山东省淄博市2017年高考数学二模试卷(理科)含答案解析
- 格式:doc
- 大小:602.50 KB
- 文档页数:19
山东省淄博市2017届高三复习阶段性诊断考试数学(理)试题本试卷,分第I 卷和第Ⅱ卷两部分,满分150分.考试用时120分钟,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={a ,b ,c ,d ,e ),M={a ,d ),N={a ,c ,e ),则()U M N ð为 A .{a,c,d,e}B .{a ,b,d ) c .{b,d )D .{d}2.己知i 是虚数单位,则32ii-+等于 A .-1+iB .-1-iC .1+iD .1-i3,“a>b 且c>d ”是“ac >bd ”成立的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.某程序框图如右图所示,若输出的S= 57,则判断框内填 A .k>4B .k>5C .k>6D .k>75.设,a b是两个非零向量,则下列命题为真命题的是 A .若a b a b +=-,则a b ⊥ B .若a b ⊥ ,则a b a b +=-C .若a b a b +=-,则存在实数λ,使得a b λ= D .若存在实数λ,使得a b λ= ,则a b a b +=-6.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图 中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该 几何体的体积是 A .203B .6C .4D .437.下列函数是偶函数,且在[0,1]上单调递增的是A .cos 2y x π⎛⎫=+ ⎪⎝⎭B . 212cos 2y x =-C .2y x =-D .sin()y x π=+8.二项式24的展开式中,x 的幂指数是整数的项共有A .3项B .4项 -C .5项D .6项9.3名男生3名女生站成两排照相,要求每排3人且3名男生不在同一排,则不同的站法有A .324种B .360种C .648神D .684种10.如图,己知双曲22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,124FF =,P 是双曲线右支上的 一点,F 2P 与y 轴交于点A ,△APF 1的内切圆在边PF 1 上的切点为Q ,若|PQ| =1,则双曲线的离心率是 A .3B .2CD第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.已知3(,),sin 25παπα∈=,则tan α .12.已知等比数列{}n a ,若a 3a 4a 8=8,则a l a 2 …a 9=____. 13.若log a 4b=-1,则a+b 的最小值为 。
山东省淄博市2017届高三第二次模拟考试数学(理)试题本试卷,分第I 卷和第Ⅱ卷两部分.共5页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数A .B .C .D .2.己知集合(){}{}()R 11,2,1,0,1,A x y g x B C A B ==+=--⋂=则A .B .C .D .3.下列四个结论中正确的个数是①若②己知变量x 和y 满足关系,若变量正相关,则x 与z 负相关③“己知直线和平面,,//,m n m n αβαβαβ⊥⊥⊥、,若则”为真命题④是直线与直线互相垂直的充要条件A .1B .2C .3D .44.己知单位向量(),2a b a a b a b ⊥+,满足,则与夹角的余弦值为A .B .C .D .5.函数()20172016f x x x =+--的最大值是A . -1B .1C .4033D . -4033 6.二项式展开式的常数项为A. B. C.80 D.167.若角终边上的点在抛物线的准线上,则A .B .C .D .8.已知函数()sin 2x xf x e π⎛⎫- ⎪⎝⎭=(e 为自然对数的底数),当[](),x y f x ππ∈-=时,的图象大致是9.已知约束条件为,若目标函数仅在交点处取得最小值,则k 的取值范围为A .B .C .D .10.如图为一个多面体的三视图,则该多面体的体积为A .B .7C .D .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知奇函数()()()()()3,0,2,0,x a x f x f g x x ⎧-≥⎪=-⎨<⎪⎩则的值为_________. 12.过点(1,1)的直线l 与圆()()22239x y -+-=相交于A ,B 两点,当时,直线l 的方程为____________.13.若按如右图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是__________.14.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,…,“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是___________.15.已知抛物线的一条弦AB 经过焦点F ,O 为坐标原点,D 为线段OB 的中点,延长OA 至点C ,使,过C ,D 向y 轴作垂线,垂足分别为E,G ,则的的最小值为__________.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知函数()()()21cos cos 02f x x x x f x ωωωπω=-+>,与图象的对称轴相邻的的零点为.(I )讨论函数在区间上的单调性;(II )设的内角A,B,C的对应边分别为(),,1a b c f C =,且,若向量与向量共线,求的值.17.(本小题满分12分)如图,在三棱锥A —BCD 中,90,ABC BCD CDA AC ∠=∠=∠==,E 点在平面BCD 内,EC=BD ,.(I)求证:平面BCDE ;(Ⅱ)设点G 在棱AC 上,若二面角的余弦值为,试求的值.18.(本小趑满分12分)甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(I )若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;(II )若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X ,求X 的分布列和数学期望EX.19.(本小题满分12分)己知等比数列的前n 项和为,()11131=242n n n a S S a n N n *--=++∈≥,且,数列满足:()113731*24n n b b b n n N n -=--=+∈≥,且且. (I)求数列的通项公式;(II)求证:数列为等比数列;(III)设的前n 项和的最小值.20.(本小题满分1 3分)己知a ∈R ,函数()()()1,ln 1xf x ae xg x x x =--=-+(e=2.718 28…是自然对数的底数). (I )讨论函数极值点的个数;(II )若,且命题“[)()()0,,x f x kg x ∀∈+∞≥”是假命题,求实数k 的取值范围.21.(本小题满分14分)己知椭圆是坐标原点,点P 是椭圆C 上任意一点,且点M 满足 (,是常数).当点P 在椭圆C 上运动时,点M 形成的曲线为.(I)求曲线的轨迹方程;(II)过曲线上点M做椭圆C的两条切线MA和MB,切点分别为A,B.①若切点A的坐标为,求切线MA的方程;②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.。
2017年山东省淄博市淄川中学高考数学模拟试卷(理科)(4月份)一、选择题(本大题共10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.已知集合M={0,1,2},N={x|﹣1≤x≤1,x∈Z},则()A.M⊆N B.N⊆M C.M∩N={0,1}D.M∪N=N2.如果复数z=(b∈R)的实部和虚部相等,则|z|等于()A.3 B.2 C.3 D.23.“log2(2x﹣3)<1”是“4x>8”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.某几何体的三视图如图所示,在该几何体的体积是()A.B.C.D.5.函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象()A .向左平移个单位长度B .向左平移个单位长度C .向右平移个单位长度 D .向右平移个单位长度6.甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( ) A .210 B .84 C .343 D .3367.已知变量x ,y 满足:,则z=()2x +y 的最大值为( )A .B .2C .2D .48.如图,正方形ABCD 中,M 是BC 的中点,若=λ+μ,则λ+μ=( )A .B .C .D .29.己知函数f (x )是定义在R 上的偶函数,f (x +1)为奇函数,f (0)=0,当x∈(0,1]时,f (x )=log 2x ,则在区间(8,9)内满足方f (x )程f (x )+2=f ()的实数x 为 ( )A .B .C .D .10.已知点F 1是抛物线C :x 2=4y 的焦点,点F 2为抛物线C 的对称轴与其准线的交点,过F 2作抛物线C 的切线,切点为A ,若点A 恰好在以F 1,F 2为焦点的双曲线上,则双曲线的离心率为( )A .B .﹣1 C .+1 D .二、填空题(本大题共5个小题,每小题5分,共25分).11.设的值为 .12.如图是一个算法流程图,则输出的k 的值是 .13.设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c﹣1),则c=.14.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为.15.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是(请写出所有正确的序号)三、解答题(本大题共6小题,第16~19每小题12分,第20题13分,第21题14分,共75分).16.(12分)已知函数f(x)=sin2x﹣2cos2x﹣1,x∈R.(Ⅰ)求函数f(x)的最小正周期和最小值;(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c=,f(C)=0,sinB=2sinA,求a,b的值.17.(12分)某公司的两个部门招聘工作人员,应聘者从T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题T1,且表示只要成绩合格就签约;丙、丁两人选择使用试题T2,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是,丙、丁考试合格的概率都是,且考试是否合格互不影响.(I)求丙、丁未签约的概率;(II)记签约人数为X,求X的分布列和数学期望EX.18.(12分)如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且FD=.(I)求证:EF∥平面ABCD;(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.=1﹣,其中n∈N*.19.(12分)已知数列{a n}满足a1=1,a n+1(Ⅰ)设b n=,求证:数列{b n}是等差数列,并求出{a n}的通项公式a n;(Ⅱ)设C n=,数列{C n C n+2}的前n项和为T n,是否存在正整数m,使得T n<对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.20.