容积和容积单位
- 格式:doc
- 大小:73.50 KB
- 文档页数:13
容积和容积单位一、知识点汇总:1、计量容积,一般就用体积单位,如,计量液体的体积,如水、油等,常用容积单位升和毫升。
(L和ml)1L=1000ml 1L= 1dm31ml= 1cm32、容积单位的用法:(1)计量较大容器的容积时用升,如计量水池的容积,大矿泉水桶的容积等;计量较小的容积时用毫升。
(2)计量容器可装多少固体时,通常都用体积单位。
3、容积和体积单位间的关系。
1升=1000毫升1升=1立方分米1毫升=1立方厘米4、容积的计算方法:(1)规则容器容积的计算方法跟体积的计算方法相同,但要从容器里面计算所需数据。
(2)求不规则物体的体积可用排水法来求(注:溶于水的不规则物体就不能用排水法,如盐、糖等;浮于水面上的不规则物体也不能用排水法。
物体的体积=放入物体后的总体积—放入物体前水的体积;容器的底面积×水面上升的高度=物体的体积在()里填上合适的体积单位(1)牙膏盒的体积大约是60()(2)一节火车车厢的体积大约是80()(3)行李箱的体积大约是22()一、基础练习:1、判断(对的在括号里面打“√”,错的打“×” )1.体积单位比面积单位大,面积单位比长度单位大.()2.正方体和长方体的体积都可以用底面积乘高来进行计算.()3.表面积相等的两个长方体,它们的体积一定相等.()4.长方体的体积就是长方体的容积.()5、如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.()6、一个长方体木箱,竖着放和横着放时所占的空间不一样大。
()7、一个厚度为2毫米的铁皮箱的体积和容积完全相等。
()8、正方体的棱长扩大2倍,它的表面积就扩大8倍。
()9、体积相等的两个正方体,它的表面积也一定相等。
()10、一个棱长为1米的无盖正方体铁箱,它的表面积是5平方米。
()三、选择1.正方体的棱长扩大2倍,则体积扩大()倍.A.2B.4C.6D.82.一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表面积最少增加()平方分米.A.8B.16C.24D.323.一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍.A.2B.4C.6D.84.表面积相等的长方体和正方体的体积相比,().A.正方体体积大B.长方体体积大C.相等5.将一个正方体钢坯锻造成长方体,正方体和长方体().A.体积相等,表面积不相等B.体积和表面积都不相等.C.表面积相等,体积不相等.6.一个菜窖能容纳6立方米白菜,这个菜窖的()是6立方米.A.体积B.容积C.表面积四、填表。
容积和容积单位
1、含义:像箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
2、容积单位:计量容积,一般就用体积单位。
计量液体的体积,如水、油等,常用容积单位升和毫升,1 L=1000 mL。
3、容积单位和体积单位的换算:1 L=1 dm3,1 mL= 1 cm3。
容积和体积是不同的。
1、含义不同。
如一只铁桶的体积是指它外部所占空间部分的大小,而这只铁桶的容积却是指它内部容纳物体的多少。
一种物体有体积,可不一定有容积。
2、测量方法不同。
在计算物体的体积或容积前一般要先测量长、宽、高,求物体的体积是从该物体的外部来测量,而求容积却是从物体的内部来测量。
一种既有体积又有容积的封闭物体,它的体积一定大于它的容积。
