Local Magnetic Order vs. Superconductivity in a Layered Cuprate
- 格式:pdf
- 大小:204.16 KB
- 文档页数:4
物探专业术语中英文对照lunar tide 太阴潮solar tide 太阳潮turbulence 湍流spectrum of turbulence 湍流谱turbulent diffusion 湍流扩散turbulent dissipation 湍流耗散turbulent exchange 湍流交换turbulent mixing 湍流混合twilight 曙暮光wind shear 风切变yield function 产额函数zonal circulation 纬向环流zonal wind 纬向风airglow 气辉MST radar MST雷达,对流层、平流层、中层大气探测雷达。
aeronomy 高空大气学deviative absorption 偏移吸收non-deviative absorption 非偏移吸收after-effect of [magnetic] storm 磁暴后效Chapman layer 查普曼层Appleton anomaly 阿普尔顿异常equatorial anomaly 赤道异常winter anomaly 冬季异常magneto-ionic theory 磁离子理论buoyancy frequency 浮力频率D - region D区E - region E区F - region F区F1 layer F1层F1 ledge F1缘F2 layer F2层Chapman production function 查普曼生成函数Cowling conductivity 柯林电导率Pedersen conductivity 彼得森电导率Hall conductivity 霍尔电导率direct conductivity 直接电导率cosmic radio noise 宇宙射电噪声riometer 宇宙噪声吸收仪critical frequency 临界频率dissociative recombination 离解性复合dynamo region 发电机区evanescent wave 消散波fade 衰落fadeout, blackout [短波通讯]中断ordinary wave 寻常波extraordinary wave 非寻常波Faraday rotation 法拉第旋转field-aligned irregularity 场向不规则结构Harang discontinuity 哈朗间断impedance probe 阻抗探针incoherent scattering radar 非相干散射雷达ionospheric storm 电离层暴ionosonde 电离层测高仪virtual height 虚高true height 真高digisonde 数字式测高仪ionogram 电离图polar cap absorption, PCA 极盖吸收sudden ionospheric disturbance, SID 突发电离层骚扰spread F 扩展 Fsporadic E 散见 E 层top-side sounder 顶视探测仪bottom-side sounder 底视探测仪travelling ionospheric disturbance, TID 电离层行扰short wave fadeout, SWF 短波突然衰落sudden frequency deviation, SFD [短波]频率急偏sudden phase anomaly, SPA 突发相位异常characteristic wave 特征波cross-modulation 交叉调制total electron content, TEC 电子总含量ambipolar diffusion 双极扩散eclipse effect [日]食效应skip distance 跳距outer space 外层空间interplanetary space 行星际空间interstellar space [恒]星际空间deep space 深空solar-terrestrial space 日地空间solar-terrestrial physics 日地物理学one-hop propagation 一跳传播quasi-transverse propagation 准横传播quasi-longitudinal propagation 准纵传播maximum usable frequency, MUF 最大可用频率geomagnetism 地磁[学] main field 主磁场inclination, dip angle 磁倾角declination 磁偏角agonic line 零偏线aclinic line 零倾线magnetic isoclinic line 等磁倾线magnetic chart 磁图isomagnetic chart 等磁图isomagnetic line 等磁强线isoporic line, isopore 等年变线magnetic isoanomalous line 等磁异常线geomagnetic pole 地磁极dip pole 磁倾极magnetic local time 磁地方时magnetic dipole time 磁偶极时central dipole 中心偶极子dipole coordinate 偶极子坐标corrected geomagnetic coordinate 修正地磁坐标north magnetic pole 磁北极south magnetic pole 磁南极invariant latitude 不变纬度dip equator 倾角赤道eccentric dipole 偏心偶极子magnetogram 磁照图magnetically quiet day, q 磁静日magnetically disturbed day, d 磁扰日secular variation 长期变化solar daily variation, S 太阳日变化disturbed daily variation, Sd 扰日日变化storm-time variation, Dst 暴时变化magnetic disturbance 磁扰magnetic bay 磁湾扰magnetic crochet 磁钩扰magnetic storm 磁暴gradual commencement [magnetic] storm 缓始磁暴sudden commencement [magnetic] storm 急始磁暴sudden commencement 急始initial phase 初相main phase 主相recovery phase 恢复相magnetic substorm 磁亚暴expansive phase 膨胀相equivalent current system 等效电流系internal field 内源场external field 外源场aurora 极光aurora australis 南极光aurora borealis 北极光auroral oval 极光卵形环auroral belt 极光带subauroral zone 亚极光带Alfvēen layer 阿尔文层cleft, cusp 极隙pseudo-trapped particle 假捕获粒子radiation belt, Van Allen belt 辐射带又称“范艾伦带”。
电磁场微波词汇汉英对照表二画二端口网络two port network二重傅立叶级数double Fourier series入射场incident field入射波incident wave三画小波wavelet四画无功功率reactive power无限(界)区域unbound region无源网络passive network互易性reciprocity互阻抗mutual impedance互耦合mutual coupling互连interconnect天线antennas天线方向性图pattern of antenna匹配负载matched load孔aperture孔(缝)隙天线aperture antennas内阻抗internal impedance介电常数permittivity介质dielectric介质波导dielectric guide介质损耗dielectric loss介质损耗角dielectric loss angle介电常数dielectric constant反射reflection反射系数reflection coefficient分离变量法separation of variables五画主模dominant mode正交性orthogonality正弦的sinusoidal右手定则right hand rule平行板波导parallel plate waveguide平面波plane wave功率密度density of power功率流(通量)密度density of power flux 布魯斯特角Brewster angle本征值eigen value本征函数eigen function边值问题boundary value problem四端口网络four terminal network矢量位vector potential电压voltage电压源voltage source电导率conductivity电流元current element电流密度electric current density电荷守恒定律law of conservation of charge 电荷密度electric charge density电容器capacitor电路尺寸circuit dimension电路元件circuit element电场强度electric field intensity电偶极子electric dipole电磁兼容electromagnetic compatibility矢量vector矢径radius vector失真distortions平移translation击穿功率breakdown power节点node六画安培电流定律Ampere’s circuital law传播常数propagation constant亥姆霍兹方程Helmholtz equation动态场dynamic field共轭问题conjugate problem共面波导coplanar waveguide (CPW)有限区域finite region有源网络active network有耗介质lossy dielectric导纳率admittivity同轴线coaxial line全反射total reflection全透射total transmission各向同性物质isotropic matter各向异性nonisotropy行波traveling wave光纤optic fiber色散dispersion网格mesh全向天线omnidirectional antennas阵列arrays七画串扰cross-talk回波echo良导体good conductor均匀平面波uniform plane wave均匀传输线uniform transmission line近场near-field麦克斯韦方程Maxwell equation克希荷夫电流定律Kirchhoff’s current law 环行器circulator贝塞尔函数Bessel function时谐time harmonic时延time delay位移电流electric displacement current芯片chip芯片组chipset远场far-field八画变分法variational method定向耦合器directional coupler取向orientation法拉第感应定律Faraday’s law of induction 实部real part空间分量spatial components波导waveguide波导波长guide wave length波导相速度guide phase velocity波阻抗wave impedance波函数wave function波数wave number泊松方程Poisson’s equation拉普拉斯方程Laplace’s equation坡印亭矢量Poynting vector奇异性singularity 阻抗矩阵impedance matrix表面电阻surface resistance表面阻抗surface impedance表面波surface wave直角坐标rectangular coordinate极化电流polarization