P53信号通路译文
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
P53 信号通路P53是一个肿瘤抑制蛋白,调节各种各样基因的表达,包括细胞凋亡,生长抑制,抑制细胞周期进程,分化和加速DNA修复,基因毒性和细胞应激后的衰老。
作为一个转录因子,p53是N端激活域、DNA中央特定结合域和C-端四聚体化域的组成部分,而且其调控域富含碱性氨基酸。
p53半衰期很短,在26S蛋白酶体作用下,通过持续的泛素化和后期降解,p53在无刺激的哺乳类动物细胞中维持较低的含量。
去磷酸化的p53在MDM2(鼠双微体基因-2)泛素连接酶作用下被泛素化。
MDM2结合p53使其无活性是通过两种途径:第一,MDM2结合p53的转录激活域,阻止转录元件的相互作用。
第二,介导p53共价结合泛素蛋白,泛素化的p53被蛋白水解酶降解。
通过使p53的失活,MDM2扮演着p53抑癌基因的主要监视者。
当细胞面临着DNA损伤、缺氧、细胞因子、代谢改变、病毒感染或者致癌基因等刺激时,导致p53泛素化被抑制和p53在细胞核内积累,通过多个共价修饰包括磷酸化和乙酰化,p53被激活并稳定存在。
p53的磷酸化大多数出现在N-末端激活域的Ser6,Ser9,Ser15,Thr18,Ser20,Ser33,Ser37,Ser46,Thr55和Thr81残基上,另外还有一些p53磷酸化出现在C-末端连接处和碱性区域的Ser315, Ser371, Ser376, Ser378, 和 Ser392残基上。
大多数位点上的磷酸化是由DNA损伤诱发的,还有一些例如Thr55 and Ser376在基因毒性应激下被压抑。
P53磷酸化是由几个细胞激酶所介导,包括Chks,CSNK1-Delta,CSNK2,PKA,CDK7,DNA-PK,HIPK2,CAK, p38和JNK。
显然,由ATM/ATR作用在Ser15上磷酸化,直接作用或者通过Chk1/Chk2,在Chk1/Chk2作用下的Ser20磷酸化已经证实能够减缓抑制或减慢降解p53,导致p53稳定并活化。
氧化应激相关kegg通路
氧化应激是一种细胞或组织在受到各种有害刺激时,如活性氧(ROS)和活性氮(RNS)的产生超过其抗氧化防御能力的状态。
这种状态会导致细胞中的大分子(如DNA、蛋白质和脂质)受到损伤,从而引发一系列的生物化学反应。
在生物信息学和系统生物学领域,KEGG(Kyoto Encyclopedia of Genes and Genomes)通路是一种常用的分析工具,可以帮助我们理解氧化应激相关的生物过程。
以下是与氧化应激相关的一些KEGG通路:
p53信号通路:p53是一种重要的肿瘤抑制基因,其通路涉及细胞周期控制、DNA 修复、细胞凋亡等多种生物学过程。
在氧化应激状态下,p53通路可能会被激活,以应对DNA损伤和其他有害影响。
MAPK信号通路:MAPK(丝裂原活化蛋白激酶)通路是一种重要的细胞信号转导通路,参与调节多种细胞功能,包括细胞增殖、分化、凋亡和应激反应等。
在氧化应激状态下,MAPK通路可能会被激活,参与调节细胞的应激反应。
NF-κB信号通路:NF-κB(核因子κB)是一种重要的转录因子,参与调节多种炎症和免疫相关基因的表达。
在氧化应激状态下,NF-κB通路可能会被激活,引发炎症反应和细胞凋亡等生物学过程。
抗氧化系统:包括谷胱甘肽代谢、超氧化物歧化酶(SOD)等抗氧化酶的通路。
这
些通路通过清除ROS和RNS等有害物质,维护细胞的氧化还原平衡。
需要注意的是,这些通路并不是孤立的,它们之间可能存在复杂的交互和调控关系。
因此,在研究氧化应激相关的生物学过程时,需要综合考虑这些通路之间的相互作用和影响。
衰老细胞p53表达
衰老细胞p53表达是指衰老细胞中的p53蛋白的表达,这是一种非常重要的调控因子,在细胞衰老中发挥着重要的作用。
p53蛋白是一种常见的转录因子,可以调节细胞凋亡和细胞周期,并可以调控多种细胞信号通路。
p53可以有效抑制和促进细胞存活,表达异常的p53可以导致细胞凋亡或过度增殖和肿瘤形成。
衰老细胞p53表达受到许多环境问题和其他因素的影响,其中包括自由基氧化、DNA甲基化和锌损耗等。
研究显示,随着年龄的增长,衰老细胞中的p53蛋白表达量会下降,且在细胞衰老的过程中会发生变化。
此外,与年轻细胞相比,衰老细胞中p53蛋白的活性更低,而且出现抑制剂扩散和衰老相关特征。
衰老细胞中p53表达的减少是一种自然老化的必然结果,但也可能由外界因素引起,从而影响细胞的衰老过程。
大量的研究表明,衰老细胞的p53表达可以被定向地调节,以改善细胞老化过程中的病理变化,包括细胞代谢、凋亡、DNA损伤和其他过程的调节。
此外,促进衰老细胞中的p53表达也可以改善肿瘤的形成,通过供体T细胞的再活化来抑制恶性肿瘤的发展。
因此,衰老细胞中p53表达及其调控是细胞衰老研究领域一个重要的方向,也是调节人体老化的一种重要途径。
P53-信号通路译文P53 信号通路P53是一个肿瘤抑制蛋白,调节各种各样基因的表达,包括细胞凋亡,生长抑制,抑制细胞周期进程,分化和加速DNA修复,基因毒性和细胞应激后的衰老。
作为一个转录因子,p53是N端激活域、DNA中央特定结合域和C-端四聚体化域的组成部分,而且其调控域富含碱性氨基酸。
p53半衰期很短,在26S蛋白酶体作用下,通过持续的泛素化和后期降解,p53在无刺激的哺乳类动物细胞中维持较低的含量。
去磷酸化的p53在MDM2(鼠双微体基因-2)泛素连接酶作用下被泛素化。
MDM2结合p53使其无活性是通过两种途径:第一,MDM2结合p53的转录激活域,阻止转录元件的相互作用。
第二,介导p53共价结合泛素蛋白,泛素化的p53被蛋白水解酶降解。
通过使p53的失活,MDM2扮演着p53抑癌基因的主要监视者。
当细胞面临着DNA 损伤、缺氧、细胞因子、代谢改变、病毒感染或者致癌基因等刺激时,导致p53泛素化被抑制和p53在细胞核内积累,通过多个共价修饰包括磷酸化和乙酰化,p53被激活并稳定存在。
p53的磷酸化大多数出现在N-末端激活域的Ser6,Ser9,Ser15,Thr18,Ser20,Ser33,Ser37,Ser46,Thr55和Thr81残基上,另外还有一些p53磷酸化出现在C-末端连接处和碱性区域的Ser315, Ser371, Ser376, Ser378, 和Ser392残基上。
大多数位点上的磷酸化是由DNA损伤诱发的,还有一些例如Thr55 and Ser376在基因毒性应激下被压抑。
P53磷酸化是由几个细胞激酶所介导,包括Chks,CSNK1-Delta,CSNK2,PKA,CDK7,DNA-PK,HIPK2,CAK,p38和JNK。
显然,由ATM/ATR作用在Ser15上磷酸化,直接作用或者通过Chk1/Chk2,在Chk1/Chk2作用下的Ser20磷酸化已经证实能够减缓抑制或减慢降解p53,导致p53稳定并活化。
p53蛋白分子量P53蛋白是一种关键的肿瘤抑制蛋白,其分子量为53千道尔顿(kDa)。
在细胞中,P53蛋白起着重要的调控作用,帮助维持基因组的稳定性,并监测和修复DNA的损伤。
这一蛋白的异常表达和突变已被证明是许多肿瘤发生和发展的关键因素之一。
P53蛋白的分子量为1400字,使其在细胞中具有独特的功能和结构。
其最重要的功能之一是调控细胞周期的进程。
P53可以通过抑制细胞周期进展和促进细胞凋亡,起到保护细胞免受损害的作用。
此外,P53还可以促进DNA的修复过程,并在DNA损伤过于严重时触发细胞凋亡。
P53的结构也决定了其功能。
