北京大学数学分析考研试题及解答
- 格式:pdf
- 大小:489.60 KB
- 文档页数:3
北大数学分析考研
北大的数学分析考研真的是非常难,要想取得好成绩,需要具备扎实的数学基础和良好的解题能力。
北大数学分析考研主要包括两个方面的内容:一是数学分析基本理论和方法,二是数学分析的应用。
在基本理论和方法方面,考生需要熟练掌握数列极限、函数极限、连续性和一致连续性的概念及其性质,熟悉泰勒展开式、可导性的判定条件等内容。
在应用方面,考生需要掌握微分中值定理、极值、泰勒中值定理等应用知识,并能熟练解决相关的应用题。
要想在北大数学分析考研中取得好成绩,首先要有良好的学习方法。
数学分析考试要求考生以理论为依托,注重掌握基本概念和性质,强调综合运用各种方法解题。
考生需要注重理论的理解和掌握,经常进行归纳总结,提高数学分析的抽象和推理能力。
同时,还需要通过大量的练习,加强对应用题的解题能力和分析能力。
其次,要有良好的数学思维能力。
数学分析考试注重考察考生的数学思维能力和解题能力。
考生需要具备逻辑思维和推理能力,善于分析问题、理清思路。
同时,要善于发现问题的重点和难点,能够运用数学知识解决实际问题。
最后,要保持积极的学习态度和良好的心理素质。
北大数学分析考研非常难,考生需要耐心和毅力,保持积极的学习态度,不怕困难,勇于挑战。
同时,还需要具备良好的心理素质,保持冷静和稳定,不被考试压力所影响。
总的来说,北大数学分析考研需要考生具备扎实的数学基础、良好的解题能力,通过科学的学习方法,培养良好的数学思维能力,保持积极的学习态度和良好的心理素质,才能在考试中取得好成绩。
加油!。
北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷《数学分析(Ⅲ)》院/系——年纪——专业——姓名——学号——一、选择题(每题2分,共20分)1. 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f'(x) > 0,则下列结论正确的是( )A. f(x)在[a,b]上单调递增B. f(x)在(a,b)上单调递增C. f(x)在[a,b]上单调递减D. f(x)在(a,b)上单调递减2. 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a) = f(b) = 0,则在(a,b)内至少存在一点ξ,使得( )A. f'(ξ) = 0B. f'(ξ) > 0C. f'(ξ) < 0D. 以上都不一定3. 关于函数极限的ε-δ定义,以下说法正确的是( )A. 对任意ε>0,总存在δ>0,使得当|x-x0|<δ时,有|f(x)-A|<εB. 对任意δ>0,总存在ε>0,使得当|x-x0|<δ时,有|f(x)-A|<εC. 对任意ε,δ>0,当|x-x0|<δ时,有|f(x)-A|<εD. 以上都不对4. 设z = f(x,y)在点(x0, y0)处可微,则( )A. dz在(x0, y0)处连续B. dz在(x0, y0)处有界C. dz在(x0, y0)处可导D. dz在(x0, y0)处存在偏导数5. 设u = u(x,y,z)有连续的二阶偏导数,则( )A. u关于x的二阶偏导数与关于y的二阶偏导数一定相等B. u关于x的二阶偏导数与关于y的二阶偏导数一定不相等C. u关于x,y的二阶混合偏导数与关于y,x的二阶混合偏导数一定相等D. 以上都不一定6. 设函数$f(x)$在$[a, b]$上连续,在$(a, b)$内可导,若$f'(x) > 0$对所有$x \in (a, b)$成立,则$f(x)$在$[a, b]$上( )A. 单调递增B. 单调递减C. 可能递增也可能递减D. 为常数7. 设$f(x)$在$x = x_0$处可导,且$f'(x_0) > 0$,则对于充分小的$\Delta x > 0$,有( )A. $f(x_0 + \Delta x) < f(x_0)$B. $f(x_0 + \Delta x) > f(x_0)$C. $f(x_0 + \Delta x) = f(x_0)$D. 无法确定8. 