current极点pole非均匀媒质inhomogeneous media非可逆器件nonreciprocal devices固有(本征)阻抗intrinsic impedance单位矢量unit vector单位法线unit normal单位切线unit tangent单极天线monopole antenna单模single mode环行器circulator驻波standing wave驻波比standing wave ratio直流偏置DC bias九画标量位scalar potential品质因子quality factor差分法difference method矩量法method of moment洛伦兹互易定理Lorentz reciprocity theorem 屏蔽shield带状线stripline标量格林定理scalar Green’s theorem面积分surface integral相对磁导率relative permeability相位常数phase constant相移器phase shifter相速度phase velocity红外频谱infra-red frequency spectrum矩形波导rectangular waveguide柱面坐标cylindrical coordinates脉冲函数impulse function复介电常数complex permittivity复功率密度complex power density复磁导率complex permeability复矢量波动方程complex vector wave equation贴片patch信号完整性signal integrity信道channel寄生效应parasite effect指向天线directional antennas喇叭天线horn antennas十画准静态quasi-static旁路电流shunt current高阶模high order mode高斯定律Gauss law格林函数Green’s function连续性方程equation of continuity耗散电流dissipative current耗散功率dissipative power偶极子dipole脊形波导ridge waveguide径向波导radial waveguide径向波radial wave径向模radial mode能量守恒conservation of energy能量储存energy storage能量密度power density衰减常数attenuation constant特性阻抗characteristic impedance特征值characteristic value特解particular solution勒让德多项式Legendre polynomial积分方程integral equation涂层coating谐振resonance谐振长度resonance length十一画混合模hybrid mode部分填充波导partially filled waveguide 递推公式recurrence formula探针馈电probe feed接头junction基本单位fundamental unit理想介质perfect dielectric理想导体perfect conductor唯一性uniqueness虚部imaginary part透射波transmission wave透射系数transmission coefficient 球形腔spherical cavity球面波spherical wave球面坐标spherical coordinate终端termination终端电压terminal voltage射频radio frequency探针probe十二画涡旋vortices散度方程divergence equation散射scattering散杂电容stray capacitance散射矩阵scattering matrix斯托克斯定理Stoke’s theorem斯涅尔折射定律Snell’s law of refraction阴影区shadow region超越方程transcendental equation超增益天线supergain antenna喇叭horn幅角argument最速下降法method of steepest descent趋肤效应skin effect趋肤深度skin depth微扰法perturbational method等相面equi-phase surface等幅面equi-amplitude surface等效原理equivalence principle短路板shorting plate短截线stub傅立叶级数Fourier series傅立叶变换Fourier transformation第一类贝塞耳函数Bessel function of the first kind第二类汉克尔函数Hankel function of the second kind解析函数analytic function激励excitation集中参数元件lumped-element场方程field equation场源field source场量field quantity遥感remote sensing振荡器oscillators滤波器filter十三画隔离器isolator雷达反射截面radar cross section (RCS)损耗角loss angle感应电流induced current感应场induction field圆波导circular waveguide圆极化circularly polarized圆柱腔circular cavity铁磁性ferromagnetic铁氧体陶瓷ferrite ceramics传导电流conducting current传导损耗conduction loss传播常数propagation constant传播模式propagation mode传输线模式transmission line mode传输矩阵transmission matrix零点Zero静态场static field算子operator输入阻抗input impedance椭圆极化elliptically polarized微带microstrip微波microwave微波单片集成电路microwave monolithic integrated circuit MMIC毫米波单片集成电路millimeter wave monolithic integrated circuit M3IC十四画漏电电流leakage current渐进表示式asymptotic expression模式mode模式展开mode expansion模式函数mode模式图mode pattern截止波长cut off wavelength截止频率cut off frequency鞍点saddle频谱spectrum线性极化linearly polarized线积分line integral磁矢量位magnetic vector potential磁通magnetic flux 磁场强度magnetic intensity磁矩magnetic moment磁损耗角magnetic loss angle磁滞损耗magnetic hysteresis磁导率permeability十五画辐射radiate增益gain横电场transverse electric field横电磁波transverse electromagnetic wave 劈wedge十六画雕落场evanescent field雕落模式evanescent mode霍尔效应Hall effect辐射电阻radiation resistance辐射电导radiation conductance辐射功率radiation power辐射方向性图radiation pattern谱域方法spectral method十七画以上瞬时量insaneous quantity镜像image峰值peak value函数delta function注:本词汇表参考了《正弦电磁场》(哈林顿著孟侃译)。
磁感应强度英语
磁感应强度是磁场中某一点的磁力强度,通常用字母B表示,其单位是特斯拉(T)。
当一个磁场中的导体运动时,会在导体内部产生感应电动势,这个现象叫做电磁感应。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比,也就是说,磁感应强度越大,感应电动势就越大。
磁感应强度在物理学、电子学、磁学等领域都有广泛的应用。
在电机、变压器、发电机等电力设备中,磁感应强度是一个重要的参数,直接影响设备的性能和效率。
在医学磁共振成像中,磁感应强度也是一个关键因素,高磁感应强度可以提高成像分辨率和质量。
因此,了解磁感应强度的英语是很有必要的。
以下是一些相关词汇:
1. Magnetic induction:磁感应强度
2. Tesla:特斯拉
3. Magnetic field:磁场
4. Electromagnetic induction:电磁感应
5. Faraday's law of electromagnetic induction:法拉第电磁感应定律
6. Magnetic flux:磁通量
7. Magnetic flux density:磁通密度
8. Magnetic field strength:磁场强度
9. Magnetic moment:磁矩
10. Magnetic pole:磁极
以上是一些常用的磁感应强度相关英语词汇,希望可以对大家的学习有所帮助。
锶/钛非定比钛酸锶的铁电性和超顺磁性Y. Y. Guo,1 H. M. Liu,1 D. P. Yu,2 and J.-M. Liu1,3,4,*1南京大学固态微结构实验室,中国南京,210093;2北京大学微电子实验室,中国北京,100871;3华南理工大学先进材料研究所,中国广州,510006;4国家科学院物理材料研究中心,中国沈阳(2011.10.9收稿;2012.2.5改稿;2012.3.22发表)借助电介质,铁电物质,拉曼光谱和磁性特质来研究在多晶钛酸锶结构下对锶/钛非定比性在铁电性和磁性方面的影响。
它表明,非化学计量比的钛酸锶具有铁电极化和超顺磁性,这伴随着其非化学计量比的增长。
有人认为,反位像网络本地偶极子和磁矩的缺陷导致了铁电性和超顺磁性,可据第一原理计算确认。
1.引言钙钛矿SrTiO3(STO)是一种著名的量子顺电复合物,在过去的几十年中一直受到人们的关注。
因为一个三重简并的R25模式被冻结,在温度小于105 K时立方STO转变为’反铁畸变的四方结构’。
进一步冷却导致一个介电常数ε快速增长伴随着温度的降低,并最终有一个独立的高位出现低于4 K 的状况。
不幸的是,即使T下降到可用的下限,还是没有出现铁电的转换。
然而,这种量子顺电态是很短暂的,铁的不稳定性可能发生在更弱的内在或外在刺激的状态下,这一直是关注的热点话题。
例如,铁不稳定性可以由A位掺杂,氧同位素替代,机械应力,或外部电坡引起。
最近实验表明化学计量的STO薄膜显示铁电性,这是调节铁不稳性的一种可选的方法。
应该说,这种诱导效应的基本物理化学计量的影响还在讨论之中,公认的解释仍然是可信的。
由于非化学计量的薄组在STO单晶衬底上同质外延,晶格畸变由于非化学计量比可以对下面的衬底有所限制。
没有基板的限制,重访成组STO对于SR / Ti非化学计量比的内在影响是必要的。
2.试验事实上,通过常规的固态反应路线合成高质量的非定比性的STO样品是困难的。