(13分)已知左、右焦点分别为F1(﹣c,0),F2(c,0)的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点.(I)求椭圆C的离心率和标准方程.(II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.21.(14分)设f(x)=xe x(e为自然对数的底数),g(x)=(x+1)2.(I)记,讨论函F(x)单调性;(II)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点.(i)求参数a的取值范围;(ii)设x1,x2是G(x)的两个零点,证明x1+x2+2<0.2017年山东省淄博市淄川中学高考数学模拟试卷(理科)(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.每小题只有一个选项符合题意)1.已知集合M={0,1,2},N={x|﹣1≤x≤1,x∈Z},则()A.M⊆N B.N⊆M C.M∩N={0,1}D.M∪N=N【考点】1E:交集及其运算.【分析】列举出N中元素确定出N,找出M与N的交集即可.【解答】解:∵M={0,1,2},N={x|﹣1≤x≤1,x∈Z}={﹣1,0,1},∴M∩N={0,1},故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.如果复数z=(b∈R)的实部和虚部相等,则|z|等于()A.3 B.2 C.3 D.2【考点】A8:复数求模.【分析】由已知条件利用复数代数形式的乘除运算法则和复数的实部和虚部相等,求出z=3+3i,由此能求出|z|.【解答】解:z====﹣i,∵复数z=(b∈R)的实部和虚部相等,∴,解得b=﹣9,∴z=3+3i,∴|z|==3.故选:A.【点评】本题考查复数的模的求法,是基础题,解题时要认真审题,注意复数的代数形式的乘除运算法则的合理运用.3.“log2(2x﹣3)<1”是“4x>8”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】利用函数的单调性分别化简log2(2x﹣3)<1,4x>8,即可判断出结论.【解答】解:log2(2x﹣3)<1,化为0<2x﹣3<2,解得.4x>8,即22x>23,解得x.∴“log2(2x﹣3)<1”是“4x>8”的充分不必要条件.故选:A.【点评】本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.某几何体的三视图如图所示,在该几何体的体积是()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】如图所示,该几何体为四棱锥,其中PA⊥底面ABCD,作BE⊥CD,垂足为E点,底面由直角梯形ABED与直角三角形BCE组成.【解答】解:如图所示,该几何体为四棱锥,其中PA⊥底面ABCD,作BE⊥CD,垂足为E点,底面由直角梯形ABED与直角三角形BCE组成.则V==.故选:B.【点评】本题考查了四棱锥的三视图及其体积计算公式,考查了推理能力与计算能力,属于基础题.5.函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】由函数的最值求出A,由周期求出ω,由特殊点求出φ的值,可得凹函数f(x)的解析式,再利用y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:由函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象,可得A=2,∵,∴T=π,ω=2,f(x)=2cos(2x+φ),将代入得,∵﹣π<φ<0,∴.故可将函数y=f (x )的图象向左平移个单位长度得到l 的图象,即可得到g (x )=Asinωx 的图象, 故选:B .【点评】本题主要考查由函数y=Asin (ωx +φ)的部分图象求解析式,由函数的最值求出A ,由周期求出ω,由特殊点求出φ的值,y=Asin (ωx +φ)的图象变换规律,属于基础题.6.甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( ) A .210 B .84 C .343 D .336【考点】D9:排列、组合及简单计数问题.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果. 【解答】解:由题意知本题需要分组解决,因为对于7个台阶上每一个只站一人有种;若有一个台阶有2人另一个是1人共有种,所以根据分类计数原理知共有不同的站法种数是种.故选:D .【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整,完成了所有步骤,恰好完成任务.7.已知变量x ,y 满足:,则z=()2x +y 的最大值为( )A .B .2C .2D .4【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,设m=2x+y,利用线性规划的知识求出m的最大值即可求出z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设m=2x+y得y=﹣2x+m,平移直线y=﹣2x+m,由图象可知当直线y=﹣2x+m经过点A时,直线y=﹣2x+m的截距最大,此时m最大.由,解得,即A(1,2),代入目标函数m=2x+y得z=2×1+2=4.即目标函数z=()2x+y的最大值为z=()4=4.故选:D.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,数形结合的数学思想是解决此类问题的基本思想.8.如图,正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=()A.B.C.D.2【考点】9V:向量在几何中的应用.【分析】根据向量加法、减法及数乘的几何意义便可得出,代入并进行向量的数乘运算便可得出,而,这样根据平面向量基本定理即可得出关于λ,μ的方程组,解出λ,μ便可得出λ+μ的值.【解答】解:,,;∴===;∴由平面向量基本定理得:;解得;∴.故选B.【点评】考查向量加法、减法,及数乘的几何意义,以及向量的数乘运算,相等向量的概念,平面向量基本定理.9.己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f()的实数x为()A.B.C.D.【考点】3L:函数奇偶性的性质.【分析】由f(x+1)为奇函数,可得f(x)=﹣f(2﹣x).由f(x)为偶函数可得f(x)=f(x+4),故f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x﹣8)=log2(x﹣8).由log2(x﹣8)+2=﹣1得x的值.【解答】解:∵f(x+1)为奇函数,即f(x+1)=﹣f(﹣x+1),即f(x)=﹣f (2﹣x).当x∈(1,2)时,2﹣x∈(0,1),∴f(x)=﹣f(2﹣x)=﹣log2(2﹣x).又f(x)为偶函数,即f(x)=f(﹣x),于是f(﹣x)=﹣f(﹣x+2),即f(x)=﹣f(x+2)=f(x+4),故f(x)是以4为周期的函数.∵f(1)=0,∴当8<x≤9时,0<x﹣8≤1,f(x)=f(x﹣8)=log2(x﹣8).由f()=﹣1,f(x)+2=f()可化为log2(x﹣8)+2=﹣1,得x=.故选:D.【点评】本题主要考查方程的根的存在性及个数判断,函数的奇偶性与周期性的应用,抽象函数的应用,体现了化归与转化的数学思想,属于中档题.10.已知点F1是抛物线C:x2=4y的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为()A.B.﹣1 C. +1 D.【考点】K8:抛物线的简单性质.【分析】利用直线F2A与抛物线相切,求出A的坐标,利用双曲线的定义,即可求得双曲线的离心率.【解答】解:设直线F2A的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴A(2,1),∴双曲线的实轴长为AF2﹣AF1=2(﹣1),∴双曲线的离心率为=+1.故选:C.【点评】本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是求出A的坐标,属中档题.二、填空题(本大题共5个小题,每小题5分,共25分).11.设的值为80.【考点】DC:二项式定理的应用.【分析】由题意可得a3的值即为x6的系数,利用其通项公式即可得出.【解答】解:由题意可得a3的值即为x6的系数,故在的通项公式中,令r=3,即可求得.故答案为:80.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.如图是一个算法流程图,则输出的k的值是17.【考点】EF:程序框图.【分析】模拟执行程序,依次写出每次循环得到的k的值,当k=17时满足条件k>9,退出循环,输出k的值为17.【解答】解:模拟执行程序,可得k=0不满足条件k>9,k=1不满足条件k>9,k=3不满足条件k>9,k=17满足条件k>9,退出循环,输出k的值为17.故答案为:17.【点评】本题主要考查了循环结构的程序框图,模拟执行程序依次正确写出每次循环得到的k的值是解题的关键,属于基础题.13.设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c﹣1),则c=2.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】画正态曲线图,由对称性得c﹣1与c+1的中点是2,由中点坐标公式得到c的值.【解答】解:∵N(2,32)⇒,,∴,解得c=2,故答案为:2.【点评】本题考查正态分布,正态曲线有两个特点:(1)正态曲线关于直线x=μ对称;(2)在正态曲线下方和x轴上方范围内的区域面积为1.14.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为.【考点】LF:棱柱、棱锥、棱台的体积.【分析】设球半径为R,正方体边长为a,求出当正方体体积最大时对应的球半径,由此能求出结果.【解答】解:设球半径为R,正方体边长为a,由题意得当正方体体积最大时:,∴,∴所得工件体积与原料体积之比的最大值为:.故答案为:.【点评】本题考查工件体积与原料体积之比的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数:①f(x)=cos x;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1).存在“同域区间”的“同域函数”的序号是①②③(请写出所有正确的序号)【考点】34:函数的值域.【分析】根据同域函数及同域区间的定义,再根据函数值域的求解即可找到①②③三个函数的一个同域区间,而通过判断f(x)和函数y=x交点的情况,容易判断函数④不存在同域区间.【解答】解:①f(x)=,x∈[0,1]时,f(x)∈[0,1],所以①存在同域区间;②f(x)=x2﹣1,x∈[﹣1,0]时,f(x)∈[﹣1,0],所以②存在同域区间;③f(x)=|x2﹣1|,x∈[0,1]时,f(x)∈[0,1],所以③存在同域区间;④f(x)=log2(x﹣1),判断该函数是否有同域区间,即判断该函数和函数y=x 是否有两个交点;而根据这两个函数图象可以看出不存在交点,所以该函数不存在同域区间.故答案为:①②③.【点评】考查对同域函数及同域区间的理解,二次函数、余弦函数的值域的求解,知道通过判断函数f(x)和函数y=x图象交点的情况来判断函数是否存在同域区间的方法.三、解答题(本大题共6小题,第16~19每小题12分,第20题13分,第21题14分,共75分).16.(12分)(2017•日照一模)已知函数f(x)=sin2x﹣2cos2x﹣1,x∈R.(Ⅰ)求函数f(x)的最小正周期和最小值;(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c=,f(C)=0,sinB=2sinA,求a,b的值.