该蛋白由393个氨基酸组成,具有许多结构域,包括N末端的变异类II亚域(N-terminal domain, NT),这是最活跃的功能区域。
NT区域中存在一个转录活化域(transactivation domain, TA),它可以结合到DNA上的启动子区域,影响基因的转录和表达。
此外,P53还包含一个中部的DNA结合域(DNA binding domain, DBD),它是与DNA的直接结合区域。
当细胞受到DNA损伤时,P53蛋白会发生一系列的调控反应。
首先,DNA损伤引起P53的磷酸化,导致其活性的改变。
其次,激活的P53迅速累积并进入细胞核,通过结合到DNA上的启动子区域,促进相关基因的转录和表达。
这些基因编码一系列的蛋白质,如细胞周期素依赖性激酶抑制剂、DNA修复酶等,对细胞周期的调控和DNA修复起到重要作用。
此外,P53还可以通过诱导细胞凋亡来消除受到严重损害的细胞。
当DNA损伤过于严重而无法修复时,P53信号通路会激活一系列的凋亡信号分子,如Bax、Puma和Noxa等,从而引发细胞的凋亡过程。
这种自我毁灭性的机制有助于抑制异常细胞的增殖和癌症的发展。
总的来说,P53蛋白是一种分子量为1400字的关键肿瘤抑制蛋白。
其通过调控细胞周期、DNA修复和诱导细胞凋亡等机制,帮助维持细胞的健康状态。
1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。
他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等。
另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。
调控PPARa生长信号的酶报道有M APK、PKA和G SK3。
PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs 通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。
2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。
MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。
JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。
常见的几种信号通路1 JAK-STAT信号通路1) JAK与STAT蛋白JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。
与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK 和转录因子STAT。
(1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor)许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。
这些细胞因子和生长因子在细胞膜上有相应的受体。
这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。
受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。
(2) 酪氨酸激酶JAK(Janus kinase)很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptortyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。
JAK是英文Janus kinase 的缩写,Janus在罗马神话中是掌管开始和终结的两面神。
之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。
JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。
(3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。
p53 SignalingRT² Profiler™ PCR Arrayp53 Signaling Pathway PCR ArrayCellular Senescence PCR ArrayDNA Damage Signaling Pathway PCR ArrayCell Cycle PCR ArraySureSilencing RNAip53 Signaling Pathway Gene RNAiCellular Senescence Gene RNAiDNA Damage Signaling Pathway Gene RNAiCell Cycle Gene RNAiCignal™ Reporter Assaysp53 Pathway Reporter Assay KitE2F Reporter Assay KitEGR1 Reporter Kitp53 is a tumour suppressor protein that regulates the expression of a wide variety of genes involved in Apoptosis, Growth arrest, Inhibition of cell cycle progression, Differentiation and accelerated DNA repair or Senescence in response to Genotoxic or Cellular Stress. As a transcription factor, p53 is compos ed of an N-terminal Activation Domain, a central specific DNA Binding Domain, and a C-terminal Tetramerization Domain, followed by a Regulatory Domain rich in basic Amino acids. Having a short half-life, p53 is normally maintained at low levels in unstress ed mammalian cells by continuous ubiquitylation and subsequentdegradation by the 26S Proteasome. Nonphosphorylated p53 is ubiquitylated by the MDM2 (Mouse Double Minute-2) ubiquitin ligase. MDM2 binding inactivates p53 by two mechanisms. First, MDM2 binds to the transactivation domain of p53, precluding interaction with the transcriptional machinery. Second, this binding mediates the covalent attachment of ubiquitin to p53. Ubiquitylated p53 is then degraded by the Proteasome. Thus