①变量的分离
2220
x2 y2 z2
令 (x ,y ,z ) f(x )g (y )h (z ),并代入上式
并两边同除以 f(x)g(y)h(z)得
1 2f(x)1 2g(y)12h(z)0 f(x) x2 g(y) y2 h(z) z2
k
2 x
k
2 y
k
2 z
则上式分解成三个独立的全微分方程,即
k xi ,k yi ,k zi ( i 1 ,2 ,3 , ,n )
本征值对应的函数称为本征函数或本征解。
所有本征解的线性叠加构成满足拉普拉斯方程的通解
(x,y,z) n i(x,y,z) nfi(x)g i(y)h i(z)
i 1
i 1
在许多问题中,单一本征函数不能满足所给的边界条件,而级 数形式的通解则可以满足单个解函数所无法满足的边界条件。
令 f = 0,即可得到拉普拉斯方程情况的证明
3、应用 求解边界问题时,可以先将复杂边界条件分解成便于求解 的几个边界条件,则总的边界问题解就是这些解的叠加。
例:
2 0
s1 C 1
s2 C 2
s3 C 3
分解为三个边界问题
21 0
1
s1
C1
1
s2
0
1 s3
0
22 0
静态场的边值问题
边值问题 研究方法
解析法 数值法
分离变量法
镜像法
复变函数法
有限差分法 有限元法 边界元法 矩量法 模拟电荷法
• • • •
§5.1 唯一性定理和解的叠加原理
一. 唯一性定理
1、表述
在给定的区域内,泊松方程(或拉普拉斯方程)满足所给 定的全部边界条件的解是唯一的。 2、边界条件的形式