电磁学词汇汉英文对照表A阿伏伽德罗常量 Avogadro number安培 ampère安培电流 ampère–current安培(分子电流)假说 ampère hypothesis安培环路定理 ampère circuital theorem安全电压 safe current安全电流 safe currentB百分比(率,数) percent, percentage百万伏特 megavolt, megV半波长 half–wavelength半导体 semiconductor饱和磁化强度 saturated magnetization保守力 conservative force保险丝 fuse wire毕奥一萨伐尔定律 Biot一Savart law边界条件 boundary condition;比率 ratio闭合电路 closed circuit避雷针 arrester并联电路 parallel circuitC场梯度 fied gradient充电 charging畴 domain串联电路 series参考系 reference system超导体 superconductor超导转变温度 superconducting transition temperature 磁场强度 magnetic field intensity磁畴 magnetic domain磁单极子 magnetic monopole磁导率 permeability磁感应强度 magnetic induction磁感应线 magnetic induction line磁感应管 magnetic induction tube磁菏 magnetic charge磁化 magnetization磁化电流 magnetization current磁化率magnetic susceptibility磁化强度 magnetization磁极 magnetic pole磁介质 magnetic medium磁矩 magnetic moment磁通量 magnetic flux磁性 magnetism磁致伸缩 magnetostriction磁滞回线 histeresis loopD电磁场 electromagnetic field电磁感应 electromagnetic induction单位矢量 unit vector单位制 system of units等势面 equipotential surface等势体 equipotential body电场 electric field电场强度 electric field strength电场线 electric field line电导 conductance电导率 conductivity电动势 electromotive force电负性 electronegativity电功率 electric power电荷 electric charge电荷量子化 charge quantization电荷守恒定律 law of conservation of charge 电介质 dielectric电矩 electric moment电离能 energy of ionization电量 electric quantity电流 electric current电流管 current tube电流密度 current density电流线 lines of current电流元 current element电偶极子 electric dipole电容 capacity电容器 capacitor电容率 permittivity电势 electric potential电势差 electric potential difference电势能 electric potential energy电通量electric flux电位移 electric displacement电源 source电晕 electric corona电致伸缩 electrostriction电中性 electric neutrality电子 electron电阻 resistance电阻率 resistivity叠加原理 superposition principleF发电机 generator法拉第电磁感应定律 Faraday law of electromagnetic induction 分子磁矩 molecular magnetic moment分子电流 molecular currentG感生电动势 induced electromotive force高斯定理 Gauss theorem高斯面 Gauss surface功 work功率 power共振 resonance轨道磁矩 orbital magnetic moment国际单位制(SI) system of international units (SI)过阻尼 overdampingH恒流源 constant current source恒压源 voltage source恒定电流 steady current静电力electrostatic force静电能 electrostatic energy静电屏蔽 electrostatic screening静电平衡 electrostatic equilibrium居里点 Curie point绝缘体 insulator抗磁性 diamagnetism库仑定律 Coulomb lawL临界阻尼 critical dampingM麦克斯韦速率分布律 Maxwell speed distribution摩擦起电 electrification by frictionN耐压的 voltage-proofO欧姆定律 Ohm law偶极子 dipoleP匹配 match频率 frequencyR剩磁 remanent magnetismW位移电流 displacement current涡流 eddy current涡流损耗 eddy current loss涡旋电场 eddy electric field无功功率 reactive powerY压电效应 piezoelectific effect有功功率 active powerZ自感` self-induction自感`电动势 self-induction electromotive force自旋磁矩spin magnetic moment自由电荷 free charge阻尼振动 damped vibration附录一科学家中英文姓名对照表安培 Ampere, . (1775-1836) 法国培根 Bacon,Roger 英国库柏 Cooper, L. N.库仑 Coulomb, . (1736-1806) 法国居里 Curie, P. (1859-1906) 法国爱因斯坦 Einstein, Aibert. (1879-1955) 德国法拉第 Faraday, M. (1791-1867) 英国菲聂耳 Fresnel, A . J. (1788-1827) 法国傅立叶 Fourjer, J. B. J. (1768-1830) 法国富兰克林 Franklin, B (1706-1790) 美国高斯 Gauss,K. F. (1777-1855) 德国盖利克 Guoricke, OttoVou (1602-1685) 德国霍耳 Hall,. (1855-1938) 美国哈密顿 Hamilton, . (1805-1865) 英国亨利 Henry, J. (1797-1878) 美国赫姆赫兹 Hejmholtz, H. V. (1821-1894) 德国赫兹 Hertz, H. R. (1857-1894 德国焦耳 Jouje, J. P. (1818-1889) 英国开尔文 Kelvin (William Thomson) (1824-1907) 英国朗道 Landao, L. D. 俄国拉普拉斯 Laplace, P. S. (1749-1827) 法国愣次 Lenz, H. F. E. (1804-1865) 法国洛伦兹 Lorentz, H. A. (1853-1928) 荷兰麦克斯韦 Maxwell, J. C. (1831-1879) 英国迈斯纳 Mwissner, W.密立根 Millikan, R. A. (1868-1953) 美国奥斯特 Oersted, H. G.(1777-1851) 丹麦欧姆 Ohm, G. s. (1787-1854) 德国昂纳斯 Onnes, H. K. (1853-1926) 荷兰帕尔帖 Peltier, J. C. A. (1785-1845) 法国泊松 Poisson, S. D. (1781-1840) 法国坡印廷 Poynting, J. H. (1852-1914) 英国西门子 Siemens, W.斯托克斯 Stokes, G. G. (1819-1903) 英国范德格喇夫 Van der Graff, R. J. (1901-1967) 美国伏打 Volta, C. A. (1745-1827) 意大利瓦特 Watt, J. (1736-1819) 英国韦伯 Webber, W. E. (1804-1891) 德国。
第37卷,总第214期2019年3月,第2期《节能技术》ENERGY CONSERVATION TECHNOLOGYVol.37,Sum.No.214Mar.2019,No.2 印刷电路板式换热器的设计分析董爱华(哈尔滨电气股份有限公司中央研究院,黑龙江 哈尔滨 150028)摘 要:为了对基于超临界二氧化碳燃气轮机余热利用循环的印刷电路板式换热器进行性能分析,提出了一种定热负荷下对印刷电路板式换热器的离散分析方法。
该方法将印刷电路板式换热器看成由许多子换热单元组成的整体,利用MATLAB建模,并参考了美国国家标准与技术研究院的物性库。
通过分析定热负荷下,不同冷热侧流速对印刷电路板式换热器性能的影响。
结果表明:二氧化碳在临界点和近临界点附近的比热具有较大的变化。
采用分段设计的方法可以避免换热器性能剧烈变化带来的问题。
在相同的初始条件下,换热器局部效率随冷流体质量流量的增加而增大,但是平均对数温差随冷流体质量流量的增加而减小。
因此,换热性能的提高是以热导率为代价的。
为了提高超临界二氧化碳印刷电路板式换热器的性能与安全运行,必须仔细选择设计参数的工作范围。
关键词:印刷电路板式换热器;定热负荷;超临界二氧化碳;子换热单元;数值模拟;局部换热效率中图分类号:TM617;TK4213 文献标识码:A 文章编号:1002-6339(2019)02-0170-04Design Analysis of Printed Circuit Heat ExchangerDONG Ai-hua(China Central Academy Harbin Electric Corporation,Harbin150028,China)Abstract:In order to analyze the performance of printed circuit heat exchanger(PCHE)used in super⁃critical carbon dioxide cycle on heat recovery of gas turbine,a discrete analysis method for PCHE under constant heat load was proposed.In this method,the PCHE is regarded as a whole composed of many sub-heat exchangers,referring to the physical properties database of the National Institute of Standards and Technology by MATLAB.The differences between cold and hot side under constant heat load were analyzed.The results show that the specific heat of carbon dioxide varies greatly near the critical point. The segmented design method can avoid the problems caused by the changes in the performance of sub-heat exchangers.Under the same initial conditions,the local efficiency of the heat exchanger increases with the increase of cold side mass flow rate,but the mean logarithmic temperature differences decrease with the increase of cold side mass flow rate.Therefore,the improvement of heat transfer performance is at the cost of thermal conductivity.In order to improve the performance and safe operation of supercritical carbon dioxide PCHE,the working range of design parameters must be carefully selected.Key words:printed circuit heat exchanger;constant heat load;supercritical carbon dioxide;sub-heat exchangers;numerical simulation;local efficiency收稿日期 2018-12-27 修订稿日期 2019-01-13作者简介院董爱华(1974~),女,博士研究生,高级工程师,现从事新能源技术研发工作。