若$\lim_{{x \to \infty}} f(x) = L$,则下列说法正确的是( )A. $f(x)$在$x \to \infty$时单调B. $\lim_{{x \to -\infty}} f(x) = L$C. $f(x)$在$x \to \infty$时一定有界D. $\lim_{{x \to x_0}} f(x)$不一定存在9. 设函数$z = f(x, y)$在点$(x_0, y_0)$处可微,则$f$在$(x_0, y_0)$处的全微分$dz$可以表示为( )A. $dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$B. $dz = f_x(x_0, y_0) + f_y(x_0, y_0)$C. $dz = f_x(x_0, y_0) dy + f_y(x_0, y_0) dx$D. $dz = \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0)$10.设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,且对任意$x \in (a,b)$,有$f(x) \geq 0$和$f'(x) \leq 0$,则:A. $f(x)$在$[a,b]$上单调递增B. $f(x)$在$[a,b]$上单调递减C. $f(x)$在$[a,b]$上恒为常数D. $f(x)$在$[a,b]$上无单调性二、填空题(每题3分,共15分)1. 设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x) < 0,则f(x)在[a,b]上的最小值为_______。
2015年北京大学702数学基础全套资料点击蓝色字体查看原文按住Ctrl+H搜索所需科目本专业课考试科目的全套资料主要包括:1.历年真题本全套资料提供北京大学1996—2001、2005—2010年数学分析考研真题,供参考。
·北京大学2010年数学分析考研真题·北京大学2009年数学分析考研真题·北京大学2008年数学分析考研真题·北京大学2007年数学分析考研真题·北京大学2006年数学分析考研真题·北京大学2005年数学分析考研真题(含答案)·北京大学1996—2001年数学分析考研真题注:考研真题或答案如有补充,会第一时间予以上传,并在详情中予以标注,请学员留意。
2.指定教材配套资料北京大学702数学基础近年不指定参考书目,但根据往年指定教材情况,建议参考书目为:①《数学分析新讲》(张筑生,北京大学出版社);②《数学分析》(一、二、三册)(方企勤等,北京大学出版社)。
·教材:方企勤《数学分析(第一册)》(PDF版)·教材:方企勤《数学分析(第三册)》(PDF版)·《数学分析习题集》(林源渠方企勤等著)·教材:张筑生《数学分析新讲》(第一、二、三册)(PDF版)3.北京大学老师授课讲义(含指定教材高校老师授课讲义)本全套资料提供北京大学老师的授课资源,及建议参考书目的相关课件。
具体包括:·北京大学彭立中老师《数学分析》教学资源汇总(含电子教案、例题习题等,仅提供免费浏览网址)·《数学分析》教学课件(上册)4.兄弟院校考研真题详解本全套资料提供的兄弟院校历年考研真题(含详解)部分,提供其他同等高校历年考研真题详解,以便学员复习备考。
所列的高校考研真题非常具有参考性!这部分内容包括:·中山大学数学分析与高等代数考研真题:2011 2010 2009 2008 2006 2005 2004 2003·华东师范大学数学分析与高等代数考研真题:2005 2004·华东师范大学数学分析考研真题:2010 2009 2008(含答案) 2007(含答案) 2006 2005(含答案) 2004 2003(含答案) 2002 2001(含答案) 2000(含答案) 1999 1998 1997·华东师范大学高等代数考研真题:2008(含答案) 2007 2006 2005 2004 2003 2002 2001 2000·北京师范大学数学分析与高等代数考研真题:2007 2006·浙江师范大学数学分析与高等代数考研真题:2011 2006 2005 2004整理:夺魁考研网5.其他相关精品资料·数学分析同步辅导及习题全解(华东师大第三版)(上、下册)(PDF版,586页)附注:全套资料尤其是真题会不断更新完善,待更新完善后会及时上传并予以说明标注,学员可下载学习!2015年北京大学664行政学原理全套资料◇资料构成说明:北京大学664行政学原理中664是2013年的学科代码,2012年之前的几年学科代码为659。