【考点】HR:余弦定理;GQ:两角和与差的正弦函数;H1:三角函数的周期性及其求法.【分析】(Ⅰ)f(x)解析式利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式求出函数f(x)的最小正周期,利用正弦函数的值域确定出f(x)最小值即可;(Ⅱ)由f(C)=0及第一问化简得到的解析式,求出C的度数,利用正弦定理化简sinB=2sinA,得到b=2a,利用余弦定理列出关系式,把c,b=2a,cosC的值代入即可求出a与b的值.【解答】解:(Ⅰ)f(x)=sin2x﹣(cos2x+1)﹣1=sin2x﹣cos2x﹣2=2sin(2x﹣)﹣2,∵ω=2,﹣1≤sin(2x﹣)≤1,∴f(x)的最小正周期T=π;最小值为﹣4;(Ⅱ)∵f(C)=2sin(2C﹣)﹣2=0,∴sin(2C﹣)=1,∵C∈(0,π),∴2C﹣∈(﹣,),∴2C﹣=,即C=,将sinB=2sinA,利用正弦定理化简得:b=2a,由余弦定理得:c2=a2+b2﹣2abcosC=a2+4a2﹣2a2=3a2,把c=代入得:a=1,b=2.【点评】此题考查了正弦、余弦定理,二倍角的余弦函数公式,两角和与差的正弦函数公式,熟练掌握定理及公式是解本题的关键.17.(12分)(2017•淄川区校级模拟)某公司的两个部门招聘工作人员,应聘者从T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题T1,且表示只要成绩合格就签约;丙、丁两人选择使用试题T2,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是,丙、丁考试合格的概率都是,且考试是否合格互不影响.(I)求丙、丁未签约的概率;(II)记签约人数为X,求X的分布列和数学期望EX.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【分析】(I)分别记事件甲、乙、丙、丁考试合格为A,B,C,D.由题意知A,B,C,D相互独立,且,.记事件“丙、丁未签约”为F,由事件的独立性和互斥性得能求出丙、丁未签约的概率.(II)X的所有可能取值为0,1,2,3,4,分别求出相应在的概率,由此能求出X的分布列和X的数学期望.【解答】解:(I)分别记事件甲、乙、丙、丁考试合格为A,B,C,D.由题意知A,B,C,D相互独立,且,.记事件“丙、丁未签约”为F,由事件的独立性和互斥性得:P(F)=1﹣P(CD)…(3分)=…(4分)(II)X的所有可能取值为0,1,2,3,4.…,,,,.所以,X的分布列是:…(12分)X的数学期望…(13分)【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用.18.(12分)(2017•日照一模)如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且FD=.(I)求证:EF∥平面ABCD;(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.【考点】MT:二面角的平面角及求法.【分析】(I)根据线面平行的判定定理即可证明EF∥平面ABCD;(Ⅱ),建立空间坐标系,利用向量法即可求二面角A﹣FB﹣E的余弦值.【解答】解:(Ⅰ)如图,过点E 作EH⊥BC于H,连接HD,∴EH=.∵平面ABCD⊥平面BCE,EH⊂平面BCE,平面ABD∩平面BCE=BC,∴EH⊥平面ABCD,又∵FD⊥平面ABCD,FD=,∴FD∥EH.FD=EH∴四边形EHDF 为平行四边形.∴EF∥HD∵EF⊄平面ABCD,HD⊂平面ABCD,∴EF∥平面ABCD(Ⅱ)连接HA 由(Ⅰ),得H 为BC 中点,又∠CBA=60°,△ABC 为等边三角形,∴AH⊥BC,分别以HB,HA,HE 为x,y,z 轴建立如图所示的空间直角坐标系H﹣xyz.则B(1,0,0),F(﹣2,,),E(0,0,),A(0,,0)=(﹣3,,),=(﹣1,,0),=(﹣1,0,),设平面EBF 的法向量为=(x,y,z).由得令z=1,得=(,2,1).设平面ABF的法向量为=(x,y,z).由得令y=1,得=(,1,2)cos<,>====,∵二面角A﹣FB﹣E是钝二面角,∴二面角A﹣FB﹣E的余弦值是﹣.【点评】本题综合考查空间中线线、线面的位置关系和空间中角的计算,涉及二面角的平面角,传统方法和坐标向量法均可,考查的知识面较广,难度中等.=1﹣,其中n 19.(12分)(2017•日照一模)已知数列{a n}满足a1=1,a n+1∈N*.(Ⅰ)设b n=,求证:数列{b n}是等差数列,并求出{a n}的通项公式a n;(Ⅱ)设C n=,数列{C n C n+2}的前n项和为T n,是否存在正整数m,使得T n<对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.【考点】8H:数列递推式;8K:数列与不等式的综合.﹣b n为一个常数,从而证明数列{b n}【分析】(Ⅰ)利用递推公式即可得出b n+1是等差数列,再利用等差数列的通项公式即可得到b n,进而得到a n;(Ⅱ)利用(Ⅰ)的结论,利用“裂项求和”即可得到T n,要使得T n<对于n∈N*恒成立,只要,即,解出即可.﹣b n==【解答】(Ⅰ)证明:∵b n+1==2,∴数列{b n}是公差为2的等差数列,又=2,∴b n=2+(n﹣1)×2=2n.∴2n=,解得.(Ⅱ)解:由(Ⅰ)可得,∴c n c n+2==,∴数列{C n C n+2}的前n项和为Tn=…+=2<3.要使得T n<对于n∈N*恒成立,只要,即,解得m≥3或m≤﹣4,而m>0,故最小值为3.【点评】正确理解递推公式的含义,熟练掌握等差数列的通项公式、“裂项求和”、等价转化等方法是解题的关键.20.(13分)(2017•日照一模)已知左、右焦点分别为F1(﹣c,0),F2(c,0)的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点.(I)求椭圆C的离心率和标准方程.(II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.【考点】KP:圆锥曲线的范围问题;K4:椭圆的简单性质;KJ:圆与圆锥曲线的综合;KL:直线与椭圆的位置关系.【分析】(Ⅰ)利用椭圆C过点,∵椭圆C关于直线x=c对称的图形过坐标原点,推出a=2c,然后求解椭圆C的离心率,标准方程.(Ⅱ)设A(x1,y1),B(x2,y2),利用中点坐标公式以及平方差法求出AB 的斜率,得到直线AB的方程,代入椭圆C的方程求出点的坐标,设F1R:y=k(x+1),联立,设P(x3,y3),Q(x4,y4),利用韦达定理,结合,,化简|PF1||QF1|,通过,求解|PF1||QF1|的取值范围.【解答】(本小题满分13分)(Ⅰ)解:∵椭圆C过点,∴,①∵椭圆C关于直线x=c对称的图形过坐标原点,∴a=2c,∵a2=b2+c2,∴,②由①②得a2=4,b2=3,a=2,c=1,∴椭圆C的离心率,标准方程为.…(Ⅱ)因为AB为圆P1的直径,所以点P1为线段AB的中点,设A(x1,y1),B(x2,y2),则,,又,所以,则(x1﹣x2)﹣(y1﹣y2)=0,故,则直线AB的方程为,即.…(8分)代入椭圆C的方程并整理得,则,故直线F1R的斜率.设F1R:y=k(x+1),由,得(3+4k2)x2+8k2x+4k2﹣12=0,设P(x3,y3),Q(x4,y4),则有,.又,,所以|PF1||QF1|=(1+k2)|x3x4+(x3+x4)+1|=,因为,所以,即|PF1||QF1|的取值范围是.…(13分)【点评】本题考查椭圆的简单性质,椭圆方程的求法直线与椭圆的位置关系的应用,考查转化思想以及平方差法的应用,考查分析问题解决问题的能力.21.(14分)(2017•日照一模)设f(x)=xe x(e为自然对数的底数),g(x)=(x+1)2.(I)记,讨论函F(x)单调性;(II)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点.(i)求参数a的取值范围;(ii)设x1,x2是G(x)的两个零点,证明x1+x2+2<0.【考点】6B:利用导数研究函数的单调性;54:根的存在性及根的个数判断.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)(i)求出函数的导数,通过讨论a的范围,根据函数的零点的个数,求出a的范围即可;(ii)根据a的范围,得到==﹣,令m>0,得到F (=1+m)﹣F(﹣1﹣m)=(e2m+1),再令φ(m)=e2m+1,根据函数的单调性证明即可.【解答】解:(Ⅰ)F(x)==,(x≠﹣1),F′(x)==,∴x∈(﹣∞,﹣1)时,F′(x)<0,F(x)递减,x∈(﹣1,+∞)时,F′(x)>0,F(x)递增;(Ⅱ)由已知,G(x)=af(x)+g(x)=axe x+(x+1)2,G′(x)=a(x+1)e x+2(x+1)=(x+1)(ae x+2),(i)①a=0时,G(x)=(x+1)2,有唯一零点﹣1,②a>0时,ae x+2>0,∴x∈(﹣∞,﹣1)时,G′(x)<0,G(x)递减,x∈(﹣1,+∞)时,G′(x)>0,G(x)递增,1)=﹣<0,∴G(x)极小值=G(﹣∵G(0)=1>0,∴x∈(﹣1,+∞)时,G(x)有唯一零点,x<﹣1时,ax<0,则e x<,∴axe x>,∴G(x)>+(x+1)2=x2+(2+)x+1,∵△=﹣4×1×1=+>0,∴∃t1,t2,且t1<t2,当x∈(﹣∞,t1),(t2,+∞)时,使得x2+(2+)x+1>0,取x0∈(﹣∞,﹣1),则G(x0)>0,则x∈(﹣∞,﹣1)时,G(x)有唯一零点,即a>0时,函数G(x)有2个零点;③a<0时,G′(x)=a(x+1)(e x﹣(﹣)),由G′(x)=0,得x=﹣1或x=ln(﹣),若﹣1=ln(﹣),即a=﹣2e时,G′(x)≤0,G(x)递减,至多1个零点;若﹣1>ln(﹣),即a<﹣2e时,G′(x)=a(x+1)(e x﹣(﹣)),注意到y=x+1,y=e x+都是增函数,∴x∈(﹣∞,ln(﹣))时,G′(x)<0,G(x)是减函数,x∈(ln(﹣),﹣1)时,G′(x)>0,G(x)递增,x∈(﹣1,+∞)时,G′(x)<0,G(x)递减,∵G(x)极小值=G(ln(﹣))=ln2(﹣)+1>0,∴G(x)至多1个零点;若﹣1<ln(﹣),即a>﹣2e时,x∈(﹣∞,﹣1)时,G′(x)<0,G(x)是减函数,x∈(﹣1,ln(﹣))时,G′(x)>0,G(x)递增,x∈(ln(﹣),+∞)时,G′(x)<0,G(x)递减,∵G(x)极小值=G(﹣1)=﹣>0,∴G(x)至多1个零点;综上,若函数G(x)有2个零点,则参数a的范围是(0,+∞);(ii)由(i)得:函数G(x)有2个零点,则参数a的范围是(0,+∞),x1,x2是G(x)的两个零点,则有:,即,即==﹣,∵F(x)=,则F(x1)=F(x2)<0,且x1<0,x1≠﹣1,x2<0,x2≠﹣1,x1≠x2,由(Ⅰ)知,当x∈(﹣∞,﹣1)时,F(x)是减函数,x∈(﹣1,+∞)时,F (x)是增函数,令m>0,F (=1+m)﹣F(﹣1﹣m)=(e2m+1),再令φ(m)=e2m+1=e2m﹣﹣1,则φ′(m)=>0,∴φ(m)>φ(0)=0,又>0,m>0时,F(﹣1+m)﹣F(﹣1﹣m)>0恒成立,即F(﹣1+m)>F(﹣1﹣m)恒成立,令m=﹣1﹣x1>0,即x1<﹣1,有F(﹣1+(﹣1﹣x1))>F(﹣1﹣(﹣1﹣x1)),即F(﹣2﹣x1)>F(x1)=F(x2),∵x1<﹣1,∴﹣2﹣x1>﹣1,又F(x1)=F(x2),必有x2>﹣1,当x∈(﹣1,+∞)时,F(x)是增函数,∴﹣2﹣x1>x2,即x1+x2+2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,考查转化思想,是一道综合题.。