Words and Expressionselectromagnetism n. 电磁,电磁学electrical apparatus 电器,电器设备motor n.电动机generator n. 发电机fractional adj. 分数的,几分之一magnetic field n. 磁场coupling device 连接设备static transformer 静态变压器electrical power distribution circuits 送变电电路circuit breakers 电路断路器automatic switches 自动闸relay 继电器quantity n. 变量,数量magnetic flux n.磁通量simplify the computations 估算Ampere's Circuital Law安培环路定律horizontal plane 水平面right-hand rule 右手(螺旋)法则flux density 磁密度tesla n. 特斯拉,磁通密度的单位permeability n. 磁导率,磁导系数henries 亨利(电感单位)henries/meter 亨利/米(磁导率的单位)absolute permeability 绝对磁导率relative permeability 相对磁导率Deltamax 克镍铁磁性合金ferromagnetic material 铁磁性材料effective area n.有效面积normal component n.法线方向分量weber n. 韦伯,磁通的单位common flux 共有磁通Magnetic Field Intensity H 磁场强度electrical machinery 电机ampere-turns/meter 安培·圈/米Ampere's circuit law 安培回路定律magnetomotive force 磁势magnetization curve 磁化曲线demagnetization n. 退磁residual flux density 剩余磁通密度剩磁retentivity 记忆力saturation 饱和hysteresis 磁滞现象hysteresis loop 磁滞环coercive force 矫顽磁力coercivity 矫顽力矫顽性magnetic circuit 磁路mask v. 补偿clearance n.间隙,空隙equivalent circuit 等效电路reluctance n. 磁阻examination n.观察dimension n.量纲cross-sectional area 横截面proportional to 与……成正比inversely proportional to 与……成电磁理论及磁路了解电磁学是对电气工程研究的基础,因为电磁学是工业及家用电器操作的关键问题。
A. TABLE OF CONVERSIONSUNITS FOR MAGNETIC PROPERTIESConversionQuantity Symbol Gaussian & cgs emu a factor, C b SI & rationalized mks c Magnetic flux density,B gauss (G) d10-4tesla (T), Wb/m2magnetic inductionMagnetic fluxφmaxwell (Mx), G∗cm210-8weber (Wb), volt second (V∗s) Magnetic potential difference,U, F gilbert (Gb)10/4πampere (A)magnetomotive forceMagnetic field strength,H oersted (Oe),e Gb/cm103/4πA/m fmagnetizing force(Volume) magnetization g M emu/cm3 h103A/m(Volume) magnetization4πΜG103/4πA/mMagnetic polarizationintensity of magnetization J, I emu/cm34π ××10-4T, Wb/m2 i1A∗m2/kg(Mass) magnetizationσ , M emu/g4π×10-7Wb∗m/kgMagnetic moment m emu, erg/G10-3A∗m2, joule per tesla(J/T) Magnetic dipole moment j emu, erg/G4π×10-10Wb∗m i(Volume) susceptibilityχ, κdimensionless, emu/cm34πdimensionless(4π)2×10-7henry per meter (H/m), Wb/(A∗m)4π×10-3m3/kg(Mass) susceptibilityχρ , κρcm3/g, emu/g(4π)2×10-10H∗m2/kg4π×10-6m3/mol(Molar) susceptibilityχmol,κmol cm3/mol, emu/mol(4π)2×10-13H∗m2/molPermeabilityµdimensionless4π×10-7H/m, Wb/(A∗m)Relative permeability jµr not defined dimensionless(Volume) energy density,W erg/cm310-1J/m3energy product kDemagnetization factor D, N dimensionless l/4πdimensionlessa. Gaussian units and cgs emu are the same for magnetic properties. The defining relation is B =H+4πΜ.b. Multiply a number in Gaussian units by C to convert it to SI (e.g., 1 G × 10-4 T/G = 10-4 T).c. SI (Système International d'Unités) has been adopted by the National Bureau of Standards. Where two conversion factors aregiven, the upper one is recognized under, or consistent with, SI and is based on the definition B=µ0(H+M), whereµ0=4π×10-7 H/m. The lower one is not recognized under SI and is based on the definition B = µ0H +J, where the symbolI is often used in place of J.d. 1 gauss= 105 gamma (γ).e. Both oersted and gauss are expressed as cm-1/2∗g-1/2∗s-1 in terms of base units.f. A/m was often expressed as "ampere-turn per meter" when used for magnetic field strength.g. Magnetic moment per unit volume.h. The designation "emu" is not a unit.i. Recognized under SI, even though based on the definition B = µ0H +J. See footnote c.j.µr = µ /µ0 = 1 +χ, all in SI. µr is equal to Gaussian µ.k. B∗H and µ0M∗H have SI units J/m3; M∗H and B∗H/4πhave Gaussian units erg/cm3.R. B. Goldfarb and F. R. Fickett, U.S. Department of Commerce, National Bureau of Standards, Boulder, Colorado 80303, March 1985 NBS Special Publication 696 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402。
a r X i v :c o n d -m a t /0207346v 1 [c o n d -m a t .m t r l -s c i ] 14 J u l 20021Magnetoresistance and magnetic anisotropy in La 0.5Sr 0.5CoO 3−δfilmB.I.Belevtsev a ∗,V.B.Krasovitsky a ,A.S.Panfilov a ,I.N.Chukanova ba B.Verkin Institute for Low Temperature Physics &Engineering,Kharkov,61103,Ukraine bInstitute for Single Crystals,61001,Kharkov,UkraineThe magnetic and transport properties of La 0.5Sr 0.5CoO 3−δfilm grown on a LaAlO 3substrate by pulsed-laser deposition are studied.The properties are found to be influenced by a combined influence of the magnetic anisotropy and inhomogeneity.Magnetoresistance anisotropy is determined by the shape anisotropy and the strain-induced magnetic anisotropy due to the film-substrate lattice interaction.Indications of the temperature-driven spin reorientation transition from an out-of plane orderded state at low temperatures to an in-plane ordered state at high temperatures as a result of competition between the mentioned anisotropy sources are found.1.INTRODUCTIONHole-doped lanthanum cobaltates of the type La 1−x Sr x CoO 3have attracted much attention in recent years due to their unique magnetic and transport properties [1,2].Study of this system is also important for understanding the nature of colossal magnetoresistance in the re-lated oxides,doped manganites [3].For tech-nical application,the epitaxial films of these compounds are mainly implied to be used.In that case the shape anisotropy and the film-substrate lattice interaction can induce magne-tization anisotropy and,therefore,magnetoresis-tance (MR)anisotropy (bulk samples of these compounds show no marked magnetic and MR anisotropy).This point