是
2、解绝对值不等式注意不要丢掉这部分解集.
3、或型的绝对值不等式,若把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法.
五、课后作业
1、作业 p9,A组,5.
2、思考探究下列不等式的解法
(1)3<| 2x-3| < 5 (2)| x- 5 | - | x+3 | < 1
(3) | x- 5 |<| 2x+3 |。