3、单位名称不完全相同。
体积单位一般用:立方米、立方分米、立方厘米;固体的容积单位与体积单位相同,而液体和气体的体积与容积单位一般都用升、毫升。
容积和容积单位》教学设计教学内容:五年级下册第50—51页的内容学情分析:容积的概念对学生来说容易掌握,但是要让学生搞清楚,容积和体积的概念既有联系又有区别,对于L和ml的认识,通过联系生活实际,对不同的容量建立深刻影像,丰富学生的数学体验,提高学生的应用能力。
教学目标:1、通过实例,学生能够说出容积的意义及度量单位(L和ml),会进行单位之间的换算,准确率达到90﹪以上。
2、通过观察对比,学生能正确区分体积和容积。
3、通过解决实际问题,学生会求出物体的容积。
教学重点:建立容积和容积单位的观念,直到容积单位和体积单位的关系。
教学难点:理解容积的含义和升、毫升的实际大小。
教学具准备:1立方厘米的盒子、水、滴管、一升的量杯、带毫升刻度的量筒、1立方分米的盒子、口服液、饮料等教学过程:一、创设情景,感知概念。
上课首先板书:L ml问:认识它们吗?知道怎么读吗?找学生读一读。
谁知道L表示什么?ml呢?随着学生的回答在对应的位置板书:升和毫升生活中那些物品商标有升和毫升?学生自由发言。
可以是鲜橙多、加油站……(设计意图:学生不是一张白纸。
对于现在的孩子来说,升和毫升早已不再陌生,他们身边很多带有升和毫升的物品,所以在这个环节,我抓住了这个生长点,利用考一考这种新颖的比赛形式,让学生明白生活中处处有数学。
)二、交流反馈,形成概念出示一瓶营养快线,问:这上面标着500ml,表示什么?(里面装的饮料的容量)如果在这个瓶子里装满水,最多能装多少水?(500ml)小结:不仅瓶子可以容纳物体,箱子、仓库都能容纳物体,而他们所能容纳物体的体积,通常叫做他们的容积。
比如这个瓶子能容纳500ml的饮料,这里的500ml既表示了饮料的体积,也表示了瓶子的容积。
请学生结合自己手中的学具举例说说什么是容积?(设计意图:对于容积的概念,学生总是被动接受,并不真正理解为什么把容纳物体的体积叫做容积。
为了突破这个困惑,我采用了饮料换成水的对比方法,让学生感受到虽然里面的物品变了,但是里面的空间没变,从而真正理解500ml的两种意义。
)问:回忆我们所举的例子,想象什么样的物体才能计量它的容积?能装东西的物体,里面得是空心的。
师:因为容器的容积是通过它所容纳物体的体积表现出来的,所以计量容积一般就用体积单位,比如介绍集装箱的容积是30立方米;但是在计量液体的体积时,如水、油等,常用升和毫升。
如一瓶眼药水容积是10ml。
(设计意图:从学生已有的生活经验和学习能力出发,精心引导,促进新概念的产生。
)三、探究感悟,理解概念1、感知毫升和升师:1毫升究竟有多少呢?请大家认真观察。
出示一个小量杯,请学生上台指出1毫升所在的刻度。
猜一猜:如果用滴管滴水,几滴水可能是一毫升。
验证。
一生演示,大家观察并数数。
师:从刚才的实验,你看到了什么? 10滴水的体积正好是1毫升。
(设计意图:运用实验让学生更加直观地看到了1毫升的多少,借助生活原型帮助学生构建数学模型,让学生对毫升有一个较为深刻的印象。
)2、教师演示升和毫升之间的关系。
(1)出示量杯,看清容积是1升。
(2)出示刻有毫升刻度的量筒,认识1毫升的刻度,找到100毫升的刻度。
(3)用量筒量100ml的红色水倒入1L的量杯,一直到量杯满为止。
板书:1升=1000毫升3、学生演示容积单位和体积单位间的关系(1)把1升的红色水倒入1立方分米的正方体盒里,刚好满板书:1升=1立方分米(2)把1毫升的红色水倒入1立方厘米的正方体盒里,刚满。