was studied rather inten-sively in manganite films (see [4]and references therein),but it is hardly to find in literature some studies of this type for doped cobaltates.Beside this,the properties of doped cobaltates are influ-enced by their (extrinsic and intrinsic)magnetic inhomogeneity.In this report we present a study of La 0.5Sr 0.5CoO 3−δfilm which demonstrates a combined influence of the magnetic anisotropy and inhomogeneity on its transport and magnetic properties.netization of thefilm studied in the directions parallel and perpendicular to thefilm plane. found to be about250K.The M (T)behaviour is quite common for ferromagnetic(FM)metals. At fairly highfield used,2kOe,the M (T)curve is found to be well above the M⊥(T)curve.It is reasonable to suppose that this is determined mainly by the shape anisotropy.Closer inspection shows,however,that M⊥(T)behavior cannot be attributed solely to the shape-anisotropy effect: M⊥(T)and M (T)are practically equal in rather broad temperature range below T c,then(going to lower temperature)the M⊥(T)curve goes rather abruptly well below the M (T)curve and be-comes non-monotonic with a pronounced increase in M⊥(T)at low temperatures.These M⊥(T) features can be caused by the strain-induced mag-netic anisotropy due to thefilm-substrate interac-tion.This guess is supported by the XRD study which hasrevealed that thefilm has an out-of-plane tensile strain.For materials with the pos-itive magnetostriction this must favours an out-of-plane easy magnetization.The temperature dependence of the resistiv-ity,ρ(T),is non-monotonic(Fig.2)with a max-imum at T≈250K and a minimum at T≈0.5Sr0.5CoO3−δsamples with fairly per-fect crystalline structure andδclose to zero are resistivity.known to be metallic(dρ/dT>0)in the whole range below and above T c[2].Theρ(T)behaviour in Fig.2reflects inhomogeneous structure of the film and some oxygen deficiency.Due to the last factor,the hole concentration is less then a nom-inal one(atδ=0).This is responsible for a resistance peak at T=250K which is common for low-doped samples with0.2≥x≥0.3[2]. The low temperature resistance minimum is typ-ical for systems of FM regions(grains or clusters) with rather weak interconnections.The inhomo-genenous structure can be determined by techno-logical factors of sample preparation(causing the polycrystalline structure with rather high tunnel-ing bariers between the grains)or by the phase separation into the hole-rich and hole-poor phase [1,2].For an extended discussion of these points for cobaltatefilms see reference[5].The MR is found to be anisotropic.The abso-lute values of negative MR infields parallel to the film plane are considerably above those in perpen-dicularfields(Fig.3).This MR anisotropy takes place only in FM state and disappears for T>T c (Fig.3).An increase in MR with decreasing tem-perature(in the range well below T c)is one more indication of poor enough connectivity betweenfields parallel and perpendicular to thefilm plane. the FM grains(or clusters)in thefilm.The data presented in Fig.3are pertaining to negative MR for fairly highfields.In gen-eral,the MR curves are hysteretic and have spe-cific features in low-field range(Fig.4).Actually, their behaviour correlates with that of magneti-zation curves.In particular,thefield H=H p, at which MR has a peak(Fig.4),corresponds to value of the coercive force(H c).The value of H p decreases with increasing temperature and goes to zero with approaching T c.The mag-nitude of positive MR in the low-field range,∆R(H p)=[R(H p)−R(0)]/R(0),is some mea-sure of the remanent magnetization.We found that H p and∆R(H p)depend on the field direction and reflect in this way the magne-tization anisotropy.In particular,at T≃4.2K the value of H p in the out-of-planefield is less than that in the in-planefield,and∆R(H p) value is higher for the out-of-planefield direction. The opposite relations(that is,lesser H p values and higher∆R(H p)values for the in-planefield) are found for higher temperatures T≥70K. This implies that at low temperatures the out-of-plane magnetization is favoured,whereas at higher temperatures the in-plane magnetization parallel to thefilm plane and perpendicular to the transport current.becomes dominant.The pronounced increase in M⊥(T)at low temperatures(Fig.1)supports ad-ditionally this suggestion.All these are doubt-less indications of the temperature-driven spin re-orientation transition which is a result of com-petition between the shape anisotropy and the strain-induced anisotropy.This transition has been studied intensively forfilms of common FM metals(see,e.g.[6]),but was never mentioned for manganite or cobaltatefilms.REFERENCES1.M.Itoh,I.Natori,S.Kubota,K.Motoya,J.Phys.Soc.Japan63(1994)1486.2.M.A.Se˜n aris-Rodriguez,J.B.Goodenough,J.Solid State Chem.118(1995)323.3. E.Dagotto,T.Hotta,A.Moreo,Phys.Rep.344(2001)1.4. B.I.Belevtsev,V.B.Krasovitsky,D.G.Nau-gle et al,phys.stat.sol.(a)188(2001)1187.5. B.I.Belevtsev,N.T.Cherpak,I.N.Chukanova et al.,J.Phys.:Condens.Matter 14(2002)2591.6.L.Hu,H.Li,R.Tao,Appl.Phys.Lett.74(1999)2221,。