MDM2 acts as a major reg ulator of the tumor suppressor p53 by targeting its destruction. When the cell is confronted with stress like DNA damage, Hypoxia, Cytokines, Metabolic changes, Vi ral infection, or Oncogenes, however, p53 ubiquitylation is suppressed and p53 accumulates in the nucleus, where it is activated and stabilized by undergoing multiple covalent modifications including Phosphorylation and Acetylation (Ref.1 & 2).Phosphorylation of p53 mostly occurs in the N-terminal activation domain at the Ser6, Ser9, Ser15, Thr18, Ser20, Ser33, Ser37, Ser46, Thr55, and Thr81 residues, with some phosphorylation occurring in the C-terminal linker and basic regions at Ser315, Ser371, Ser376, Ser378, and Ser392. Phosphorylation on most of these sites is induced by DNA damage, with som e, such as Thr55 and Ser376, being repressed upon genotoxic stress. p53 phosphorylation is mediated by several cellular kinases including Chks (Checkpoint Kinases), CSNK1-Delta (Casein Kinase-1-Delta), CSNK2 (Casein Kinase-2), PKA (Protein Kinase A), CDK7 (Cyclin-Dependent Kinase-7), DNA-PK (DNA-Activated- Protein Kinase), HIPK2 (Homeodomain-Interacting Protein Kinase-2), CAK (CDK-Activating Kinase), p38 and JNK (Jun NH2-terminal kinase). Notably, phosphorylation at Ser15 by ATM (Ataxia Telangiectasia Mutated Gene)/ATR (Ataxia-Telangiectasia and Rad3 Related), either directly or through Chk1 (Cell Cycle Checkpoint Kinase-1)/Chk2 (Cell Cycle Checkpoint Kinase-2), or at Ser20 by Chk1/Chk2 has been shown to alleviate the inhibition or degradation of p53, leading to p53 stabilization and activation. The phosphorylation-induced p53 stabilization and activation are mediated through multiple mechanisms and may vary according to the cellular context or microenvironment. HIF-1Alpha (Hypoxia-Inducible Factor-1-Alpha) has been implicated to be involved in p53 stabilization, the precise mechanism by which HIF-1Alpha regulates p53-mediated function remains unknown. Recently, the interaction between p53 and HIF-1Alpha was reported to evoke HIF-1Alpha degradation. Members of the PIAS (Protein Inhibitor of Activated STAT) protein family have also been found to interact with p53. PIAS1 and PIAS-Gamma function as SUMO (Small Ubiquitin Related Modifier-1) ligases for p53. Moreover, the RING finger domain of PIAS1 binds to the C-terminus of the tumor suppressor p53 and catalyzes its sumoylation, a modification which represses p53 activity on a reporter plasmid containing consensus p53 DNA binding sites. PML (Promyelocytic Leukemia) also activates p53 by recruiting it to multiprotein complexes termed PML-nuclear bodies. PML is a tumor suppressor protein and the major component of multiprotein nuclear complexes that have been variably termed Kremer bodies, ND10, PODs (for PML Oncogenic Domains), and PML-NBs (PML-Nuclear Bodies). PML binds directly with p53 and recruits it to PML-NBs. Recruitment to PML-NBs activate p53 by bringing it in close proximity with CBP (CREB-Binding Protein) /p300. BRCA1 (Breast Cancer-1 Gene) and p53 can also physically associate, both in vitro and in vivo and function in a common pathway of tumor suppression. The ability of BRCA1 to biochemically modulate p53 function suggests that this may be