2011年北京大学研究生入学考试数学分析试题解答SCIbird说明:印象中根据当初论坛上的讨论,北大2011年试题的回忆版与原题多少有些出入,这里根据自己的理解来确定试题。
因为对试卷回忆版第5题搞不清楚,所以略去此题。
其它试题解答,比较基础的试题就写得相对简略一些,难一些的试题就写得详细一些。
试题后的评注是个人对试题的看法。
1. 用确界存在定理证明,如果函数()f x 是区间I 上的连续函数,则()f I 是一个区间。
证明:为证明()f I 是一个区间,实际上只需要证明连续函数具有价值性质即可。
不妨只考虑()()f a f b <情形,其它情况同理。
任取实数c ,满足()()f a c f b <<下面利用确定存在定理证明(,)a b ξ∃∈,使得()f c ξ=. 所用方法非常经典,读者最好熟记此方法。
记集合[,]:{()}S t f a b t c ∈=<,因为()f a c <,所以a S ∈,因此如此定义的集合非空。
由确界存在定理知,上确界sup S ξ=存在且。
由()f x 连续函数,所以()f c ξ≤且a b ξ<<. 下证()f c ξ=:采用反证法。
假设()f c ξ<,因为ξ是内点,所以由连续函数的局部保号性可知存在ξ的一个邻域(,)[,]U a b ξδξδ=−+⊂,使得在U 上满足()f x c <,特别地12()f c ξδ+<,这与sup S ξ=是上确界的定义矛盾!所以()f c ξ=.评注:上面的证明是标准的,读者应该熟练掌握“连续函数取上确界”这种技巧,2009年北大数学分析压轴题的证明方法也取上确界。
印象中北大考研的数学分析试题必有一道试题涉及实数系那几个基本定理的等价性证明或者应用,属于送分题,但前提是你认真准备过。
实数系基本定理有好几个,但在解题或科研中,最常用的是确界存在原理和闭区间套定理。
特别在处理涉及连续函数的1维问题时,确界存在原理往往起到奇兵作用。
北京大学601数学基础考试1(数学分析)考研参考书、历年真题、复试分数线一、课程介绍又称高级微积分,分析学中最古老、最基本的分支。
一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。
它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。
它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。
这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。
微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。
后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
二、北京大学601数学基础考试1(数学分析)考研复试分数线根据教育部有关制订分数线的要求,我校按照统考生、联考生等不同类型分别确定复试基本分数线。
考生能否进入复试以各院系所规定的各项单科成绩和总成绩确定的复试名单为准。
我校将按照德、智、体全面衡量,择优录取,保证质量,宁缺毋滥的精神和公开、公正、公平的原则进行复试与录取工作。
北京大学数学考研真题北京大学数学考研真题数学考研一直是备受关注的热门话题,而北京大学作为中国顶尖的高校之一,其数学考研真题更是备受瞩目。
本文将从历年的北京大学数学考研真题中挑选几道典型题目进行解析,帮助考生更好地了解考试内容和备考要点。
第一道题目是2018年北京大学数学考研真题中的一道选择题。
题目如下:已知函数f(x)在区间[0,1]上连续,且满足f(0)=f(1)=0,f(x)在(0,1)内有两个不同的驻点x1和x2,且满足0<x1<x2<1。