NMR中常用的英文缩写和中文名称收集了一些NMR中常用的英文缩写,译出其中文名称,供初学者参考,不妥之处请指出,也请继续添加.相关附件NMR中常用的英文缩写和中文名称APT Attached Proton Test 质子连接实验ASIS Aromatic Solvent Induced Shift 芳香溶剂诱导位移BBDR Broad Band Double Resonance 宽带双共振BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOC Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY ( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱CP Cross Polarization 交叉极化CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA Chemical Shift Anisotropy 化学位移各向异性CSCM Chemical Shift Correlation Map 化学位移相关图CW continuous wave 连续波DD Dipole-Dipole 偶极-偶极DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱DNMR Dynamic NMR 动态NMRDNP Dynamic Nuclear Polarization 动态核极化DQ(C) Double Quantum (Coherence) 双量子(相干)DQD Digital Quadrature Detection 数字正交检测DQF Double Quantum Filter 双量子滤波DQF-COSY Double Quantum Filtered COSY 双量子滤波COSYDRDS Double Resonance Difference Spectroscopy 双共振差谱EXSY Exchange Spectroscopy 交换谱FFT Fast Fourier Transformation 快速傅立叶变换FID Free Induction Decay 自由诱导衰减H,C-COSY 1H,13C chemical-shift COrrelation SpectroscopY 1H,13C化学位移相关谱H,X-COSY 1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X-核化学位移相关谱HETCOR Heteronuclear Correlation Spectroscopy 异核相关谱HMBC Heteronuclear Multiple-Bond Correlation 异核多键相关HMQC Heteronuclear Multiple Quantum Coherence异核多量子相干HOESY Heteronuclear Overhauser Effect Spectroscopy 异核Overhause效应谱HOHAHA Homonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn谱HR High Resolution 高分辨HSQC Heteronuclear Single Quantum Coherence 异核单量子相干INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDOR Internuclear Double Resonance 核间双共振INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSE H,X correlation via 1H detection 检测1H的H,X核相关IR Inversion-Recovery 反(翻)转回复JRES J-resolved spectroscopy J-分解谱LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR Lanthanide Shift Reagent 镧系位移试剂MAS Magic-Angle Spinning 魔角自旋MQ(C) Multiple-Quantum ( Coherence ) 多量子(相干)MQF Multiple-Quantum Filter 多量子滤波MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS Multi Quantum Spectroscopy 多量子谱NMR Nuclear Magnetic Resonance 核磁共振NOE Nuclear Overhauser Effect 核Overhauser效应(NOE)NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE谱NQR Nuclear Quadrupole Resonance 核四极共振PFG Pulsed Gradient Field 脉冲梯度场PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD Phase-sensitive Detection 相敏检测PW Pulse Width 脉宽RCT Relayed Coherence Transfer 接力相干转移RECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR Rotational Echo Double Resonance 旋转回波双共振RELAY Relayed Correlation Spectroscopy 接力相关谱RF Radio Frequency 射频ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱SC Scalar Coupling 标量偶合SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱SE Spin Echo 自旋回波SECSY Spin-Echo Correlated Spectroscopy自旋回波相关谱SEDOR Spin Echo Double Resonance 自旋回波双共振SEFT Spin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱SELINCOR Selective Inverse Correlation 选择性反相关SELINQUATE Selective INADEQUA TE 选择性双量子(实验)SFORD Single Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/N Signal-to-noise Ratio 信/ 燥比SQF Single-Quantum Filter 单量子滤波SR Saturation-Recovery 饱和恢复TCF Time Correlation Function 时间相关涵数TOCSY Total Correlation Spectroscopy 全(总)相关谱TORO TOCSY-ROESY Relay TOCSY-ROESY接力TQF Triple-Quantum Filter 三量子滤波WALTZ-16 A broadband decoupling sequence 宽带去偶序列WATERGATE Water suppression pulse sequence 水峰压制脉冲序列WEFT Water Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C) Zero-Quantum (Coherence) 零量子相干ZQF Zero-Quantum Filter 零量子滤波T1 Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2 Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间tm mixing time 混合时间τ c rotational correlation time 旋转相关时间。
常用影像学对比剂种类常用影像学对比剂种类1.磁共振成像(MRI)对比剂1.1 链脲佐菌素类(如Gadobenate Dimeglumine)1.2 二氧化碳(CO2)1.3 钆基类(如Dotarem和Gadovist)1.4 超短脉冲(如Silicon和Iron Oxide)1.5 超顺磁性(如Ferumoxytol和Magnetic Iron Oxide)1.6 磁纳米颗粒类对比剂(如Superparamagnetic Iron Oxide Nanoparticles)1.7 组织标记对比剂(如Polyethylene Glycol和Albumin)2.X射线造影剂2.1 碘化物(如常用的Iothalamate和Iodixanol)2.2 钡(如Barium Sulfate)2.3 磷酸钠(如Phosphosoda)3.乳腺钼靶摄影对比剂3.1 乳腺X线造影剂(如Iodine.contning Compounds)4.乳腺核磁共振摄影对比剂4.1 钆基类对比剂(如Gadopentetate Dimeglumine和Gadodiamide)5.腹部造影剂5.1 乙酸(如Gadopentetate Dimeglumine)5.2 无机磷酸盐(如Iron Oxide)6.CT扫描剂6.1 碘化物(如常用的Iohexol和Iodixanol)7.腹部超声造影剂7.1 微泡造影剂(如SonoVue和Definity)8.心脏造影剂8.1 二氧化碳(CO2)本文所涉及的法律名词及注释:1.链脲佐菌素类(如Gadobenate Dimeglumine)●MRI对比剂中的一种,用于增强MRI图像的对比度。
2.二氧化碳(CO2)●在心脏和血管影像学中,CO2常用于血管造影,具有较低的毒性和高的溶解度。
3.钆基类(如Dotarem和Gadovist)●MRI对比剂中含有钆的制剂,通过提高组织的对比度来改善影像质量。
磁感应强度英语Magnetic Induction IntensityMagnetic induction intensity, also known as magnetic gradient or magnetic field strength, is a measure of the strength of a magnetic field. It is typically measured in the SI units amperes per meter (A/m) or tesla (T). The magnetic field is generated by electric currents, either natural or artificial. The strength of the magnetic field is determined by the magnitude of the currents that generate it.The magnetic induction intensity is a measure of the magnetic flux density, which is the amount of magnetism per unit area. The direction of the magnetic field is determined by the direction of the current, and the strength is determined by the magnitude of the current. If the current is changing, the magnetic field is also changing.The magnetic induction intensity is often used to measure the intensity of an electromagnetic field. It is used in many applications, such as in measuring the strength of the Earth's magnetic field, diagnosing medical conditions with MRI scans, or detecting metal objects in industrial settings.The magnetic induction intensity can also be used to measure the output of certain electrical devices. For example,a device such as a voltage transformer can be tested for its output by measuring the magnetic induction intensity around its coil.The magnetic induction intensity is important to many different fields, including physics, engineering, medicine, and geology. It is used to measure and analyze a wide range of phenomena, such as magnetic fields, electric currents, and biological tissues. It is also an important tool in designing and testing electrical equipment.。