afundamental role of BRCA1 in tumor suppression (Ref.3, 4 & 5).Another important modification of p53 is acetylation. p53 is specifically acetylated at Lys370, Lys372, Lys373, Lys381, and Lys382 by p300/CBP and at Lys320 by PCAF (p300/CBP-associated factor). Acetylation has been shown to augment p53 DNA binding, and to stimulate p53-mediated transactivation of its downstream target genes through the recruitment of coactivators. Acetylation may also regulate the stability of p53 by inhibiting its ubiquitination by MDM2. In vivo, acetylation at Lys320, Lys373, and Lys382 is induced by many genotoxic agents, including UV-radiation, IR (Ionizing Radiation), hypoxia, oxidative stress, and even depletion of ribonucleotide pools. p53 can also be deacetylated by HDAC1 (Histone Deacetylase-1) and SIRT1. Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. p53 deacetylation has been suggested to down-regulate the activation of genes such as Bax and p21WAF1. Phosphorylation and acetylation are interdependent. In deed, phosphorylation at the p53N-terminus has been shown to enhance its interaction with acetylase p300/CBP and to potentiate p53 acetylation. Activated p53 functions effectively as a transcription factor and induces transcription of several genes. The D NA targets of p53 are consensussequences consisting of a 10-base pair repeat of 5'-PuPuPu-C(A/T)(T/A)GPyPyPy-3' (where Pu is a purine and Py is a pyrimidine). It also can bind to a palindromic site having a four or five-base pair inverted repeat of a similar sequence. Complete p53 is inactive for specific DNA binding unless activated by covalent and noncovalent modifications of the basic C-terminal domain. After p53 is activated it can be involved in cell-cycle inhibition, apoptosis, genetic repair, and inhibition of blood-vesselformation (Ref.5, 6 & 7).Cell cycle inhibition takes place when there is a block in cell-cycle division. p53 does this by stimulating the expression of p21 WAF1/CIP1 (Cyclin Dependent Kinase Inhibitor-p21). This protein is an inhibitor of CDKs (Cyclin-Dependent Kinases) that regulate the cell cycle via perturbation of their partner cyclin. Cyclins are involved to ensure successful transitions from S phase to G1. Since p21 WAF1/CIP1 inhibits CDKs it results in inhibition of both G1-to-S and G2-to-mitosis transitions by causing hypophosphorylation of Rb (Retinoblastoma) and preventing the release of E2F. Additionally p53 can stimulate 14-3-3, a protein that sequesters Cyclin B1-CDK1 complexes out of the nucleus. This results in a G2 block. Activated p53 may also initiate apoptosis and stop cell proliferation. p53 stimulates a wide network of signals that act through two major apoptotic pathways: Extrinsic Pathways and Intrinsic Pathways. The extrinsic pathway involves engagement of pa rticular `death' receptors that belong to the TNFR (Tumor Necrosis Factor Receptor) family and, through the formation of the DISC(Death-Inducing-Signaling-Complex), leads to a cascade of activation of Caspases, including Caspase8 and Caspase3, which in turn induce apoptosis. Most common death receptors involved in extrinsic apoptosis Fas, DR5 (Death Receptor-5) and PERP. The intrinsic apoptotic pathway is dominated by the Bcl2 (B-Cell