部分学校高三阶段性诊断考试试题理科数学本试卷,分第I 卷和第Ⅱ卷两部分.共5页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2=i i-- A .12i - B .12i + C .12i -- D .12i -+2.己知集合(){}{}()R 11,2,1,0,1,A x y g x B C A B ==+=--⋂=则A .{}21--,B .{}2-C .{}101-,,D .{}01,3.下列四个结论中正确的个数是①若22am bm a b <<,则②己知变量x 和y 满足关系0.11y x =-+,若变量y z 与正相关,则x 与z 负相关 ③“己知直线,m n 和平面,,//,m n m n αβαβαβ⊥⊥⊥、,若则”为真命题 ④3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件A .1B .2C .3D .44.己知单位向量(),2a b a a b a b ⊥+ ,满足,则与夹角的余弦值为 AB.C .12 D .12- 5.函数()20172016f x x x =+--的最大值是A . -1B .1C .4033D . -4033 6.二项式52x ⎛- ⎝展开式的常数项为 A. 80- B. 16- C.80 D.167.若角θ终边上的点()A a 在抛物线214y x =-的准线上,则cos 2θ= A .12 B.2 C .12- D.2-8.已知函数()sin 2x xf x e π⎛⎫- ⎪⎝⎭=(e 为自然对数的底数),当[](),x y f x ππ∈-=时,的图象大致是9.已知约束条件为26020x y x y --≤⎧⎨-+≥⎩,若目标函数z kx y =+仅在交点()8,10处取得最小值,则k 的取值范围为A .()2,1--B .()(),21,-∞-⋃-+∞C .(),2-∞-D .()1,-+∞10.如图为一个多面体的三视图,则该多面体的体积为A .203B .7C .223D .233第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知奇函数()()()()()3,0,2,0,x a x f x f g x x ⎧-≥⎪=-⎨<⎪⎩则的值为_________. 12.过点(1,1)的直线l 与圆()()22239x y -+-=相交于A ,B 两点,当4AB =时,直线l 的方程为____________.13.若按如右图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是__________.14.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,…,“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是___________.15.已知抛物线28y x =的一条弦AB 经过焦点F ,O 为坐标原点,D 为线段OB 的中点,延长OA 至点C ,使()OA AC =,过C ,D 向y 轴作垂线,垂足分别为E,G ,则EG 的的最小值为__________.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知函数()()()21cos cos 02f x x x x f x ωωωπω=-+>,与图象的对称轴3x π=相邻的()f x 的零点为12x π=.(I )讨论函数()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上的单调性;(II )设ABC ∆的内角A,B,C 的对应边分别为(),,1a b cf C =,且,若向量()1,s i n m A = 与向量()2,sin n B = 共线,求,a b 的值.17.(本小题满分12分)如图,在三棱锥A —BCD 中,90,63A B C B C D C A AC ∠=∠=∠= ,6BC CD ==,E 点在平面BCD 内,EC=BD ,EC BD ⊥.(I)求证:AE ⊥平面BCDE ;(Ⅱ)设点G 在棱AC 上,若二面角C EG D --的余弦值为CG GA 的值.18.(本小趑满分12分) 甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是1223和,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(I )若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率; (II )若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X ,求X 的分布列和数学期望EX.19.(本小题满分12分)己知等比数列{}n a 的前n 项和为n S ,()11131=242n n n a S S a n N n *--=++∈≥,且,数列{}n b 满足:()113731*24n n b b b n n N n -=--=+∈≥,且且. (I)求数列{}n a 的通项公式;(II)求证:数列{}n n b a -为等比数列;(III)设{}n b 的前n 项和的最小值.20.(本小题满分1 3分)己知a ∈R ,函数()()()1,ln 1x f x ae x g x x x =--=-+(e=2.718 28…是自然对数的底数). (I )讨论函数()f x 极值点的个数;(II )若1a =,且命题“[)()()0,,x f x kg x ∀∈+∞≥”是假命题,求实数k 的取值范围.21.(本小题满分14分) 己知椭圆22:14x C y O +=,点是坐标原点,点P 是椭圆C 上任意一点,且点M 满足2M P M Px x y y λλ=⎧⎨=⎩(1λ>,λ是常数).当点P 在椭圆C 上运动时,点M 形成的曲线为C λ. (I)求曲线C λ的轨迹方程;(II)过曲线C λ上点M 做椭圆C 的两条切线MA 和MB ,切点分别为A ,B .①若切点A 的坐标为()11,x y ,求切线MA 的方程;②当点M 运动时,是否存在定圆恒与直线AB 相切?若存在,求圆的方程;若不存在,请说明理由.。
输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .2310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2017年高考理科数学全国II卷(含详解)2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选 D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A. B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96 .【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{an }的前n项和为Sn,a3=3,S4=10,则= .【解答】解:等差数列{an }的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,Sn=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= 6 .【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法 62 38 100新养殖法 34 66 100总计 96 104 200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y),由题意可得N(x,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y),可得x﹣x0=0,y=y,即有x0=x,y=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由kOQ=﹣,kPF=,由kOQ •kPF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x﹣2﹣lnx=0,所以f(x0)=﹣x﹣xlnx=﹣x+2x﹣2=x﹣,由x0<可知f(x)<(x﹣)max=﹣+=;由f′()<0可知x<<,所以f(x)在(0,x0)上单调递增,在(x,)上单调递减,所以f(x)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。
绝密★启用前2017年普通高等学校招生全国统一考试课标II 理科数学注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -【答案】D 【解析】()()3+13212i i i i i -+==-+,故选D 。
2.设集合{}1,2,4A =,{}240x x x m B=-+=.若{}1A B =I ,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 【答案】C【解析】由{}1A B =I 得1B ∈,所以3m =,{}1,3B =,故选C 。
3.我国古代数名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”学科*网意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【答案】B【解析】塔的顶层共有灯x 盏,则各层的灯数构成一个公比为2的等比数列,由()71238112x -=-可得3x =,故选B 。
4.如图,网格纸上小正方形的边长为1, 科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π4.【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B. 5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A\6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种 C .24种 D .36种 【答案】D【解析】22234236C CA =,故选D 。