板书:1毫升=1立方厘米小结:容积单位有哪些?容积单位和体积单位之间有什么关系?3、练习检测2.5升= 毫升 450毫升= 升2750立方厘米= 毫升 8.04立方分米= 升= 毫升(设计意图:通过动手操作,使学生在理解的基础上记住容积单位间的换算,以及和体积单位的关系,印象深刻,也激发了学生学习数学的兴趣。
)四、应用概念,解决问题师出示长方体纸盒和木盒各一个,仔细观察并思考,这两个盒子的容积一样吗?为什么?不一样,因为木盒壁厚,纸盒壁薄。
师:正是考虑到材质的不同,所以计算容积的方法和体积一样,但有一点不同,就是要从里面量长、宽和高,才会更准确。
(设计意图:书本中原有的习题其实就是不可多得的教学资源,尤其是对材料不同、体积相同的盒子的观察,使学生体会容积与体积在测量方法上的不同。
)出示例题:一种汽车上的油箱,里面量长5分米,宽4分米,高2分米,这个油箱可以装汽油多少升?问:这是解决什么的问题?容积学生尝试独立解决,不会的可以求助,指名板演集体评讲。
提醒汽油是液体,最好用升做单位。
(设计意图:让学生在理解的基础上尝试解决问题,遵循了五年级学生的认知规律,凸现了学生是学习的主体这一理念。
)2、巩固检测练习九5、6题五、反思过程,总结提高本节课我们学习了那些知识?你有什么收获?板书课题(设计意图:先让学生谈收获,再由教师归纳概括,对整节课的内容进行梳理,不但使学生对所学内容加深印象,还有利于知识建构。
)六、板书设计容积和容积单位箱子、油桶、仓库所能容纳物体的体积,叫它们的容积。
升和毫升1L=1000ml1L=1dm31ml=1cm3教材简析:本课是在学生已经认识了体积以及体积单位的进率的基础上,继续认识容积以及计量液体的体积常用的容积单位升和毫升,认识1升=1000毫升,知道容积和体积的联系与区别,知道容积单位和体积单位之间关系。
五年级的学生有了一定的收集信息能力,为了让学生能够一节课内消化所学的内容,有意识让学生收集饮料瓶、饮料盒,并先看一看上面的信息。
教学目的:1、让学生在具体情境中感受并认识容积,联系实际初步形成1升、1毫升的容量观念,通过实验操作体会1升、1毫升有多少。
2、知道容积和体积的联系与区别,知道容积单位和体积单位之间关系,掌握容积单位之间的进率。
3、让学生在课前课后的实践活动中,体会数学与生活的密切联系,增强学习数学的兴趣和学好数学的信心,获得积极的数学学习情感和解决实际问题的能力。
教具准备:多媒体课件,一个1升的量杯,一个标有毫升刻度的量筒,一个1毫升的容器,几个墨水瓶,4盒250毫升的牛奶盒,1盒1升的牛奶盒,一个装了1立方分米砂的正方体盒。
教学过程一、复习导入1.什么叫体积?2.常用的体积单位有哪些?它们之间的关系呢?3.怎样计算长方体和正方体的体积?公式呢?4、导入课题师:展示一盒1升装的蒙牛牛奶。
提问:你会计算这个盒子的体积吗?你知道里面装的是什么?你会计算盒里面牛奶的体积吗?师:今天,我们就来学习物体的容积和容积单位。
[设计意图:学习新知前,适当复习有关的知识,对理解容积的意义和建立升、毫升的概念有帮助,同时为学习容积和容积单位作好铺垫。
导入新课阶段就给学生设疑,激发学生学习这课内容的兴趣,暗示了体积与容积两个概念是有联系的。
]二、观察实验——探索新知1、感受容积意义谈话:布置你们在生活中观察,有哪些物体能装些什么?谁来说一说?生:仓库能装化肥、水泥。
生:瓶能装水、油。
生:箱子、盒子能装饼、牛奶……师:同学们,我们把容纳物体的这些箱子、油桶、仓库等一般称为容器。