CLL/Lymphoma-2) family of proteins, which governs the release of CytoC (Cytochrome-C) from the mitochondria. The Bcl2 family comprises anti-apoptotic (pro-survival) and pro-apoptotic members. The Bcl2 family is divisible into three classes: pro-survival proteins, whose members are most structurally similar to Bcl2, such as BclXL; pro-apoptotic proteins, BAX (Bcl2 Associated-X Protein) and BAK (Bcl2 Antagonist Killer-1), which are structurally similar to Bcl2 and BclXL and antagonize their pro-survival functions; and the pro-apoptotic `BH3-only' proteins. Intriguingly, a key subset of the Bcl2 family genes are p53 targets, including BAX, Noxa, PUMA (p53-Upregulated Modulator of Apoptosis) and the most recently identified, BID (BH3 Interacting Domain Death Agonist). p53 may also inhibit Bcl2 that is an inhibitor of apoptosis. p53 may also have a role in maintaining genetic stability by 'nucleotide-excision' repair of DNA, chromosomal recombination and chromosome segmentation. GADD45 (Growth Arrest- and DNA Damage-Inducible Gene-45) is a multifunctional protein that is regulated by p53 and that may play a role in DNA repair and cell cycle checkpoints. p53 can playa role in the inhibition of blood-vessel formation. In order for tumours to reach a large size, they must initiate the growth of nutrient-bringing blood vessels in their vicinity, the process of angiogenesis. p53 stimulates the production of genes that prevent this process from happening. p53 activates the expression of the Tsp1 (Thrombospondin-1), an anti-angiogenic factor, along with other angiogenesis inhibitor BAI1 (Brain-specific Angiogenesis Inhibitor-1) (Ref. 8, 9 & 10).In addition, p53 regulates MDM2 function in a negative feedback loop, because the MDM2 gene is a target for p53. Therefore, activation of p53 eventually leads to its own inactivation by switching on a pathway that leads to its destruction. MDM2 is subject to further regulation by direct binding of the ARF (Active Response Factor) protein, which prevents MDM2-mediated p53 proteolysis. PTEN (Phosphatase and Tensin Homolog), on the other hand inhibits MDM2-mediated p53 degradation. p53 can transcriptionally activate PTEN, which may further inhibit Akt activity. Therefore, inhibition of Akt by the inhibitors may trigger a positive feedback with perhaps additional anti-tumor effects. The c-Fos proto-oncogene is also a target for transactivation by the p53 tumor suppressor. Mutations in p53 are associated with genomic instability and increased susceptibility to cancer. It is the most frequently mutated protein in all cancer with an estimated 60% of all cancers having mutated forms that affect its growth suppressing activities. However some common tumours have a higher incidence such that 90% of cervical and 70% of colorectal are found to have p53 mutations. The p53 protein can be inactivated in several ways, in cluding inherited mutations that result in a higher incidence of certain familial cancers such as Li-Fraumeni syndrome. Certain DNA tumour viruses, such as the human adenovirus and the papilomavirus, bind to and inactivate the protein. Functional p53 is th ought to provide a protective effectagainst tumorigenesis (Ref.2, 11 & 12).。