输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .2310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2017年山东省淄博市高考数学二模试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=()A.1﹣2i B.1+2i C.﹣1﹣2i D.﹣1+2i2.已知集合A={x|y=lg(x+1)},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.{﹣2,﹣1}B.{﹣2}C.{﹣1,0,1}D.{0,1}3.下列四个结论中正确的个数是()①若am2<bm2,则a<b②己知变量x和y满足关系y=﹣0.1x+1,若变量y与z正相关,则x与z负相关③“己知直线m,n和平面α、β,若m⊥n,m⊥α,n∥β,则α⊥β”为真命题④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.A.1 B.2 C.3 D.44.已知单位向量,,满足,则与夹角的余弦值为()A.B.C.D.5.函数f(x)=|x+2017|﹣|x﹣2016|的最大值为()A.﹣1 B.1 C.4033 D.﹣40336.二项式展开式的常数项为()A.﹣80 B.﹣16 C.80 D.167.若角θ终边上的点在抛物线的准线上,则cos2θ=()A.B.C.D.8.已知函数(e为自然对数的底数),当x∈[﹣π,π]时,y=f (x)的图象大致是()A.B.C.D.9.已知约束条件为,若目标函数z=kx+y仅在交点(8,10)处取得最小值,则k的取值范围为()A.(﹣2,﹣1)B.(﹣∞,﹣2)∪(﹣1,+∞)C.(﹣∞,﹣2)D.(﹣1,+∞)10.如图为一个多面体的三视图,则该多面体的体积为()A.B.7 C.D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知奇函数f(x)=,则f(﹣2)的值为.12.过点(1,1)的直线l与圆(x﹣2)2+(y﹣3)2=9相交于A,B两点,当|AB|=4时,直线l的方程为.13.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是.14.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如,第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,…“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是.15.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0),与f(x)图象的对称轴x=相邻的f(x)的零点为x=.(Ⅰ)讨论函数f(x)在区间上的单调性;(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=1,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.17.如图,在三棱锥A﹣BCD中,∠ABC=∠BCD=∠CDA=90°,AC=6,BC=CD=6,E点在平面BCD内,EC=BD,EC⊥BD.(Ⅰ)求证:AE⊥平面BCDE;(Ⅱ)设点G在棱AC上,若二面角C﹣EG﹣D的余弦值为,试求的值.18.甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是和,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望EX.19.已知数列{a n}的前n项和为S n,a1=,S n=S n﹣1+a n﹣1+(n∈N*且n≥2),数列{b n}满足:b1=﹣,且3b n﹣b n﹣1=n+1(n∈N*且n≥2).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:数列{b n﹣a n}为等比数列;(Ⅲ)求数列{b n}的前n项和的最小值.20.已知a∈R,函数f(x)=ae x﹣x﹣1,g(x)=x﹣ln(x+1)(e=2.71828…是自然对数的底数).(Ⅰ)讨论函数f(x)极值点的个数;(Ⅱ)若a=1,且命题“∀x∈[0,+∞),f(x)≥kg(x)”是假命题,求实数k 的取值范围.21.已知椭圆C:,点P是椭圆C上任意一点,且点M满足(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成的曲线为Cλ.(Ⅰ)求曲线Cλ的轨迹方程;(Ⅱ)过曲线Cλ上点M做椭圆C的两条切线MA和MB,切点分别为A,B.①若切点A的坐标为(x1,y1),求切线MA的方程;②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.2017年山东省淄博市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=()A.1﹣2i B.1+2i C.﹣1﹣2i D.﹣1+2i【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=,故选:D.2.已知集合A={x|y=lg(x+1)},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.{﹣2,﹣1}B.{﹣2}C.{﹣1,0,1}D.{0,1}【考点】1H:交、并、补集的混合运算.【分析】根据题意,分析可得集合A,由集合补集的定义可得∁R A,由集合交集的定义计算可得答案.【解答】解:根据题意,A={x|y=lg(x+1)}为函数y=lg(x+1)的定义域,则A={x|x>﹣1},∁R A={x|x≤﹣1},又由B={﹣2,﹣1,0,1},则(∁R A)∩B={﹣2,﹣1},故选:A.3.下列四个结论中正确的个数是()①若am2<bm2,则a<b②己知变量x和y满足关系y=﹣0.1x+1,若变量y与z正相关,则x与z负相关③“己知直线m,n和平面α、β,若m⊥n,m⊥α,n∥β,则α⊥β”为真命题④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【分析】①若am2<bm2,可知,m2>0,则a<b②由题意,根据一次项系数的符号判断相关性,由y与z正相关,设y=kz,k>0,得到x与z的相关性.③若m⊥n,m⊥α,n∥β,则α、β的位置关系不定④当m=0时,直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0也互相垂直.【解答】解:对于①,若am2<bm2,可知,m2>0,则a<b,故正确;对于②,因为变量x和y满足关系y=﹣0.1x+1,一次项系数为﹣0.1<0,所以x 与y负相关;变量y与z正相关,设,y=kz,(k>0),所以kz=﹣0.1x+1,得到z=﹣,一次项系数小于0,所以z与x负相关,故正确;对于③,若m⊥n,m⊥α,n∥β,则α、β的位置关系不定,故错对于④,当m=0时,直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0也互相垂直,故错;故选:B.4.已知单位向量,,满足,则与夹角的余弦值为()A.B.C.D.【考点】9R:平面向量数量积的运算.【分析】设单位向量,的夹角为θ,根据,得•(+2)=0,代入数据求出cosθ的值.【解答】解:设单位向量,的夹角为θ,∵,∴•(+2)=+2=0,即12+2×1×1×cosθ=0,解得cosθ=﹣,∴与夹角的余弦值为﹣.故选:D.5.函数f(x)=|x+2017|﹣|x﹣2016|的最大值为()A.﹣1 B.1 C.4033 D.﹣4033【考点】R4:绝对值三角不等式.【分析】利用绝对值不等式,即可得出结论.【解答】解:∵f(x)=|x+2017|﹣|x﹣2016|≤|x+2017﹣x+2016|=4033,∴函数f(x)=|x+2017|﹣|x﹣2016|的最大值为4033,故选C.6.二项式展开式的常数项为()A.﹣80 B.﹣16 C.80 D.16【考点】DB:二项式系数的性质.【分析】利用通项公式即可得出.=(x2)5﹣r=【解答】解:二项式展开式的通项公式:T r+1(﹣2)r.令10﹣=0,解得r=4.∴常数项=(﹣2)4=80.故选:C.7.若角θ终边上的点在抛物线的准线上,则cos2θ=()A.B.C.D.【考点】G9:任意角的三角函数的定义.【分析】求出抛物线的准线方程,可得a=1,再由任意角的三角函数的定义,即可求得结论.【解答】解:抛物线即x2=﹣4y的准线为y=1,即有a=1,点A(﹣,1),由任意角的三角函数的定义,可得sinθ=,cosθ=﹣,∴cos2θ==.故选A.8.已知函数(e为自然对数的底数),当x∈[﹣π,π]时,y=f (x)的图象大致是()A.B.C.D.【考点】3O:函数的图象.【分析】利用函数的奇偶性以及函数的特殊值判断即可.【解答】解:函数=,f(﹣x)=﹣=﹣f(x),函数是奇函数,排除选项A,C,当x=π时,f(π)=>1,排除B,故选:D.9.已知约束条件为,若目标函数z=kx+y仅在交点(8,10)处取得最小值,则k的取值范围为()A.(﹣2,﹣1)B.(﹣∞,﹣2)∪(﹣1,+∞)C.(﹣∞,﹣2)D.(﹣1,+∞)【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,结合目标函数z=kx+y仅在交点(8,10)处取得最小值即可求得k的取值范围.【解答】解:由约束条件作出可行域如图,联立,解得A(8,10),化目标函数z=kx+y为y=﹣kx+z,∵目标函数z=kx+y仅在交点(8,10)处取得最小值,∴﹣k>2,则k<﹣2.∴k的取值范围为(﹣∞,﹣2).故选:C.10.如图为一个多面体的三视图,则该多面体的体积为()A.B.7 C.D.【考点】L!:由三视图求面积、体积.【分析】如图所示,由已知三视图可知:该几何体为正方体去掉两个倒立的三棱锥.利用体积计算公式即可得出.【解答】解:如图所示,由已知三视图可知:该几何体为正方体去掉两个倒立的三棱锥.∴该多面体的体积V=23﹣﹣=7.故选:B.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知奇函数f(x)=,则f(﹣2)的值为﹣8.【考点】3T:函数的值.【分析】由f(x)为R上的奇函数可得f(0)=0,从而可得a值,设x<0,则﹣x>0,由f(﹣x)=﹣f(x)得3﹣x﹣1=﹣f(x),由此可得f(x),即g(x),即可求得f(﹣2).【解答】解:因为奇函数f(x)的定义域为R,所以f(0)=0,即30﹣a=0,解得a=1,设x<0,则﹣x>0,f(﹣x)=﹣f(x),即3﹣x﹣1=﹣f(x),所以f(x)=﹣3﹣x+1,即g(x)=﹣3﹣x+1,所以f(﹣2)=g(﹣2)=﹣32+1=﹣8.故答案为:﹣8.12.过点(1,1)的直线l与圆(x﹣2)2+(y﹣3)2=9相交于A,B两点,当|AB|=4时,直线l的方程为x+2y﹣3=0.【考点】J9:直线与圆的位置关系.【分析】当直线l的斜率不存在时,直线l的方程为:x=1,不符合题意;当直线l的斜率存在时,圆心到直线kx﹣y﹣k+1=0的距离d==,解得k=﹣,由此能求出直线l的方程.【解答】解:直线l:经过点(1,1)与圆(x﹣2)2+(y﹣3)2=9相交于A,B两点,|AB|=4,则圆心到直线的距离为,当直线l的斜率不存在时,直线l的方程为:x=1,不符合题意;当直线l的斜率存在时,设直线l:y=k(x﹣1)+1,即kx﹣y﹣k+1=0圆心到直线kx﹣y﹣k+1=0的距离d==,解得k=﹣,∴直线l的方程为x+2y﹣3=0.故答案为:x+2y﹣3=0.13.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是6.【考点】EF:程序框图.【分析】由图知每次进入循环体,S的值被施加的运算是乘以2加上1,由此运算规律进行计算,经过5次运算后输出的结果是63,故M=6.【解答】解:由图知运算规则是对S=2S+1,执行程序框图,可得A=1,S=1满足条件A<M,第1次进入循环体S=2×1+1=3,满足条件A<M,第2次进入循环体S=2×3+1=7,满足条件A<M,第3次进入循环体S=2×7+1=15,满足条件A<M,第4次进入循环体S=2×15+1=31,满足条件A<M,第5次进入循环体S=2×31+1=63,由于A的初值为1,每进入1次循环体其值增大1,第5次进入循环体后A=5;所以判断框中的整数M的值应为6,这样可保证循环体只能运行5次.故答案为:6.14.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如,第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,…“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是1,2.【考点】F4:进行简单的合情推理.【分析】由条件每人一次最少要报一个数,最多可以连续报7个数,可知除去先开始的个数,使得后来两人之和为8的倍数即可.【解答】解:∵至少拿1个,至多拿6个,∴两人每轮总和完全可控制的只有7个,∴把零头去掉后,剩下的就是7的倍数了,这样无论对手怎么拿,都可以保证每一轮(每人拿一次后)都是拿走7个,即先取2个,以后每次如果乙报a,甲报7﹣a即可,保证每一轮两人报的和为7即可,最终只能甲抢到100.故先开始甲应取2个.故答案为:1,2.15.