小升初行程问题-牛吃草问题
- 格式:pdf
- 大小:152.53 KB
- 文档页数:11
牛吃草问题解法公式牛吃草问题有这么几个公式哦。
一、基本公式(假设草匀速生长的情况)1. 草的生长速度 = (对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 你可以这么想哈,比如说有一群牛,多吃几天的话,那吃到的草就多。
这里面多出来的草量呢,其实就是多吃的这几天里草长出来的量。
那用多吃的草量除以多吃的天数,不就得到草每天生长的速度了嘛。
就像你种树,过了几天发现树多了一些,那多出来的树的数量除以过的天数就是树每天长的数量呀。
2. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数- 这个呢,就是说原来草地上有的草量。
你想啊,牛吃的草量是牛头数乘以吃的天数,但是这里面有一部分是草自己长出来的呀,把草长出来的那部分(草的生长速度乘以吃的天数)减掉,剩下的就是原来草地上就有的草量啦。
就好比你存钱,你存进去的钱(牛吃的草量)有一部分是利息(草生长的量),把利息减掉,就是你最开始存的本金(原有草量)。
3. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 这个公式就是说,当我们知道原来有多少草,也知道牛的数量和草生长的速度的时候,就可以算出这些牛能吃多少天。
你可以想象成有一堆食物(原有草量),有一些人(牛)在吃,同时食物还在慢慢增加(草生长),那用食物总量除以每天实际减少的量(牛头数减去草生长速度,因为草在长就相当于吃的量减少了),就得到能吃的天数啦。
4. 牛头数 = 原有草量÷吃的天数+草的生长速度- 这个就好比你知道有一堆活(原有草量)要干多少天(吃的天数),而且这个活还在慢慢增加(草生长速度),那你就能算出需要多少人(牛头数)来干这个活啦。
专题二十七牛吃草问题【知识概述】1牛吃草是古代西方的数学问题,最早在牛顿编著的《普通算术》提到:12头牛4周吃牧草33格尔,同样的牧草21头牛9周吃10格尔,问24格尔牧草多少头牛吃18周吃完?于是,人们又把这类问题称为牛顿问题,表面上看''牛吃草问题。
似乎是一个归一问题,只要算出一个量就可以了。
其实不然,跟其他的应用题有一个很大的不同,就是牧场上的草没天都在生长,时间越长,新长的草就越多,草的总量也就越多,而草的总量是由两部分组成,一部分是某个时间期限前牧场上原有的的草,一部分则是这个时间期限后牧场上每天新长出的草。
原有的草与每天新长出的草,这两个量是固定不变的,因此解题时必须设法先求出这两个不变的量。
因此,解题中应寻找固定量和单位时间增减量的信息,求出一个,另一个就自然得到解决。
【典型例题】例1 内蒙古草原的一个牧场有一片青草,这片青草每天都在匀速生长。
这片牧草可供24头牛吃12天,可供30头牛吃8天,问可供多少头牛吃4天?【名师解读】:这类题难在牧场上的草的数量每天都在变化,我们要想办法从变化中找出不变的量,总草量可以分为牧场上原有的草和新长出的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天这片草地每天新长出的草的数量是相同的,即每天新长出的草量是不变的。
有两个用草量的差可知(12—8)天的生产量,即可求出每天新长出的草的量。
再将某一组的草总量减去若干天的生长量,即是原有的牧草量。
抓住这两个量,解决问题就容易多了解:设1头牛一天吃的草为1份。
① 24头牛12天吃草的总量:1×24×12﹦288(份)② 30头牛8天吃草的总量:1×30×8﹦240(份)③每天新长出的草的量:(288-240)÷(12-8)﹦12(份)④这片牧场原有的草量:288-12×12=144(份)或240-12×8=144(份)⑤可供多少头牛吃4天?(144+12×4)÷4=48(头)答:这片牧场可供48头牛吃4天。
牛吃草问题的详细解法一、牛吃草问题基础概念。
1. 问题描述。
- 牛吃草问题又称为消长问题或牛顿问题。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
1. 题目1。
- 有一片牧场,草每天都在匀速生长。
如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。
问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。
- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。
- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。
- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。
2. 题目2。
- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。
那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。
- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。
数学专项复习小升初典型奥数之牛吃草问题在小升初的数学学习中,奥数一直是备受关注的重点,而牛吃草问题作为其中的一个典型题型,常常让同学们感到困惑。
今天,我们就来深入探讨一下牛吃草问题,帮助大家掌握这类题目的解题方法。
一、什么是牛吃草问题牛吃草问题又称为消长问题或牛顿牧场问题,最早是由牛顿提出的。
这类问题通常描述的是这样一个场景:一片草地,草在不断地生长,而牛在吃草。
由于草的生长速度和牛吃草的速度不同,所以需要我们通过一些已知条件来求出在特定时间内草的总量或者牛吃草的天数等。
例如:有一片草地,每天都匀速长出新草。