常见的几种信号通路(一)2009年04月08日评论(3)|浏览(90) 点击查看原文1 JAK-STAT信号通路1) JAK与STAT蛋白JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。
与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。
(1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor)许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。
这些细胞因子和生长因子在细胞膜上有相应的受体。
这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。
受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。
(2) 酪氨酸激酶JAK(Janus kinase)很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。
JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。
之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。
JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。
1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达.他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等.另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK—和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3)等调控.调控PPARa生长信号的酶报道有M APK、PKA和G SK3.PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR—γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9—cis维甲酸受体( RXR)结合实现其转录活性的.2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等).MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化. JNKs(c—Jun N-terminal kinase)包括JNK1、JNK2、JNK3。
1 JAK—STAT信号通路1) JAK与STAT蛋白JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程.与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。
(1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor)7)、GM—CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF7(IL—2许多细胞因子和生长因子通过JAK—STAT信号通路来传导信号,这包括白介素2 (血小板衍生因子)以及IFN (干扰素)等等。
这些细胞因子和生长因子在细胞膜上有相应的受体。
这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。
受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递.(2) 酪氨酸激酶JAK(Janus kinase)很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK 却是一类非跨膜型的酪氨酸激酶。
JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神.之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。
JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域(如图4).(3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子"。
细胞迁移和增殖的信号通路分析细胞迁移和增殖是细胞生物学领域中的热门研究方向。
这两个过程在人体发育、免疫系统维护和损伤修复等方面都起到至关重要的作用。
同时,它们也是癌症等疾病的发生和发展的关键事件。
本文将就细胞迁移和增殖的信号通路分析进行讨论。
一、细胞迁移信号通路1.介导细胞迁移的信号通路细胞迁移通常被视为三个环节:前导、实行和收缩。
前导包括细胞形态和胶原酶生成;实行是指细胞膜收缩,龙骨构成和胚胎型形成;收缩是指细胞撤出,支持结构撤退和收缩。
该过程涉及到多种信号通路,包括:1)Wnt信号通路:Wnt信号通路从胚胎发育至癌症发生等领域都扮演着重要角色。
在细胞迁移过程中,Wnt信号通路在细胞极性和微小管动力学调控等方面发挥作用。
2)Rho GTP酶信号通路:GTP酶在细胞迁移中调控细胞结构组装和调整方面发挥着重要作用。
Rho GTP酶信号通路调节细胞骨架和肌肉等结构的调整和稳定性。
3)p38 MAPKs和JNK信号通路:在细胞外基质对细胞环境的识别和反应方面,p38 MAPK和JNK信号通路都扮演着重要角色。
2.信号通路在细胞迁移中的作用目前的研究表明,信号通路在细胞迁移过程中发挥了重要作用。
例如,Wnt信号通路可以影响微管动力学和胞吞噬作用,从而影响细胞的迁移和扩散。
Rho GTP酶信号通路调节细胞的肌肉组织和骨架组织,对细胞的迁移和周围环境的识别都有重要影响。
此外,其他信号通路,如JNK/ p38 MAPKs和PI3K等,还对细胞迁移和识别环境发挥了重要作用。
二、细胞增殖信号通路1.介导细胞增殖的信号通路细胞增殖与细胞生长密切相关。
细胞增殖通常由细胞周期各阶段中特定的信号通路调控。
主要的信号通路包括:1)PI3K/AKT信号通路:PI3K和AKT激酶在生长因子的刺激下起着生长促进作用,可以诱导细胞的增殖。
由于PI3K/AKT在许多肿瘤细胞中异常活跃,因此成为许多肿瘤研究的热点。
2)p53/CDK信号通路:细胞增殖也有很大程度上受到细胞内的CDK活性调节。
网络出版时间:2222-10-910:/3网络出版地址:httys://kos.oe/kcms/de/il/34.1225.R.0222308.4843.409.htmi姜黄素通过PI3K/p53信号通路调控人胃癌细胞SGC-3901的增殖、凋亡和周期李淑兰1,贺倩倩1,宫凯凯2,满玉清1摘要目的探讨姜黄素(Cur)对人胃癌细胞株SGC-7721增殖、凋亡和周期的影响及其分子机制。
方法采用不同浓度梯度Cur(2、12、22、42pmol/L)处理正常培养的SGC-7721细胞。
3-(4,5-二甲基噻唑A)-2,5-二苯基四氮唑漠盐(MTT)法检测在不同时间点(24、48、72h)细胞增殖能力变化;Hoechw33653荧光染色观察细胞凋亡状况;流式细胞术检测细胞凋亡水平及周期变化;Western blot检测PI3K/p53信号通路相关蛋白表达变化。