那么什么叫做物体的容积?你能用自己的话说一说吗?这些容器所能容纳物体的体积,通常叫做它们的容积。
生活中也有称为容量。
[设计意图:以学生的事实知识与生活经验为基础的教学原则,请学生课前进行必要的观察、感知容器、容积,在课堂上进一步的引导,感悟,从形象思维上升到抽象思维,认识容积的意义。
]2、探索容积单位常用的容积单位有哪些呢?师:想一想,你们举例的容器,能给他们分一分类吗?生:长方体一类、正方体一类、瓶装的一类(不规则)。
师:哪么一个长方体的仓库里存放着水泥,仓库长10米,宽8米,高6米,能容纳多少水泥?学生讨论后计算汇报:10×8×6=486(立方米)仓库的容积等同于一个长方体的体积,但要从仓库里面量长、宽、高,计算长方体的体积用体积单位,计算仓库的容积也就用体积单位。
(板书:立方米、立方分米、立方厘米)师:计算容积你们是用什么方法算的?能再说一说吗?容积的计算方法,跟体积的计算方法相同。
师:观察你们带来的瓶、盒,发现了什么?生:有的盒上容积标明是升和毫升作单位,而瓶子的容积标明升和毫升作单位。
师:再看一看,都是装什么形态的物质?可以联想到什么?生:装得是水、饮料、牛奶等,生:猜想在计量液体体积的时候,就要用到升和毫升。
师:升和毫升就是我们这节课要认识的容积单位。
要想知到你们的想法对不对或更多的知识,请同学们看教科书P40页的内容,再观察老师桌面上摆的教具,你们会有收获。
[设计意图:根据高年级学生的学习能力和水平,给学生一些时间和空间,让学生带着好奇心、问题去阅读课本,充分体现了发挥学生的主体作用,让学生自学是为了让学生学会学习和掌握思考问题的方法、策略,达到会学的目的。
]师:现在你又有什么新的认识?让学生互相补充说一说新的认识。
师:你们能验证书上的说法吗?生:我们在量杯和量筒上,能看到刻有升和毫升的刻度,1升=1000毫升。
引导演示:⑴观察量筒刻度,把水倒到1的刻度上,这就是1毫升水;⑵把4盒250毫升的液体倒入1升量杯,这就是1升牛奶。
引导分析推理:1升牛奶正好是4个250毫升,250毫升×4=1000毫升,所以1升正好等于1000毫升。
[设计意图:通过实验让学生自己认识毫升和升,并且从实验中学生能切实感受1升和1毫升的实际意义和进率。
]3、验证容积单位和体积单位的联系方法类推:验证1升=1立方分米:展示装了1立方分米砂的正方体盒,把砂倒入1升的容杯,得出1升的容杯容积是1立方分米。
从而得出1升=1立方分米。
验证:演示1毫升=1立方厘米4、生活应用,感悟新知。
师:(课件展示)这瓶墨水大约是多少毫升?师:重现一盒1升装的蒙牛牛奶。
现在,你会计算这个盒子的体积吗?你会计算盒里面牛奶的体积吗?学生有测量计算,也有直接回答的。
师:这个盒的容积就是这个盒的体积,这句话对吗?为什么?盒的体积指什么?本盒的容积指什么?小结:一般说来,物体的容积比体积小。
拿起一只薄纸盒,说:有的时候,容器的壁比较薄,像这只纸盒,而且我们在做题目时,题后有要求:壁的厚度忽略不计。
[设计意图:通过应用,让学生了解本课知识在以后的生活与生产实际中是经常运用到的,进一步让学生明也确学好本课知识的重要性]4、教学例6(1)审题:已知什么和要求什么?(2)学生试说解题思路。
(3)全班尝试练习解答。
说思路。
三、课堂总结师:今天学习了什么内容?知道了什么?学会了什么?[设计意图:指导学生把本课学习的知识进行整理、归纳,并且进行检查对本课学习内容理解、掌握的情况,以利于在巩固练习阶段进行补漏。
同时进一步巩固对本课知识的理解和掌握。
]四、巩固新知1、课本P40页:做一做第1、2题。