《高迁移率半导体材料的自旋注入》篇一一、引言随着信息技术的飞速发展,半导体材料在电子器件中的应用越来越广泛。
其中,高迁移率半导体材料因其优异的电学性能,在微电子领域具有重要地位。
近年来,自旋电子学作为一门新兴的交叉学科,将自旋极化注入半导体材料中,有望实现更高的信息处理速度和更低能耗的电子器件。
因此,研究高迁移率半导体材料的自旋注入具有重要的科学意义和应用价值。
二、高迁移率半导体材料概述高迁移率半导体材料通常指具有高电子迁移率的半导体材料,如碳纳米管、氮化镓(GaN)等。
这些材料因其独特的能带结构和电子结构,具有优异的电学性能,如高导电性、低电阻率等。
此外,高迁移率半导体材料还具有较高的热稳定性和化学稳定性,使其在微电子器件中具有广泛的应用前景。
三、自旋注入技术及其在半导体材料中的应用自旋注入技术是将自旋极化注入到半导体材料中,从而实现自旋电子学应用的一种技术。
在半导体材料中,自旋注入可以通过多种方式实现,如铁磁金属/半导体界面注入、光注入等。
自旋注入技术在半导体材料中的应用,可以实现更高效的自旋传输和调控,从而提高电子器件的性能。
四、高迁移率半导体材料的自旋注入研究针对高迁移率半导体材料的自旋注入研究,目前已经取得了一系列重要的进展。
研究者们通过制备铁磁金属/高迁移率半导体材料的异质结构,实现了自旋极化注入。
此外,光注入技术也被广泛应用于高迁移率半导体材料的自旋注入研究中。
研究表明,通过优化制备工艺和材料结构,可以实现对自旋极化的高效注入和调控。
同时,高迁移率半导体材料中的自旋相关效应,如自旋弛豫、自旋扩散等,也被深入研究,为自旋电子学应用提供了重要的理论基础。
五、研究展望未来,高迁移率半导体材料的自旋注入研究将面临更多的挑战和机遇。
一方面,需要进一步深入研究自旋注入的机制和动力学过程,提高自旋极化的注入效率和调控能力。
另一方面,需要探索更多的自旋注入技术和方法,以适应不同类型的高迁移率半导体材料。
联影磁体参数1. 磁场强度(Magnetic Field Strength)磁场强度是一个衡量磁体性能的重要参数,通常以特斯拉(Tesla)为单位。
磁场强度越高,对于产生高质量影像具有更好的效果。
较高的磁场强度可以提高信噪比,并使得影像更加清晰和详细。
2. 温升(Temperature Rise)温升是指磁体在工作过程中产生的热量,通常以摄氏度为单位。
磁体的温升直接影响其工作效率和稳定性,过高的温升可能导致设备故障或影像质量下降。
因此,控制磁体的温升是非常重要的。
3. 均匀性(Homogeneity)均匀性是指磁场在空间分布上的一致性。
磁体的均匀性越高,磁场在影像采集区域内的空间分布越均匀,可以减少影像中的伪影和畸变。
因此,提高磁体的均匀性是提高影像质量的重要手段。
4. 渗透率(Permeability)渗透率是指磁体材料对磁场的响应能力。
磁体材料的渗透率越高,磁场在其中传播的能力越强,从而提高磁体的效率和性能。
因此,在设计磁体时选择合适的材料和提高渗透率是至关重要的。
5. 感应电压(Induced Voltage)感应电压是指磁体中由磁场变化引起的电压。
磁体工作时,磁场的变化会在线圈中产生感应电压。
这些感应电压可能会对设备的正常工作产生干扰,因此需要采取适当的措施来减少感应电压的产生。
6. 耗散功率(Dissipated Power)耗散功率是指磁体在工作过程中消耗的能量。
磁体的耗散功率越低,能量利用率越高,从而提高磁体的效率和性能。
减少磁体的耗散功率可以通过优化磁体结构和材料、提高制冷系统效率等方式实现。
7. 脉冲重复频率(Pulse repetition frequency)脉冲重复频率是指磁体在单位时间内产生脉冲的次数。
脉冲重复频率越高,磁体的工作速率越快,可以提高影像采集的效率。
因此,在设计磁体时需要根据实际需求选择合适的脉冲重复频率。
8. 稳定性(Stability)稳定性是指磁体在工作过程中保持稳定的能力。
a r X i v :c o n d -m a t /9910037v 3 [c o n d -m a t .s u p r -c o n ] 17 M a y 2000Local Magnetic Order vs.Superconductivity in a Layered CuprateN.Ichikawa,1∗S.Uchida,1J.M.Tranquada,2T.Niem¨o ller,3P.M.Gehring,4S.-H.Lee,4,5and J.R.Schneider 31Department of Superconductivity,School of Engineering,University of Tokyo,2-11-16Yayoi,Bunkyo-ku,Tokyo 113-8656,Japan2Physics Department,Brookhaven National Laboratory,Upton,NY 11973-50003Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY,Notkestr.85,D-22603Hamburg,Germany4NIST Center for Neutron Research,National Institute of Standards and Technology,Gaithersburg,MD 208995University of Maryland,College Park,MD 20742(February 1,2008)We report on the phase diagram for charge-stripe order in La 1.6−x Nd 0.4Sr x CuO 4,determined by neutron and x-ray scattering studies and resistivity measurements.From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies,we conclude that the transition temperature for local charge ordering decreases monotonically with x ,and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x ≈18.For x <18,appear to provide confirmationthat charge-stripe order is in direct competition with superconductivity;however,the picture becomes more complicated when one takes into account recent nuclear-quadrupole-resonance (NQR)studies of LNSCO [4,5].In this work,a transition (involving the onset of an apparent loss of intensity)has been identified which coincides with the charge ordering determined by diffraction for x ≥18.Furthermore,the same transition is observed inLa 2−x Sr x CuO 4(LSCO)for x <∼18.We are left with the suprisingconclusion that it is,instead,the static magnetic order alone which has a special association with the1netic order that is truly incompatible with superconduc-tivity.The competition between static local antiferro-magnetism and superconductivity is supported by recent theoretical work[16],and is compatible with the spin-gap proximity-effect mechanism for superconductivity[9]. For this study,a series of crys-tals of La2−x−y Nd y Sr x CuO4,with y=0.4and x=0.08 to0.25,was grown by the travelling-solventfloating-zone method[17].Figure1(a)shows the electrical resistivity measured parallel to the CuO2planes by the six-probe method.As previously reported[18],there are upturns inρab at low temperature for the x=0.12and0.15 samples,compositions at which charge order has been observed[18,15,19,3].In each there is also a small jump near70K,where a subtle structural transition takes place from the so-called low-temperature-orthorhombic(LTO) phase to the low-temperature-tetragonal(LTT)or an intervening low-temperature-less-orthorhombic(LTLO) phase[20,21].At x=0.12,charge ordering and the struc-tural transition are essentially coincident[18,19];how-ever,charge ordering occurs significantly below the struc-tural phase change at x=0.15(see Fig.2)[3].The resistivity for x=0.10looks somewhat different. Instead of an increase at the structural transition tem-perature,ρab decreases below the transition,and con-tinues to decrease in a typically metallic fashion until superconductivity sets in.To test whether stripe order occurs in this sample,we performed a neutron scatter-ing experiment at the NIST Center for Neutron Research(NCNR)[22].We found that the x=0.10sample does indeed exhibit charge and spin order.The temperature dependence of the peak intensities for representative su-perlattice peaks are shown in Fig.1(b).On warming, the charge order(which has also been confirmed by x-ray diffraction measurements at HASYLAB)seems to be limited by the structural transition at65K,while the magnetic order disappears at a lower temperature.We have also used neutron scattering to determine the magnetic ordering temperatures(T m)in samples with x=0.08and0.25.The results are summarized in Fig.2. (Further details of the neutron studies will be presented elsewhere.)The new results for x=0.08and0.10make it clear that the highest T m occurs at x∼12+ǫ,1FIG.2.