结果MTT结果显示,与对照组比较,Cur呈浓度依赖性抑制SGC-P72)细胞增殖;细胞荧光染色结果显示Cur处理组的细胞亮蓝色荧光强度减弱;流式细胞术结果显示,与对照组比较,不同浓度Cur处理组细胞凋亡率增加(P<2.25,P<2.211,65/61期细胞出现阻滞(P<2.21、;Western blot结果显示,与对照组比较,不同浓度Cau组细胞PTK蛋白表达量、Akt磷酸化水平均降低(P <2.21),而421和y53蛋白表达量升高(P<2.25,P< 2.21)o结论Cur能抑制SGC-7721细胞的增殖效应,通过诱导细胞发生G5/G1期阻滞进而促进其凋亡进程,这可能与其对PI3K/p53信号通路的调控密切相关。
关键词姜黄素;人胃癌细胞;增殖;凋亡;PI3K/y53信号通路;细胞周期中图分类号R285.5;R735.2文献标志码A文章编号302-392(2221)21-0243-26 doi:3.10425/(.c/hi.iss/1202-1299.029).4).409胃癌(gast/c cancer,GC)作为全球常见的恶性肿瘤之一,正威胁着全球人的健康3]。
细胞焦亡信号通路细胞焦亡信号通路(Cell Death Signaling Pathway)细胞焦亡是一种重要的细胞死亡形式,与机体发育、免疫调节、肿瘤发生等多种生物学过程密切相关。
细胞焦亡是一种主动的、高度调节的程序性细胞死亡,不同于坏死和凋亡。
细胞焦亡通常通过一系列信号通路中的激活和调节分子来介导,并涉及许多关键因子的参与。
在细胞焦亡信号通路中,有三个主要的信号通路:线粒体途径、受体介导的途径和内质网途径。
这些信号通路可以相互作用,形成一个复杂的网络调控系统。
线粒体途径是细胞焦亡信号通路中最重要的途径之一。
这一途径通过线粒体内外膜通透性的改变来调控细胞焦亡。
常见的线粒体途径调控因子包括Bcl-2家族蛋白、Cytochrome c等。
这些因子的活化或释放可以促进细胞焦亡的进行。
受体介导的途径主要包括死亡受体家族、TNF受体家族等。
这些受体的激活会引发一系列的信号传导,最终导致细胞焦亡。
在这一信号通路中,活化的受体通常会激活卡式蛋白家族,通过级联反应来促进细胞焦亡的进行。
内质网途径在调控细胞焦亡中也起到重要的作用。
内质网是细胞内一种特殊的细胞器,主要负责蛋白质的合成和折叠。
当内质网发生异常时,会引发一系列的应激反应,从而触发内质网应激途径。
这一途径可以引导细胞进入焦亡状态。
除了上述三个主要的细胞焦亡信号通路外,还有一些其他重要的因子和分子也参与了细胞焦亡过程。
例如,ROS(Reactive Oxygen Species)、p53等因子都与细胞焦亡密切相关。
细胞焦亡信号通路的研究对于理解疾病的发生、发展和治疗具有重要意义。
可以通过干预细胞焦亡信号通路来调节细胞的生存和死亡,进而治疗一些相关疾病,包括肿瘤、神经系统疾病等。
总之,细胞焦亡信号通路是细胞焦亡的重要调控系统,通过线粒体途径、受体介导的途径和内质网途径等来调控细胞的生存和死亡。
深入研究细胞焦亡信号通路对于理解疾病发生机制以及疾病治疗具有重要意义,未来还需进一步深入探索这一领域并开展相关研究。
细胞周期检查点的作用及其调控机制细胞是生命的基本单位,细胞的生命周期由生长期、分裂期和死亡期构成。
细胞周期是指从一个细胞开始分裂到两个细胞分裂完成的整个过程。
细胞周期的不正常调控可能会导致细胞发生异常增殖或凋亡,从而引起一系列疾病。
而细胞周期检查点的作用就在于阻止细胞进入下一个周期,确保细胞的正常分裂和生长。
细胞周期分为G1期、S期、G2期和M期四个阶段。
G1期是细胞发育和成熟的阶段,S期是DNA合成的阶段,G2期是DNA合成结束后细胞準备进入M期的阶段,M期则是细胞分裂的阶段。
每个阶段都有相应的检查点来控制细胞是否能进入下一个阶段。
细胞周期检查点主要分为G1/S检查点、G2/M检查点和META检查点。
G1/S 检查点是在G1期末和S期开始之间的时间点进行检查,主要检查机制包括细胞大小、营养、DNA损伤和生长因子,确保细胞准备充分、DNA没有损伤,同时接受合适的生长因子信号才能进入S期。
G2/M检查点则在G2期末和M期开始之间的时间点进行检查,主要检查机制包括DNA损伤和未完成DNA复制,确保DNA完整、DNA复制完成后才能进入M期。
META检查点主要发生在M期的中期,负责检测染色体的稳定性和对齐状态,确保染色体正确地分离到子细胞中。
细胞周期检查点的调控机制非常复杂,主要受到细胞内各种信号通路的调节。
其中,p53信号通路是细胞周期检查点最为关键的调控机制之一。
p53蛋白是一个重要的抑癌基因,能够在DNA损伤或其他形式的细胞胁迫下诱导细胞进入停滞状态,以完成DNA修复或抵御细胞死亡。
当p53信号通路被激活时,p53蛋白会通过上调CDK抑制剂p21等分子,成功阻止细胞进入下一个周期。
此外,还有许多其他的信号通路参与了细胞周期检查点的调控,如NEMO、ATR和CHK等。
总之,细胞周期检查点的作用和调控机制非常复杂。
只有在各种信号通路的共同协作下,才能保证细胞周期的正常进行,从而确保细胞的健康和稳定生长。
几种常见的信号通路介绍及分析信号通路是指当细胞里要发生某种反应时,信号从细胞外到细胞内传递了一种信息,细胞要根据这种信息来做出反应的现象。
下面介绍几种常见的信号通路并对其进行了介绍和分析,希望可以帮助到科研朋友们。
第一种信号通路:p53信号1、p53基因的发现p53基因是迄今发现与肿瘤相关性高的基因。
1979年,Lane和Crawford在感染了SV40的小鼠细胞内分离获得一个与SV40大T抗原相互作用的蛋白,因其分子量为53 kDa,故而取名为p53(人的基因称为TP53)[3]。
起初,p53被误认为是癌基因,直到上个世纪90年代,人们才认识到引起肿瘤形成或细胞癌变的p53蛋白是p53基因的突变产物。
野生型p53基因是一种重要的抑癌基因,它是细胞生长周期中的负调节因子,在细胞周期调控、DNA损伤修复、细胞分化、凋亡和衰老等许多过程中发挥了重要的生物学功能,因而被誉为“细胞卫士”。
随着研究的深入,人、猴、鸡、大鼠、非洲爪蟾和斑马鱼等多种模式动物的p53基因也相继被克隆。
其中,人类TP53基因定位于染色体17P13.1,小鼠p53基因被定位在11号染色体上,并在14号染色体上发现无功能的假基因。
在这些进化程度迥异的动物中,它们的p53基因结构却异常保守,基因全长16-20kb,都由11个外显子和10个内含子组成。
其中第1个外显子不编码结构域,外显子2、4、5、7、8则分别编码5个进化上高度保守的结构域,转录形成约2.5 kb的mRNA。
之后,在基因同源性的基础上又陆续发现了p53家族的其它成员,分别是p73和p63,它们也因各自的分子量而得名,具有和p53相似的结构和功能。
2、p53信号通路p53基因受多种信号因子的调控。
例如:当细胞中的DNA损伤或细胞增殖异常时,p53基因被激活,导致细胞周期停滞并启动DNA修复机制,使损伤的DNA得以修复。
然而,当DNA损伤过度而无法被修复时,作为转录因子的p53还可进一步激活下游促凋亡基因的转录,诱导细胞凋亡并杀死有DNA损伤的细胞。
P53 信号通路
P53是一个肿瘤抑制蛋白,调节各种各样基因的表达,包括细胞凋亡,生长抑制,抑制细胞周期进程,分化和加速DNA修复,基因毒性和细胞应激后的衰老。
作为一个转录因子,p53是N端激活域、DNA中央特定结合域和C-端四聚体化域的组成部分,而且其调控域富含碱性氨基酸。
p53半衰期很短,在26S蛋白酶体作用下,通过持续的泛素化和后期降解,p53在无刺激的哺乳类动物细胞中维持较低的含量。