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为4.【考点】K8:抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2﹣8my﹣8=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2﹣8my﹣8=0,设A(x1,y1),B(x2,y2),则y1+y2=8m,y1y2=﹣8,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为:4.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0),与f(x)图象的对称轴x=相邻的f(x)的零点为x=.(Ⅰ)讨论函数f(x)在区间上的单调性;(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=1,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)先确定函数的解析式,再讨论函数f(x)在区间上的单调性;(Ⅱ)求出C,利用与向量共线,所以sinB=2sinA,由正弦定理得,b=2a①,由余弦定理得,c2=a2+b2,即a2+b2﹣ab②,即可求a,b的值.【解答】解:(Ⅰ)==由与f(x)图象的对称轴相邻的零点为,得,所以ω=1,即令,函数y=sinz单调增区间是,k∈Z,由,得,k∈Z,设,,易知,所以当时,f(x)在区间上单调递增,在区间上单调递减.(Ⅱ),则,因为0<C<π,所以,从而,解得.因为与向量共线,所以sinB=2sinA,由正弦定理得,b=2a①由余弦定理得,c2=a2+b2,即a2+b2﹣ab②由①②解得a=1,b=217.如图,在三棱锥A﹣BCD中,∠ABC=∠BCD=∠CDA=90°,AC=6,BC=CD=6,E点在平面BCD内,EC=BD,EC⊥BD.(Ⅰ)求证:AE⊥平面BCDE;(Ⅱ)设点G在棱AC上,若二面角C﹣EG﹣D的余弦值为,试求的值.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】(Ⅰ)连接BE,设BD交CE于O,只需证明CD⊥AE,BC⊥AE,BC∩CD=C,即可得所以AE⊥平面BCDE(Ⅱ)由(Ⅰ)的证明过程知BCDE为正方形,如图建立坐标系,则:E(0,0,0),D(0,6,0),A(0,0,6),B(6,0,0),C(6,6,0)设(t>0),G(x,y,z)由可得,则,易知平面CEG的一个法向量为,求出平面DEG的一个法向量为.利用向量的夹角公式求解.【解答】解:(Ⅰ)证明:连接BE,设BD交CE于O,因为△BCD是等腰直角三角形CO⊥BD,所以,又EC=BD,所以O是BD 和CE的中点已知EC⊥BD,所以四边形BCDE是正方形则CD⊥ED,又CD⊥AD,AD∩CD=D所以CD⊥平面ADE,CD⊥AE同理BC⊥AE,BC∩CD=C所以AE⊥平面BCDE;(Ⅱ)由(Ⅰ)的证明过程知BCDE为正方形,如图建立坐标系,则:E(0,0,0),D(0,6,0),A(0,0,6),B(6,0,0),C(6,6,0)设(t>0),G(x,y,z)由可得则,易知平面CEG的一个法向量为设平面DEG的一个法向量为则得令x0=1得,所以,解得t=2,所以.18.甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是和,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望EX.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)记“甲达标”为事件A,利用n次独立重复试验中事件A恰好发生k 次的概率计算公式,能求出甲达标的概率.(Ⅱ)X的所有可能取值为2,3,4.分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(Ⅰ)记“甲达标”为事件A,则×;(Ⅱ)X的所有可能取值为2,3,4.,××,,所以X的分布列为:.19.已知数列{a n}的前n项和为S n,a1=,S n=S n﹣1+a n﹣1+(n∈N*且n≥2),数列{b n}满足:b1=﹣,且3b n﹣b n﹣1=n+1(n∈N*且n≥2).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:数列{b n﹣a n}为等比数列;(Ⅲ)求数列{b n}的前n项和的最小值.【考点】8E:数列的求和;88:等比数列的通项公式.【分析】(Ⅰ)由a n=S n﹣S n﹣1,结合等差数列的定义和通项公式,即可得到所求;(Ⅱ)求得b n,及b n﹣a n,b n﹣1﹣a n﹣1,再由等比数列的定义,即可得证;(Ⅲ)运用等比数列的通项公式,求得b n,判断b n﹣b n﹣1的符号,可得{b n}是递增数列,求出b 1,b 2,b 3,即可得到所求和的最小值.【解答】解:(Ⅰ)由得即(n ≥2且n ∈N *),则数列{a n }为以为公差的等差数列,因此=;(Ⅱ)证明:因为3b n ﹣b n ﹣1=n +1(n ≥2)所以(n ≥2),(n ≥2),b n ﹣1﹣a n ﹣1=b n ﹣1﹣=(n ≥2),所以(n ≥2),因为b 1﹣a 1=﹣10≠0,所以数列{b n ﹣a n }是以﹣10为首项,为公比的等比数列.(Ⅲ)由(Ⅱ)得,所以=,=(n≥2)所以{b n }是递增数列.因为当n=1时,,当n=2时,,当n=3时,,所以数列{b n }从第3项起的各项均大于0,故数列{b n }的前2项之和最小. 记数列{b n }的前n 项和为T n ,则.20.已知a ∈R ,函数f (x )=ae x ﹣x ﹣1,g (x )=x ﹣ln (x +1)(e=2.71828…是自然对数的底数).(Ⅰ)讨论函数f(x)极值点的个数;(Ⅱ)若a=1,且命题“∀x∈[0,+∞),f(x)≥kg(x)”是假命题,求实数k 的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)对函数f(x)求导,再根据导数和函数极值的关系分类即可得到极值点的个数,(Ⅱ)命题“∀x∈[0,+∞),f(x)≥kg(x)”是假命题,转化为不等式f(x)<kg(x)在区间[0,+∞)内有解,再构造函数F(x)=f(x)﹣kg(x)e x+kln (x+1)﹣(k+1)x﹣1,利用导数和函数的单调性关系以及函数零点存在定理判断即可.【解答】解:(Ⅰ)因为f(x)=ae x﹣x﹣1,所以f'(x)=ae x﹣1,当a≤0时,对∀x∈R,f'(x)=ae x﹣1<0,所以f(x)在(﹣∞,+∞)是减函数,此时函数不存在极值,所以函数f(x)没有极值点;当a>0时,f'(x)=ae x﹣1,令f'(x)=0,解得x=﹣lna,若x∈(﹣∞,﹣lna),则f'(x)<0,所以f(x)在(﹣∞,﹣lna)上是减函数,若x∈(﹣lna,+∞),则f'(x)>0,所以f(x)在(﹣lna,+∞)上是增函数,当x=﹣lna时,f(x)取得极小值为f(﹣lna)=lna,函数f(x)有且仅有一个极小值点x=﹣lna,所以当a≤0时,f(x)没有极值点,当a>0时,f(x)有一个极小值点.(Ⅱ)命题“∀x∈[0,+∞),f(x)≥kg(x)”是假命题,则“∃x∈[0,+∞),f(x)<kg(x)”是真命题,即不等式f(x)<kg(x)在区间[0,+∞)内有解.若a=1,则设F(x)=f(x)﹣kg(x)=e x+kln(x+1)﹣(k+1)x﹣1,所以﹣(k+1),设﹣(k+1),则,且h'(x)是增函数,所以h'(x)≥h'(0)=1﹣k当k≤1时,h'(x)≥0,所以h(x)在[0,+∞)上是增函数,h(x)≥h(0)=0,即F'(x)≥0,所以F(x)在[0,+∞)上是增函数,所以F(x)≥F(0)=0,即f(x)≥kg(x)在x∈[0,+∞)上恒成立.当k>1时,因为在[0,+∞)是增函数,因为h'(0)=1﹣k<0,h'(k﹣1)=,所以h'(x)在(0,k﹣1)上存在唯一零点x0,当x∈[0,x0)时,h'(x)<h'(x0)=0,h(x)在[0,x0)上单调递减,从而h(x)≤h(0)=0,即F'(x)≤0,所以F(x)在[0,x0)上单调递减,所以当x∈(0,x0)时,F(x)<F(0)=0,即f(x)<kg(x).所以不等式f(x)<kg(x)在区间[0,+∞)内有解综上所述,实数k的取值范围为(1,+∞).21.已知椭圆C:,点P是椭圆C上任意一点,且点M满足(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成的曲线为Cλ.(Ⅰ)求曲线Cλ的轨迹方程;(Ⅱ)过曲线Cλ上点M做椭圆C的两条切线MA和MB,切点分别为A,B.①若切点A的坐标为(x1,y1),求切线MA的方程;②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)设点M的坐标为(x,y),对应的点P的坐标为.由于点P在椭圆C上,得,即得曲线Cλ的轨迹方程.(Ⅱ)①当过点A切线的斜率存在时,设该切线的方程为y﹣y1=k(x﹣x1),联立方程组,由△=0,得,得;得过点A的切线方程为过点A切线的斜率不存在时,符合方程.②存在定圆恒与直线AB相切;可得A,B两点坐标都满足方程,且点M的坐标为(m,n)满足曲线Cλ的方程:,即原定O到直线AB的距离为,即直线AB始终与圆相切.【解答】解:(Ⅰ)设点M的坐标为(x,y),对应的点P的坐标为.由于点P在椭圆C上,得,即曲线Cλ的轨迹是椭圆,标准方程为(Ⅱ)①当过点A切线的斜率存在时,设该切线的方程为y﹣y1=k(x﹣x1),即y=kx+(y1﹣kx1)联立方程组,即.由△=0,得,即,,,得;此时过点A的切线方程为过点A切线的斜率不存在时,切点为(±2,0),方程为x=±2,符合方程形式.②存在定圆恒与直线AB相切;设切点B(x2,y2),与A,B两点对应的点M的坐标设为(m,n);同理过点B的切线方程为同时两条切线MA和MB都过点M(m,n),所以.即A,B两点坐标都满足方程,且点M的坐标为(m,n)满足曲线Cλ的方程:,即原定O到直线AB的距离为,所以直线AB始终与圆相切.2017年5月23日。
2017年普通高等学校招生全国统一考试(全国Ⅱ卷)理科数学解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( D ) A .12i + B .12i - C .2i + D .2i -【解析】解法一:()()()()3134221112i i i ii i i i +-+-===-++- 解法二:()()()()3331311a b ia bi i a bi i i ab a b i a b i -=⎧+=+⇒+=++⇒+=-++⇒⎨+=+⎩,解得21a b =⎧⎨=-⎩故321ii i +=-+2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A =⋂B ,则B =( C )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【解析】解法一:∵ {}1A =⋂B ∴1是方程240x x m -+=的解,将1x =代入方程得3m = ∴ {}2430B x x x =-+= ∵0342=+-x x的解为1=x 或3=x ,∴{}1,3B =解法二:∵ {}1A =⋂B ∴ 1是方程240x x m -+=的一个根, 由韦达定理可知:114x += 解得:13x =,故 {}1,3B =3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( B )A .1盏B .3盏C .5盏D .9盏【解析】一座7层塔共挂了381盏灯,即7381S =;相邻两层中的下一层灯数是上一层灯数的2倍, 即2q =,塔的顶层为1a ;由等比数列前n 项和()()1111n n a q S q q-=≠-可知:()171238112n a S -==-,解得13a =.