这片草地可供 10 头牛吃 20 天,或者可供 15 头牛吃 10 天。
那么,可供 25 头牛吃几天?二、牛吃草问题的特点1、存在两个变量:一是草的生长速度,它是不断变化的;二是牛吃草的速度,通常是固定的。
2、涉及到时间因素:问题中会给出不同数量的牛吃草的不同时间。
3、最终要求出特定条件下的结果,如草可供多少头牛吃多少天,或者多少头牛在特定时间内吃完草。
三、牛吃草问题的解题思路1、设未知数首先,我们设每头牛每天吃草量为“1”份,草每天生长的速度为“x”份。
2、找等量关系根据题目中给出的不同数量的牛吃草的时间,我们可以列出两个关于草总量的等式。
以前面提到的例子为例,10 头牛吃 20 天,草的总量就是 10×20 =200 份;15 头牛吃 10 天,草的总量就是 15×10 = 150 份。
因为草在生长,所以 20 天的草总量比 10 天的草总量多出来的部分就是 20 10 = 10 天生长出来的草量,由此我们可以列出方程:200 150 = 10x解得 x = 5,即草每天生长 5 份。
3、求出原有草量知道了草的生长速度,我们可以求出原有草量。
以 10 头牛吃 20 天为例,20 天草生长了 5×20 = 100 份,那么原有草量就是 200 100 = 100 份。
牛吃草问题例题详解(含练习和答案)牛吃草问题一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天)。
说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(10—5)×20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
因此,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
牛吃草问题【知识点归纳】牛顿问题的难点在于草每天都在不断生长,草的数量都在不断变化.解答这类题目的关键是想办法从变化中找出不变量,我们可以把总草量看成两部分的和,即原有的草量加新长的草量.显而易见,原有的草量是一定的,新长的草量虽然在变,但如果是匀速生长,我们也能找到另一个不变量﹣﹣每天(每周)新长出的草的数量.基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量.基本公式:生长量=(较长时间×长时间牛头数﹣较短时间×短时间牛头数)÷(长时间﹣短时间);原有草量=较长时间×长时间牛头数﹣较长时间×生长量;牛吃草问题常用到四个基本公式:牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的.典型牛吃草问题的条件是假设草多少天.由于吃的天数不同,草又是天天在生长的,所以草的存量随着吃的天数不断地变化.解决牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数﹣相应的牛头数×吃的较少天数)÷(吃的较多天数﹣吃的较少天数);(2)原有草量=牛头数×吃的天数﹣草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数﹣草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决消长问题的基础.由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量.牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的.正是由于这个不变量,才能够导出上面的四个基本公式.这类问题的基本数量关系是:1、(牛的头数×吃草较多的天数﹣牛头数×吃草较少的天数)÷(吃的较多的天数﹣吃的较少的天数)=草地每天新长草量.2、牛的头数×吃草天数﹣每天新长量×吃草天数=草地原有的草.1.12头牛28天吃完10公顷牧场上的全部牧草,21头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?2.一片牧场,每天生长草的速度相同.这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4头羊的吃草量相当于1头牛的吃草量.那么17头牛和20只羊一起吃这片牧场上的草,可以吃多少天?3.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)4.有一片草地,可供8只羊吃20天,或供14只羊吃10天.假设草每天的生长速度不变,现有羊若干只.吃了4天后又增加了6只,这样又吃了2天便将草吃完,原有羊多少只?5.某火车站在检票前若干分钟就有人排队,假设每分钟新增的旅客一样多,若同时开放4个检票口,则30分钟检票完毕,若同时开放5个检票口,则20分钟可检票完毕,若同时开放7个检票口,需要检票多少分钟?6.西安美术馆举办画展,美术馆9时开门,但早有人来等候.从第一个观众来到时起,每分钟来的观众数一样多.如果开3个入场口,9时9分就不再有人排队;如果开5个入场口,9时5分就不再有人排队.那么,第一个观众到达时是8时几分?7.有一片牧场,每天都在均匀地生长草,每头牛每天吃1份草.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养13头牛,那么15天能把草吃完.那么草地原有几份草?8.牧场上长满牧草,每天匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天.这片牧场每天新生的草可供几头牛吃?这片牧场可供30头牛吃几天?9.一片匀速生长的牧草,可供9头牛吃12天,或可供8头牛吃16天.问可供13头牛吃多少天?要使这片牧草永远吃不完,至多可以放牧多少头牛?10.两个顽皮的孩子逆着自动扶梯的方向行走,在15秒钟里,男孩可走12级梯级,女孩可走10级梯级,结果男孩走了3分钟到达另一端,女孩走了4分钟到达另一端,该扶梯共多少级?11.进入冬季后,有一片牧场的草开始枯萎,因此草会均匀地减少,现在开始在这片牧场上放羊.如果放38只羊,需要25天把草吃完;如果放30只羊,需要30天把草吃完.(1)要放养多少只羊,12天才能把草吃完?(2)如果放养20只羊,这片牧场可以吃多少天?12.两个调皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,已知在电梯静止时,男孩每秒走3米,女孩每秒走2米。