去磷酸化的p53在MDM2(鼠双微体基因-2)泛素连接酶作用下被泛素化。
MDM2结合p53使其无活性是通过两种途径:
第一,MDM2结合p53的转录激活域,阻止转录元件的相互作用。
第二,介导p53共价结合泛素蛋白,泛素化的p53被蛋白水解酶降解。
通过使p53的失活,MDM2扮演着p53抑癌基因的主要监视者。
当细胞面临着DNA损伤、缺氧、细胞因子、代谢改变、病毒感染或者致癌基因等刺激时,导致p53泛素化被抑制和p53在细胞核内积累,通过多个共价修饰包括磷酸化和乙酰化,p53被激活并稳定存在。
p53的磷酸化大多数出现在N-末端激活域的Ser6,Ser9,Ser15,Thr18,Ser20,Ser33,Ser37,Ser46,Thr55和Thr81残基上,另外还有一些p53磷酸化出现在C-末端连接处和碱性区域的Ser315, Ser371, Ser376, Ser378, 和Ser392残基上。
大多数位点上的磷酸化是由DNA损伤诱发的,还有一些例如Thr55 and Ser376在基因毒性应激下被压抑。
P53磷酸化是由几个细胞激酶所介导,包括Chks,CSNK1-Delta,CSNK2,PKA,CDK7,DNA-PK,HIPK2,CAK, p38和JNK。
显然,由ATM/ATR作用在Ser15上磷酸化,直接作用或者通过Chk1/Chk2,在Chk1/Chk2作用下的Ser20磷酸化已经证实能够减缓抑制或减慢降解p53,导致p53稳定并活化。
磷酸化诱导的p53稳定和活化是通过多种机制介导以及很多细胞环境或微环境的改变所致。
HIF-1Alpha参与p53的稳定,HIF-1Alpha调节p53介导作用的详细机制依然是一个未知数。
最近,p53和HIF-1Alpha之间的作用已被报道能够引起HIF-1Alpha的降解。
PIAS 蛋白家族也被发现能与p53发生相互作用。
PIAS1 和PIAS-Gamma作用可作为p53的SUMO 连接酶。
另外,PIAS1的环指域结合p53抑癌基因的C-末端催化其类泛素化(sumoylation),这个修饰,能抑制报告质粒p53的活性,包含共同序列p53DNA的结合位点。
PLM通过吸收p53到多蛋白复合体(称为PLM核体)来激活p53。
PLM是一个肿瘤抑制蛋白,也是曾发生变异称为Kremer bodies蛋白核配合物(ND10, PODs and PML-NBs)的主要组成成分。
PLM直接和p53结合并进入PLM-NBs。
补充到PLM-NBs激活p53,通过把它引进到与CBP/p300极为贴近。
BRCA1和p53发生联合,在体内和体外是相同的肿瘤抑制途径。
BRCA1对于生化调节p53作用的能力暗示着在肿瘤抑制过程,这个可能是BRCA1一个基本的角色。
P53另一个重要的修饰是乙酰化作用。
在Lys370,Lys372, Lys373, Lys381, and Lys382 by p300/CBP and at Lys320残基上通过PCAF,p53发生特殊的乙酰化。
已证明,乙酰化可以增强p53DNA的结合、通过更新辅激活因子刺激p53介导的下游靶基因转录激活。
乙酰化可以通过MDM2抑制p53的泛素化来调节p53的稳定性。
在机体内,发生Lys320, Lys373, and Lys382残基上的乙酰化是通过许多基因毒性介质所诱导的,包括紫外线、电离辐射、缺氧、氧化应激,甚至耗尽的核苷酸池。
P53同样也可以被HDAC1和SIRT1去乙酰化。
人类的SIRT1是一种酶,属于去乙酰化p53肿瘤抑制蛋白,能够被显示调节p53依赖作用,包括DNA诱导损伤的细胞死亡。
P53去乙酰化能够被应用到下调Bax and p21WAF1等基因的活性。
磷酸化和乙酰化是相互依赖的。
的确,p53N-末端的磷酸化被证实能够增强与乙酰化酶p300/CBP的相互作用和加强p53乙酰化。
激活p53功能实际上是一个转录因子和诱导一些基因的转录。
DNA靶基因p53是一个有十个5'-PuPuPu-C(A/T)(T/A)GPyPyPy-3'重复出现的共有序列。
它也可以结合到一个含有四到五个重复出现碱基对的相同序列的回文位点。
完整
的p53是一个不活跃的特定DNA位点,除非C-末端域发生共价或非共价修饰。
激活后p53能够参与阻碍细胞周期、细胞凋亡、基因修复和抑制血管生成。
细胞周期的抑制发生在细胞分裂周期的一个时间点。
P53抑制细胞周期是通过刺激p21 WAF1/CIP1的表达实现的。
这个蛋白是CDKs的抑制剂,CDKs调节细胞周期通路干扰细胞周期蛋白伴侣。
细胞周期蛋白参与保证S期向G1期的转变的成功。
p21 W AF1/CIP1抑制CDKs通过引起Rb高度磷酸化和阻止E2F的释放,导致G1-S期、G2-分裂期的转变收到抑制。
此外,p53可以刺激14-3-3,14-3-3是细胞核外细胞周期蛋白B1-CDK1复合体螯合剂蛋白。
这导致一个G2区。
激活的p53 可能也启动细胞凋亡和中止细胞增殖。
p53能激活一个广泛的网络信号,通过两个主要的凋亡通路:外部途径和内部途径。
外在途经包括参与特殊死亡受体,这个受体属于TNFR家族,通过DISC组成,导致一系列半胱天冬酶激活,包括Caspase8 and Caspase3,进而诱导细胞凋亡。
最常见的死亡受体参与外在细胞凋亡Fas,DR5和PERP。
内部细胞凋亡途径受Bcl2家族蛋白的控制,Blc2家族蛋白能控制CytoC从线粒体中释放。
Blc2家族由抗凋亡和促进凋亡两部分组成。
Blc2家族可以分为三类:一类是促生存蛋白,它们在结构上和Blc2很相似,例如BclXL;一类是促凋亡蛋白,如BAX和BAK,它们的结构和Blc2和BclXL很相似,起到抵抗促生存蛋白作用;和‘BH3-only’促凋亡蛋白。
有趣的是,一个关键的Blc2家族基因的亚基是p53作用的靶点,包括BAX, Noxa, PUMA 和最近发现的BID。
P53也可能抑制细胞凋亡抑制剂Blc2。
P53在维持遗传稳定性中扮演一个角色,通过修复DNA、重组染色体、姐妹染色单体中核苷酸的缺失。
GADD45是一种多功能蛋白,能被p53调控,在DNA修复和细胞周期检控点扮演重要角色。
P53能抑制血管的生成,肿瘤为了大规模生成,他们必须启动吸收他们周围养分促进血管生长,这是血管生成的过程。
P53刺激基因产生防止这个过程的发生。
P53激活Tsp1的表达,Tsp1是一种抗血管生成因子,连同其它血管生成抑制剂BAI1。
此外,p53通过负反馈循环调节MDM2,因为MDM2基因是p53的靶基因。
因此,激活的p53最终导致自己失活,通过转换一个途径导致自己死亡。
MDM2受到进一步的控制,通过直接与ARF蛋白结合,它将防止MDM2介导p53水解。
另一方面,PTEN抑制MDM2介导p53降解。
P53形成活化的PTEN,这样可以进一步抑制AKt的活性。
因此,通过抑制剂抑制的AKs可能引起一个积极的反馈作用,可能额外产生抗肿瘤的作用。
c-Fos原癌基因也是通过p53肿瘤抑制基因转录激活的目标。
突变的p53伴随着基因组的不稳定和增加肿瘤发生的概率。
在所有肿瘤中p53是最频繁突变的蛋白,据估计有60%的肿瘤有变异形式,影响其生长抑制活动。
然而一些常见的肿瘤有较高的发病率,90%的子宫癌和70%的大肠癌发现p53发生突变。
p53蛋白可以通过几种方法失去活性,包括遗传突变,它导致某些家族性癌症的发病率较高,如Li-Fraumeni综合症。
某些肿瘤的DNA病毒,如人类腺病毒和乳头瘤病毒,结合并且抑制蛋白活性。
功能性的p53被认为具有对肿瘤发生的保护性作用。