(color)Phasediagram for La 1.6−x Nd 0.4Sr x CuO 4.Light-blue squares:T NQR [5];dark-blue circles:T ch from diffraction studies [18,19,3](and present work);red circles:T m from neutron diffraction [17,14];green circles:T c from magnetic susceptibility [17,14,23].Lines through symbols are guides to the eye.Black lines indicate structural phase bound-aries determined by neutron diffraction [17,18].Shaded region indicates coexistence of LTO and LTT phases.The x =0.25crystal appears to be a mixture of LTO and LTT phases with no obvious transition between 10and 300K.comes significant varies with x ,and so does the rate of upturn;it was pointed out previously by B¨u chner and coworkers [25]that the rate of upturn increases monoton-ically as one goes from x =0.10to 0.12to 0.15.We have found that all of the data can be scaled approximately onto a single curve if ρab is divided by αT and then plot-ted against a reduced temperature t =(T −T 0)/T u ,where T u is the characteristic upturn temperature and T 0is the temperature towards which ρab appears to be diverging.The scaled resistivities are shown in Fig.3;note that the same scaling is useful for samples both with and without Nd.The scaled curve is given approximately byρab /αT =tanh(15t )/tanh(t ),(2)and we have determined error bars for the parameters T 0and T u by performing least-squares fits to this function.The values of T u are compared with T NQR in Fig.4,where both are plotted vs.the maximum orthorhombic splitting (b −a )LTO in the LTO phase.B¨u chner et al.[26]have shown that (b −a )LTO is a useful measure of the octahedral tilt angle,which changes orientation but not magnitude in the LTLO and LTT phases.For the y =0.4samples,we used our own neutron measurements of (b −a )LTO ,while we used results from [27]for LSCO.From Fig.4we see that (1)the values of T u and T NQR agree within the error bars,and (2)both values tendFIG.3.(color)ρab divided by αT vs.(T −T 0)/T u for La 2−x −y Nd y Sr x CuO 4with y =0.4and y =0(shifted ver-tically).The values of T 0and T u ,adjusted to scale the data sets onto the same curve,are plotted in Fig.5.The black dashed line is a model function described in the text.FIG.4.Values of parameters T u (triangles)and T NQR (cir-cles)as a function of (b −a )LTO for La 2−x −y Nd y Sr x CuO 4(filled symbols,y =0.4;open,y =0).Dashed line is a guide to the eye.Inset:T 0vs.x for y =0.4.to scale with the octahedral tilt angle,independent of the tilt orientation (LTO vs.LTT).The first point rein-forces the association of T NQR with charge order,while the second indicates that the ordering temperature for local charge ordering is controlled by the tilt angle.(A correlation between tilt angle and T c reduction was noted previously by Dabrowski et al.[28].)Longer-range charge correlations (those detected by diffraction)appear to be sensitive to the tilt orientation.The variation of T 0with x is shown in the inset of Fig.4for y =0.4.There is a considerable increase in T 0from x =0.10to 0.15.We suggest that this trend may be asso-ciated with a phase locking of charge-density-wave corre-lations along neighboring charge stripes,a possibility sug-gested by Kivelson,Fradkin,and Emery [29].Whether or not this interpretation is correct,there is clearly no3correlation between the variations of T0(or T u)and the depression of T c for y=0.4,which is greatest at x≈18.We are thenleft with the conclusion that the culprit must be the mag-netic order,which is maximized at the point where T c is minimized.That local antiferromagnetic order competes with superconductivity is certainly compatible with the spin-gap proximity-effect mechanism for superconductiv-ity[9].In that theory,hole pairing is associated with the occurrence of a spin gap;given that antiferromagnetic order competes with singlet correlations and a spin gap, one would then expect T c to be depressed when magnetic order is present.(Of course,charge order is a prereq-uisite for magnetic order.)The trade offbetween local magnetic order and superconductivity is also emphasized in a recent numerical study[16].One simple reason why T m might reach a maximum at x=18,one would have a combi-nation of even-leg and3-leg ladders,thus weakening the tendency to order.Although there is no direct exper-imental evidence concerning the registry of the stripes with the lattice,the picture of a CuO2plane broken into a series of3-leg ladders by Cu-centered charge stripes at x=18.While pinning chargestripes also causes some reduction of T c,charge order ap-pears to be compatible with superconductivity as long as the spin correlations remain purely dynamic.This research was supported by the U.S.-Japan Co-operative Research Program on Neutron Scattering,a COE Grant from the Ministry of Education,Japan, and U.S.Department of Energy Contract No.DE-AC02-98CH10886.We acknowledge the support of the NIST, U.S.Department of Commerce,in providing the neu-tron facilities used in this work;SPINS is supported by the National Science Foundation under Agreement No. DMR-9423101.NI and JMT acknowledge the hospital-ity of the NCNR staff.We thank V.J.Emery and S.A. Kivelson for helpful comments.。