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( B )A .90πB .63πC .42πD .36π【解析】从三视图可知:该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上或2213634632V πππ=⋅⋅⋅+⋅⋅=切割前圆柱切割中切割后几何体5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( A )A .15-B .9-C .1D .9【解析】根据约束条件画出可行域(图中阴影部分), 当直线l :-2y =x+z 平移到点A ()63--,时,Z 最小,将点A ()63--,的坐标代到目标函数2Z x y =+,可得15Z =-,即min 15Z =-.lAy = -32x +3y -3=02x -3y +3=0xOyCB6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种【解析】只能是1个人完成2份工作,剩下2人各完成一份工作.由此把4份工作分成3份再全排列得2343C A 36⋅=7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( D )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩【解析】四人所知的信息分别为各自看到的,老师所说的及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然) →乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.8.执行右面的程序框图,如果输入的1a =-,则输出的S =( B )A .2B .3C .4D .5【解析】执行第一次循环:11S =-﹑11a =﹑12K =;执行第二次循环:21S =﹑21a =-﹑23K =; 执行第三次循环:32S =-﹑31a =﹑34K =; 执行第四次循环:42S =﹑41a =-﹑45K =; 执行第五次循环:53S =-﹑51a =﹑56K =; 执行第五次循环:63S =﹑16-=a ﹑67K =;当676K =>时,终止循环,输出63S =,9.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( A )A .2B 3C 2D .233【解析】根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可得圆心()20,32231b ab a ⋅=⎛⎫+ ⎪⎝⎭,解得2e =.10.已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( C )A 3B 15103【解析】解法一:M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,)可知1152MN AB ==1122NP BC ==,作BC 中点Q ,则可知PQM △为 直角三角形.1=PQ ,12MQ AC =. ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,7AC则7MQ =,则MQP △中,2211MP MQ PQ =+则PMN △中,222cos 2MN NP PM PNM MH NP +-∠=⋅⋅222521110522⎛⎫⎛⎫⎛⎫+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-⋅⋅又异面线所成角为π02⎛⎤ ⎥⎝⎦,,则余弦值为10.解法二:如图所示,补成直四棱柱1111ABCD A B C D -则所求角为201111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯===Q易得21221BC BD D C +=,因此1210cos 55BC D ∠==,故选C.11.若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( A )A.1-B.32e --C.35e -D.1【解析】∵ ()()211x f x x ax e -=+- ∴ 导函数()()2121x f x x a x a e -'⎡⎤=+++-⎣⎦∵ ()20f '-= ∴ 1a =- ∴()()121---=x e x x x f ,()()212x f x x x e -'=+-令()0f x '=,∴ 12x =-,11x =当x 变化时,()f x ,()f x '随变化情况如下表:x(),2-∞-2-()2,1-1()1,+∞()f x '+ 0-+()f x极大值极小值由上表可知:()x f 极小值为()1)111(102-=--=e f注:可导函数()x f y =在点0x 处取得极值的充要条件是()00='x f ,且在0x 左侧和右侧()x f '的符号不同。
2017年山东省淄博市高考数学二模试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=()A.1﹣2i B.1+2i C.﹣1﹣2i D.﹣1+2i2.已知集合A={x|y=lg(x+1)},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.{﹣2,﹣1} B.{﹣2} C.{﹣1,0,1} D.{0,1}3.下列四个结论中正确的个数是()①若am2<bm2,则a<b②己知变量x和y满足关系y=﹣0.1x+1,若变量y与z正相关,则x与z负相关③“己知直线m,n和平面α、β,若m⊥n,m⊥α,n∥β,则α⊥β”为真命题④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.A.1 B.2 C.3 D.44.已知单位向量,,满足,则与夹角的余弦值为()A.B.C.D.5.函数f(x)=|x+2017|﹣|x﹣2016|的最大值为()A.﹣1 B.1 C.4033 D.﹣40336.二项式展开式的常数项为()A.﹣80 B.﹣16 C.80 D.167.若角θ终边上的点在抛物线的准线上,则cos2θ=()A.B.C.D.8.已知函数(e为自然对数的底数),当x∈时,y=f(x)的图象大致是()A.B.C.D.9.已知约束条件为,若目标函数z=kx+y仅在交点(8,10)处取得最小值,则k的取值范围为()A.(﹣2,﹣1)B.(﹣∞,﹣2)∪(﹣1,+∞)C.(﹣∞,﹣2) D.(﹣1,+∞)10.如图为一个多面体的三视图,则该多面体的体积为()A.B.7 C.D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知奇函数f(x)=,则f(﹣2)的值为.12.过点(1,1)的直线l与圆(x﹣2)2+(y﹣3)2=9相交于A,B两点,当|AB|=4时,直线l的方程为.13.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是.14.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如,第一个人先报“1,2”,则另一个人可以有“3”,“3,4”, (3)4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是.15.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0),与f(x)图象的对称轴x=相邻的f(x)的零点为x=.(Ⅰ)讨论函数f(x)在区间上的单调性;(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=1,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.17.如图,在三棱锥A﹣BCD中,∠ABC=∠BCD=∠CDA=90°,AC=6,BC=CD=6,E点在平面BCD内,EC=BD,EC⊥BD.(Ⅰ)求证:AE⊥平面BCDE;(Ⅱ)设点G在棱AC上,若二面角C﹣EG﹣D的余弦值为,试求的值.18.甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是和,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望EX.19.已知数列{a n}的前n项和为S n,a1=,S n=S n﹣1+a n﹣1+(n∈N*且n≥2),数列{b n}满足:b1=﹣,且3b n﹣b n﹣1=n+1(n∈N*且n≥2).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:数列{b n﹣a n}为等比数列;(Ⅲ)求数列{b n}的前n项和的最小值.20.已知a∈R,函数f(x)=ae x﹣x﹣1,g(x)=x﹣ln(x+1)(e=2.71828…是自然对数的底数).(Ⅰ)讨论函数f(x)极值点的个数;(Ⅱ)若a=1,且命题“∀x∈时,y=f(x)的图象大致是()A.B.C.D.【考点】3O:函数的图象.【分析】利用函数的奇偶性以及函数的特殊值判断即可.【解答】解:函数=,f(﹣x)=﹣=﹣f(x),函数是奇函数,排除选项A,C,当x=π时,f(π)=>1,排除B,故选:D.9.已知约束条件为,若目标函数z=kx+y仅在交点(8,10)处取得最小值,则k的取值范围为()A.(﹣2,﹣1)B.(﹣∞,﹣2)∪(﹣1,+∞)C.(﹣∞,﹣2) D.(﹣1,+∞)【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,结合目标函数z=kx+y 仅在交点(8,10)处取得最小值即可求得k的取值范围.【解答】解:由约束条件作出可行域如图,联立,解得A(8,10),化目标函数z=kx+y为y=﹣kx+z,∵目标函数z=kx+y仅在交点(8,10)处取得最小值,∴﹣k>2,则k<﹣2.∴k的取值范围为(﹣∞,﹣2).故选:C.10.如图为一个多面体的三视图,则该多面体的体积为()A.B.7 C.D.【考点】L!:由三视图求面积、体积.【分析】如图所示,由已知三视图可知:该几何体为正方体去掉两个倒立的三棱锥.利用体积计算公式即可得出.【解答】解:如图所示,由已知三视图可知:该几何体为正方体去掉两个倒立的三棱锥.∴该多面体的体积V=23﹣﹣=7.故选:B.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知奇函数f(x)=,则f(﹣2)的值为﹣8 .【考点】3T:函数的值.【分析】由f(x)为R上的奇函数可得f(0)=0,从而可得a值,设x<0,则﹣x>0,由f(﹣x)=﹣f(x)得3﹣x﹣1=﹣f(x),由此可得f(x),即g(x),即可求得f(﹣2).【解答】解:因为奇函数f(x)的定义域为R,所以f(0)=0,即30﹣a=0,解得a=1,设x<0,则﹣x>0,f(﹣x)=﹣f(x),即3﹣x﹣1=﹣f(x),所以f(x)=﹣3﹣x+1,即g(x)=﹣3﹣x+1,所以f(﹣2)=g(﹣2)=﹣32+1=﹣8.故答案为:﹣8.12.过点(1,1)的直线l与圆(x﹣2)2+(y﹣3)2=9相交于A,B两点,当|AB|=4时,直线l的方程为x+2y﹣3=0 .【考点】J9:直线与圆的位置关系.【分析】当直线l的斜率不存在时,直线l的方程为:x=1,不符合题意;当直线l的斜率存在时,圆心到直线kx﹣y﹣k+1=0的距离d==,解得k=﹣,由此能求出直线l的方程.【解答】解:直线l:经过点(1,1)与圆(x﹣2)2+(y﹣3)2=9相交于A,B两点,|AB|=4,则圆心到直线的距离为,当直线l的斜率不存在时,直线l的方程为:x=1,不符合题意;当直线l的斜率存在时,设直线l:y=k(x﹣1)+1,即kx﹣y﹣k+1=0圆心到直线kx﹣y﹣k+1=0的距离d==,解得k=﹣,∴直线l的方程为x+2y﹣3=0.