则下列说法正确的是:A. f(x)在(0,1)内至少有一个最大值和一个最小值。
B. f(x)在(0,1)内至少有两个最大值和两个最小值。
C. f(x)在(0,1)内至少有一个最大值或一个最小值。
D. f(x)在(0,1)内至少有两个最大值或两个最小值。
这是一道考察函数极值的题目。
根据题干中给出的条件,可以得知函数f(x)在(0,1)内有两个驻点,即导数为零的点。
同时,由于f(x)在区间[0,1]上连续,且满足f(0)=f(1)=0,可以推断出函数图像在[0,1]上至少有一个最大值和一个最小值。
因此,正确答案是A。
接下来,我们来看一道2019年北京大学数学考研真题中的一道填空题。
题目如下:设函数f(x)在[0,1]上连续,且满足f(0)=f(1)=0。
若对任意的x∈[0,1],有f''(x)≥2,则f(x)在[0,1]上的最小值为____。
这是一道考察函数极值的题目。
根据题干中给出的条件,可以得知函数f(x)在[0,1]上连续,且满足f(0)=f(1)=0。
同时,题干中还给出了f''(x)≥2的条件,即函数的二阶导数大于等于2。
根据函数的极值定理,当函数的二阶导数大于0时,函数在该区间上的最小值出现在驻点处。
因此,f(x)在[0,1]上的最小值出现在x=0或x=1处。
由于题干中给出了f(0)=f(1)=0,可以得知f(x)在[0,1]上的最小值为0。
北大数学分析习题集的答案北大数学分析习题集的答案北大数学分析习题集是一本备受学生喜爱的辅导书籍,它涵盖了数学分析领域的各个重要知识点,并提供了大量的习题供学生练习。
这本习题集不仅对于北大的学生来说是一本宝贵的学习资料,对于其他高校的学生来说也是一本难得的辅导书。
然而,对于很多学生来说,习题集中的答案是他们学习的关键所在。
下面,我们将为大家提供北大数学分析习题集中一些代表性题目的答案。
第一章:极限与连续1. 设函数f(x) = x^2 - 3x + 2,求lim(x->2) f(x)的值。
解答:将x代入函数f(x)中,得到f(2) = 2^2 - 3*2 + 2 = 4 - 6 + 2 = 0。
因此,lim(x->2) f(x)的值为0。
2. 设函数f(x) = sin(x),求lim(x->0) f(x)的值。
解答:利用极限的性质,我们知道lim(x->0) sin(x) = sin(0) = 0。
因此,lim(x->0) f(x)的值为0。
第二章:导数与微分1. 设函数f(x) = x^3 + 2x^2 + x,求f'(x)的表达式。
解答:根据导数的定义,我们可以求得f'(x) = 3x^2 + 4x + 1。
2. 设函数f(x) = e^x,求f'(x)的表达式。
解答:根据指数函数的导数公式,我们可以求得f'(x) = e^x。
第三章:积分与微积分基本定理1. 计算∫(0 to 1) x^2 dx。
解答:根据积分的定义,我们可以求得∫(0 to 1) x^2 dx = [x^3/3] (0 to 1) =1/3 - 0 = 1/3。
2. 计算∫(0 to π/2) sin(x) dx。
解答:根据积分的性质,我们可以求得∫(0 to π/2) sin(x) dx = [-cos(x)] (0 toπ/2) = -cos(π/2) + cos(0) = -1 + 1 = 0。
北大数学考研真题
在北大数学考研真题中,有一道关于微积分的题目,要求计算定积分∫[0,1] (x^2 - 2x + 1) dx。
这道题目考察的是对函数的积
分运算和求解定积分的技巧。
另外一道题目是关于线性代数的,要求求解线性方程组
⎧ 2x - y + z = 1
⎪ 3x + y + z = 2
⎪ x - 3y + 2z = -3
通过高斯消元法或矩阵的逆运算等方法,得出方程组的解。
此外,还有一道题目涉及到概率论,要求计算一个朴实的概率,例如一个正六面的骰子掷出的点数等等。
需要注意的是,在北大数学考研真题中,题目的标题是不会重复出现的,每一道题目都有独立的题目描述和要求。
因此,同一篇文章中不会存在相同的标题相同的文字。