小升初数学专题第3讲 牛吃草问题一、知识地图:⎧⎧⎧⎪⎨⎪⎩⎪⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎪⎧⎨⎪⎨⎪⎪⎩⎩⎪⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩草增加简单牛吃草草减少牛的数量增加或减少一块草地上牛吃草复杂牛吃草有多种动物的牛吃草牛吃草抽水问题牛吃草的变例入口问题直接给两块草地数量两块草地上牛吃草多块草地上牛吃草两块草地给出倍比关系三块草地上牛吃草 二、基础知识:英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长。
后人把这类问题称为牛吃草问题或叫做“牛顿问题”,类似的还有抽水问题等。
我们具体来看一道典型的牛吃草问题:牧场上长满牧草,每天牧草都匀速生长。
这片牧场可供10头牛吃20天,可供15头牛吃10天。
供25头牛可吃几天?分析:要想知道这些草供25头牛可吃几天,必须知道草的总量和每头牛每天吃草的量。
然而题目当中并没有告诉我们这样的条件。
因此我们可以假设1头牛1天吃1份的草,那么10头牛20天可以吃10×20=200份草。
15头牛10天可以吃15×10=150份草,有同学可能会奇怪了,同样都是把牧场的草吃完了,为什么吃草的总量不一样啊?你们明白为什么吗?聪明的同学可能已经明白了,对,因为每天都会有新的草长出来, ,所以草的总量并不是固定不变的。
吃的时间越长,长的草越多,草的总量也就多了。
由刚才的计算我们可以看出,吃20天的草的总量比10天要多,原因就在于此。
我们来看看下面这幅图:从上面的图可以看出:草的总量可以分成两部分,一部分是原有的草,还有一部分是新长的草。
10头牛20天吃的总草量比15头牛10天吃的总草量多,多出部分相当于10天新生长出的草量。
设1头牛1天吃1份草,则10头牛20天比15头牛10天多吃5010152010=⨯-⨯份,则这块牧场每天新长51050=÷份牧草。
在第一种情况中,20天一共新长了100205=⨯份牧草,而牛一共吃了2002010=⨯份,说明原来有牧草100100200=-份。
牛吃草问题,小升初数学培优题题型,升学考试经典应用题经典例题「例1」牧场上的青草,每周长一样密,一样快。
如果这片牧场可供24头牛吃6周,20头牛吃10周,那麼这片牧场可供18头牛吃_____周。
15周「例2」牧场上长满牧草,每天匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天。
问供25头牛可吃几天?5天「例3」有一块草地,每天草生长的速度相同。
现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。
如果一头牛一天的吃草量相当於4只羊一天的吃草量,那麼这片草地可供10头牛和60只羊一起吃多少天?8天「例4」一片牧草,可供9头牛吃12天,也可供8头牛吃16天。
现在一开始只有4头牛在吃,从第7天起增加了若干头牛来再吃6天,吃完了所有的草。
假设草每天均匀生长,并且每头牛每天的吃的草量相等,那麼从第7天起增加了多少头牛?10头牛思路剖析根据题目的条件可知吃草的总天数是12天,12天的青草总量很容易求得,青草总量分成两部分,前6天只有4头牛吃草;後6天增加了若干头。
我们可以从青草总量扣去4头牛6天所吃的草量,就是後6天增加若干头牛後吃的草量。
「例5」由於天气逐渐变冷,牧场上的草每天以均匀的速度减少。
经过计算,牧场上的草可供20头牛吃5天,或者供16头牛吃6天,那麼这片牧场上的草可供11头牛吃几天?8天「例6」有一只船漏了一个洞,水以均匀的速度进入船内,发现漏洞时船已经进了一些水。
如果用12个人淘水,要3个小时才能淘完。
如果只有5个人淘水,要10个小时才能淘完。
现在要想在2个小时内淘完,需要多少人淘水?17人「例7」某画展早上10点开门,但早有人排队等候入场,以第一个观众到来时起,每分钟观众来的人数都一样多。
如果开了3个入场口,9分钟以後就不再有人排队;如果开5个入场口,5分钟以後就没有人排队。
请问︰第一个观众是甚麼到来的?早上9点15分「例8」有两个顽皮的孩子逆自动扶梯行驶的方向行走。
男孩每秒可以走3级梯级,女孩每秒可以走2级梯级,结果从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒。
小升初牛吃草问题应用题及答案小升初牛吃草问题应用题及答案“牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。
这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】草总量二原有草量+草每天生长量X天数【解题思路和方法】解这类题的关键是求出草每天的生长量。
例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。
问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量二原有草量+草每天生长量X天数。