故答案为:x+2y﹣3=0.13.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是 6 .【考点】EF:程序框图.【分析】由图知每次进入循环体,S的值被施加的运算是乘以2加上1,由此运算规律进行计算,经过5次运算后输出的结果是63,故M=6.【解答】解:由图知运算规则是对S=2S+1,执行程序框图,可得A=1,S=1满足条件A<M,第1次进入循环体S=2×1+1=3,满足条件A<M,第2次进入循环体S=2×3+1=7,满足条件A<M,第3次进入循环体S=2×7+1=15,满足条件A<M,第4次进入循环体S=2×15+1=31,满足条件A<M,第5次进入循环体S=2×31+1=63,由于A的初值为1,每进入1次循环体其值增大1,第5次进入循环体后A=5;所以判断框中的整数M的值应为6,这样可保证循环体只能运行5次.故答案为:6.14.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如,第一个人先报“1,2”,则另一个人可以有“3”,“3,4”, (3)4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是1,2 .【考点】F4:进行简单的合情推理.【分析】由条件每人一次最少要报一个数,最多可以连续报7个数,可知除去先开始的个数,使得后来两人之和为8的倍数即可.【解答】解:∵至少拿1个,至多拿6个,∴两人每轮总和完全可控制的只有7个,∴把零头去掉后,剩下的就是7的倍数了,这样无论对手怎么拿,都可以保证每一轮(每人拿一次后)都是拿走7个,即先取2个,以后每次如果乙报a,甲报7﹣a即可,保证每一轮两人报的和为7即可,最终只能甲抢到100.故先开始甲应取2个.故答案为:1,2.15.已知抛物线y2=8x的一条弦AB经过焦点F,O为坐标原点,D为线段OB的中点,延长OA至点C,使|OA|=|AC|,过C,D向y轴作垂线,垂足分别为E,G,则|EG|的最小值为4.【考点】K8:抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2﹣8my﹣8=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=8x,可得y2﹣8my﹣8=0,设A(x1,y1),B(x2,y2),则y1+y2=8m,y1y2=﹣8,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为:4.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0),与f(x)图象的对称轴x=相邻的f(x)的零点为x=.(Ⅰ)讨论函数f(x)在区间上的单调性;(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=1,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)先确定函数的解析式,再讨论函数f(x)在区间上的单调性;(Ⅱ)求出C,利用与向量共线,所以sinB=2sinA,由正弦定理得,b=2a①,由余弦定理得,c2=a2+b2,即a2+b2﹣ab②,即可求a,b的值.【解答】解:(Ⅰ)==由与f(x)图象的对称轴相邻的零点为,得,所以ω=1,即令,函数y=sinz单调增区间是,k∈Z,由,得,k∈Z,设,,易知,所以当时,f(x)在区间上单调递增,在区间上单调递减.(Ⅱ),则,因为0<C<π,所以,从而,解得.因为与向量共线,所以sinB=2sinA,由正弦定理得,b=2a①由余弦定理得,c2=a2+b2,即a2+b2﹣ab②由①②解得a=1,b=217.如图,在三棱锥A﹣BCD中,∠ABC=∠BCD=∠CDA=90°,AC=6,BC=CD=6,E点在平面BCD内,EC=BD,EC⊥BD.(Ⅰ)求证:AE⊥平面BCDE;(Ⅱ)设点G在棱AC上,若二面角C﹣EG﹣D的余弦值为,试求的值.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】(Ⅰ)连接BE,设BD交CE于O,只需证明CD⊥AE,BC⊥AE,BC∩CD=C,即可得所以AE⊥平面BCDE(Ⅱ)由(Ⅰ)的证明过程知BCDE为正方形,如图建立坐标系,则:E(0,0,0),D(0,6,0),A(0,0,6),B(6,0,0),C(6,6,0)设(t>0),G(x,y,z)由可得,则,易知平面CEG的一个法向量为,求出平面DEG的一个法向量为.利用向量的夹角公式求解.【解答】解:(Ⅰ)证明:连接BE,设BD交CE于O,因为△BCD是等腰直角三角形CO⊥BD,所以,又EC=BD,所以O是BD和CE的中点已知EC⊥BD,所以四边形BCDE是正方形则CD⊥ED,又CD⊥AD,AD∩CD=D所以CD⊥平面ADE,CD⊥AE同理BC⊥AE,BC∩CD=C所以AE⊥平面BCDE;(Ⅱ)由(Ⅰ)的证明过程知BCDE为正方形,如图建立坐标系,则:E(0,0,0),D(0,6,0),A(0,0,6),B(6,0,0),C(6,6,0)设(t>0),G(x,y,z)由可得则,易知平面CEG的一个法向量为设平面DEG的一个法向量为则得令x0=1得,所以,解得t=2,所以.18.甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是和,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望EX.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)记“甲达标”为事件A,利用n次独立重复试验中事件A恰好发生k次的概率计算公式,能求出甲达标的概率.(Ⅱ)X的所有可能取值为2,3,4.分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(Ⅰ)记“甲达标”为事件A,则×;(Ⅱ)X的所有可能取值为2,3,4.,××,,所以X的分布列为:.19.已知数列{a n}的前n项和为S n,a1=,S n=S n﹣1+a n﹣1+(n∈N*且n≥2),数列{b n}满足:b1=﹣,且3b n﹣b n﹣1=n+1(n∈N*且n≥2).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:数列{b n﹣a n}为等比数列;(Ⅲ)求数列{b n}的前n项和的最小值.【考点】8E:数列的求和;88:等比数列的通项公式.【分析】(Ⅰ)由a n=S n﹣S n﹣1,结合等差数列的定义和通项公式,即可得到所求;(Ⅱ)求得b n,及b n﹣a n,b n﹣1﹣a n﹣1,再由等比数列的定义,即可得证;(Ⅲ)运用等比数列的通项公式,求得b n,判断b n﹣b n﹣1的符号,可得{b n}是递增数列,求出b1,b2,b3,即可得到所求和的最小值.【解答】解:(Ⅰ)由得即(n≥2且n∈N*),则数列{a n}为以为公差的等差数列,因此=;(Ⅱ)证明:因为3b n﹣b n﹣1=n+1(n≥2)所以(n≥2),(n≥2),b n﹣1﹣a n﹣1=b n﹣1﹣=(n≥2),所以(n≥2),因为b1﹣a1=﹣10≠0,所以数列{b n﹣a n}是以﹣10为首项,为公比的等比数列.(Ⅲ)由(Ⅱ)得,所以=,=(n ≥2)所以{b n}是递增数列.因为当n=1时,,当n=2时,,当n=3时,,所以数列{b n}从第3项起的各项均大于0,故数列{b n}的前2项之和最小.记数列{b n}的前n项和为T n,则.20.已知a∈R,函数f(x)=ae x﹣x﹣1,g(x)=x﹣ln(x+1)(e=2.71828…是自然对数的底数).(Ⅰ)讨论函数f(x)极值点的个数;(Ⅱ)若a=1,且命题“∀x∈[0,+∞),f(x)≥kg(x)”是假命题,求实数k的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)对函数f(x)求导,再根据导数和函数极值的关系分类即可得到极值点的个数,(Ⅱ)命题“∀x∈[0,+∞),f(x)≥kg(x)”是假命题,转化为不等式f(x)<kg(x)在区间[0,+∞)内有解,再构造函数F(x)=f(x)﹣kg(x)e x+kln(x+1)﹣(k+1)x ﹣1,利用导数和函数的单调性关系以及函数零点存在定理判断即可.【解答】解:(Ⅰ)因为f(x)=ae x﹣x﹣1,所以f'(x)=ae x﹣1,当a≤0时,对∀x∈R,f'(x)=ae x﹣1<0,所以f(x)在(﹣∞,+∞)是减函数,此时函数不存在极值,所以函数f(x)没有极值点;当a>0时,f'(x)=ae x﹣1,令f'(x)=0,解得x=﹣lna,若x∈(﹣∞,﹣lna),则f'(x)<0,所以f(x)在(﹣∞,﹣lna)上是减函数,若x∈(﹣lna,+∞),则f'(x)>0,所以f(x)在(﹣lna,+∞)上是增函数,当x=﹣lna时,f(x)取得极小值为f(﹣lna)=lna,函数f(x)有且仅有一个极小值点x=﹣lna,所以当a≤0时,f(x)没有极值点,当a>0时,f(x)有一个极小值点.(Ⅱ)命题“∀x∈[0,+∞),f(x)≥kg(x)”是假命题,则“∃x∈[0,+∞),f(x)<kg(x)”是真命题,即不等式f(x)<kg(x)在区间[0,+∞)内有解.若a=1,则设F(x)=f(x)﹣kg(x)=e x+kln(x+1)﹣(k+1)x﹣1,所以﹣(k+1),设﹣(k+1),则,且h'(x)是增函数,所以h'(x)≥h'(0)=1﹣k当k≤1时,h'(x)≥0,所以h(x)在[0,+∞)上是增函数,h(x)≥h(0)=0,即F'(x)≥0,所以F(x)在[0,+∞)上是增函数,所以F(x)≥F(0)=0,即f(x)≥kg(x)在x∈[0,+∞)上恒成立.当k>1时,因为在[0,+∞)是增函数,因为h'(0)=1﹣k<0,h'(k﹣1)=,所以h'(x)在(0,k﹣1)上存在唯一零点x0,当x∈[0,x0)时,h'(x)<h'(x0)=0,h(x)在[0,x0)上单调递减,从而h(x)≤h(0)=0,即F'(x)≤0,所以F(x)在[0,x0)上单调递减,所以当x∈(0,x0)时,F(x)<F(0)=0,即f(x)<kg(x).所以不等式f(x)<kg(x)在区间[0,+∞)内有解综上所述,实数k的取值范围为(1,+∞).21.已知椭圆C:,点P是椭圆C上任意一点,且点M满足(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成的曲线为Cλ.(Ⅰ)求曲线Cλ的轨迹方程;(Ⅱ)过曲线Cλ上点M做椭圆C的两条切线MA和MB,切点分别为A,B.①若切点A的坐标为(x1,y1),求切线MA的方程;②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)设点M的坐标为(x,y),对应的点P的坐标为.由于点P在椭圆C上,得,即得曲线Cλ的轨迹方程.(Ⅱ)①当过点A切线的斜率存在时,设该切线的方程为y﹣y1=k(x﹣x1),联立方程组,由△=0,得,得;得过点A的切线方程为过点A切线的斜率不存在时,符合方程.②存在定圆恒与直线AB相切;可得A,B两点坐标都满足方程,且点M的坐标为(m,n)满足曲线Cλ的方程:,即原定O到直线AB的距离为,即直线AB始终与圆相切.【解答】解:(Ⅰ)设点M的坐标为(x,y),对应的点P的坐标为.由于点P在椭圆C上,得,即曲线Cλ的轨迹是椭圆,标准方程为(Ⅱ)①当过点A切线的斜率存在时,设该切线的方程为y﹣y1=k(x﹣x1),即y=kx+(y1﹣kx1)联立方程组,即.由△=0,得,即,,,得;此时过点A的切线方程为过点A切线的斜率不存在时,切点为(±2,0),方程为x=±2,符合方程形式.②存在定圆恒与直线AB相切;设切点B(x2,y2),与A,B两点对应的点M的坐标设为(m,n);同理过点B的切线方程为同时两条切线MA和MB都过点M(m,n),所以.即A,B两点坐标都满足方程,且点M的坐标为(m,n)满足曲线Cλ的方程:,即原定O到直线AB的距离为,所以直线AB始终与圆相切.2017年5月23日。