求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1X10X20);另一方而,20天内的草总量又等于原有草量加上20 天内的生长量,所以1X10X20=原有草量+20天内生长量同理1 X 15X 10二原有草量+10天内生长量由此可知(20-10)天内草的生长量为1X10X20-1X15X10=50因此,草每天的生长量为50宁(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1X15X10-5X10=100(3)求5天内草总量5天内草总量二原有草量+5天内生长量=100+5X5二125(4)求多少头牛5天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。
因此5天吃完草需要牛的.头数125宁5=25(头)答:需要5头牛5天可以把草吃完。
例2—只船有一个漏洞,水以均匀速度进入船内,发现漏洞时己经进了一些水。
如果有12个人淘水,3小时可以淘完;如果只有5 人淘水,要10小时才能淘完。
求17人几小时可以淘完?解这是一道变相的“牛吃草”问题。
与上题不同的是,最后一问给岀了人数(相当于“牛数”),求时间。
设每人每小时淘水量为1, 按以下步骤计算:(1)求每小时进水量因为,3小时内的总水量=1X12X3=原有水量+3小时进水量10小时内的总水量二IX5X10二原有水量+10小时进水量所以,(10-3)小时内的进水量为1X5X10-1X12X3=14因此,每小时的进水量为144-(10-3)=2(2)求淘水前原有水量原有水量=1 X 12X3-3小时进水量二36-2 X 3=30(3)求17人几小时淘完17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是30—(17-2)二2(小时)答:17人2小时可以淘完水。
六年级下小升初典型奥数之牛吃草问题在六年级下册的小升初奥数学习中,“牛吃草”问题可是一个常常让同学们感到困惑,但又十分有趣和富有挑战性的经典题型。
那到底什么是“牛吃草”问题呢?咱们一起来瞧瞧。
“牛吃草”问题,简单来说,就是一群牛在一片草地上吃草,草在不断生长,牛吃草的速度和草生长的速度都已知或者需要我们通过条件去求解,然后让我们算出这片草地能够供这些牛吃多少天,或者在规定时间内有多少头牛能把草吃完。
比如说,有这样一道题:一片草地,每天都匀速长出青草。
如果 27 头牛 6 天可以把草吃完,或者 23 头牛 9 天可以把草吃完。
那么,假设要 12 天吃完这片草地上的草,需要多少头牛?要解决这类问题,咱们得先搞清楚几个关键的量。
首先是原有的草量,也就是在牛还没开始吃之前草地上本来就有的草的数量;然后是草每天的生长量,这是因为草不是一成不变的,它每天都在生长;还有就是牛每天的吃草量。
那怎么算出这些量呢?咱们可以通过设未知数来解决。
假设每头牛每天的吃草量为 1 份。
27 头牛 6 天的吃草量就是 27×6 = 162 份,23 头牛 9 天的吃草量就是 23×9 = 207 份。
为什么这两个吃草量不一样呢?这是因为草多生长了 9 6 = 3 天。
所以这 3 天草生长的总量就是 207 162 = 45 份,那么草每天的生长量就是 45÷3 = 15 份。
既然知道了草每天生长 15 份,那么原有的草量就可以算出来啦。
27 头牛 6 天一共吃了 162 份草,在这 6 天里,草一共生长了 15×6 =90 份,所以原有的草量就是 162 90 = 72 份。
现在咱们来算如果要 12 天吃完这片草地上的草,需要多少头牛。
12 天里草一共生长了 15×12 = 180 份,原有的草量是 72 份,那么 12 天里一共要吃的草量就是 72 + 180 = 252 份。
龙文教育一对一个性化辅导教案学生学校年级六年级次数第 科目数学教师日期月 日时段 -课题版块2.工程问题之牛吃草问题教学重点牛吃草关键是要求两个量:(1)草的生长速度(2)原有草量教学难点牛吃草问题的关键是求出工作总量的变化率教学目标掌握牛吃草问题的基本运算公式,会解决牛吃草问注意草在不断地增长的问题,将动态问题转化成固定的状态。
教学步骤及教学内容一、教学衔接:1、检查学生的作业,及时指点。
2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。
二、内容讲解:一.行程问题之火车过桥题型二.行程问题之流水行船题型三.行程问题之综合题型三、课堂总结与反思:1.2.四、作业布置:(详见学案)管理人员签字: 日期: 年 月 日作业布置1、学生上次作业评价: ○ 好 ○ 较好 ○ 一般 ○差备注:2、本次课后作业:见P09-P10(详见学案)课堂小结家长签字: 日期: 年 月 日牛吃草问题学生: 学科:数学 教师: 时间: 月 日牛吃草问题的概念:英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步: 1、求出每天长草量; 2、求出牧场原有草量; 3、求出每天实际消耗原有草量( 牛吃的草量 - 生长的草量 = 消耗原有草量); 4、最后求出可吃天数。
解题基本公式:(1) 草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=(牛头数-草的生长速度)×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度思考:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天: (10×22-16×1O)÷(22-1O) =(220-160)÷12 =60÷12 =5(头) 这片草供25头牛吃的天数: (10-5)×22÷(25-5) =5×22÷20 =5.5(天) 答:供25头牛可以吃5.5天。
例题精讲:例1、牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天? 分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天), 说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草: (l0—5)× 20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
所以,这片草地可供25头牛吃5天。
注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天。
例2、 一个水池装一个进水管和三个同样的出水管。
先打开进水管,等水池存了一些水后,再打开出水管。
如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。
那么出水管比进水管晚开多少分钟?分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似。
出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水。
因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题。
设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量。
两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是(16-15)/3=1/3(份)假设让1/3个出水管专门排进水管新进得水,两相抵消,其余得出水管排原有得水,可以求出原有水得水量为:(2-1/3)×8=40/3(份)或(3-1/3)×5=40/3(份)解:设出水管每分钟排出得水为1份,每分钟进水量(2×8-3×5)/(8-5)=1/3(份)进水管提前开了(2-1/3)×8÷1/3=40(分)答:出水管比进水管晚开40分钟。
例3、 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。
但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量。
设1头牛1天吃的草为1份。
20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草。
由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草 (20+10)×5=150(份)。
由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天。
例4、 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。
问:该扶梯共有多少级?分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题。
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。
男孩5分钟走了20×5= 100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级。
由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有 (20+10)×5=150(级)。
解:自动扶梯每分钟走 (20×5-15×6)÷(6—5)=10(级), 自动扶梯共有(20+10)×5=150(级)。
答:扶梯共有150级。
例5、 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。
如果同时打开7个检票口,那么需多少分钟?分析:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解。
旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客。
设1个检票口1分钟检票的人数为1份。
因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客 (4×30-5×20)÷(30-20)=2(份)。
假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为 (4-2)×30=60(份)或(5-2)×20=60(份)。
同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要 60÷(7-2)=12(分)。
例6、 有三块草地,面积分别为5,6和8公顷。
草地上的草一样厚,而且长得一样快。
第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。
问:第三块草地可供19头牛吃多少天?分析:例1是在同一块草地上,现在是三块面积不同的草地。
为了解决这个问题,只需将三块草地的面积统一起来。
[5,6,8]=120。
因为 5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天。
因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天。
120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天? 因为草地面积相同,可忽略具体公顷数,所以原题可变为: “一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?” 这与例1完全一样。
设1头牛1天吃的草为1份。
每天新长出的草有 (240×14-264×10)÷(14-10)=180(份)。
草地原有草(264—180)×10=840(份)。