八年级下册数学作业本答案人教版
- 格式:doc
- 大小:47.00 KB
- 文档页数:2
全品作业本八下数学答案新课标RJ全品作业本八下数学答案新课标RJ版是针对初中八年级下学期学生编写的数学练习册,它遵循新课程标准,旨在帮助学生巩固和深化数学知识,提高解题能力。
这本作业本包含了丰富的练习题,覆盖了初中数学的各个重要知识点,如代数、几何、概率统计等。
通过这些练习,学生可以更好地理解和掌握数学概念,培养数学思维。
在解答全品作业本八下数学答案时,学生应该首先仔细阅读题目,理解题目要求。
对于每一个问题,学生需要运用所学的数学知识,逐步分析和解答。
在解题过程中,学生应该注重逻辑推理和计算的准确性,确保每一步的推导都是正确的。
对于选择题,学生需要从给定的选项中选择最合适的答案。
在做出选择之前,学生应该仔细比较每个选项,确保选择的答案符合题目的要求。
对于填空题和解答题,学生则需要给出详细的解题步骤和最终答案。
在解答这些题目时,学生应该尽量做到条理清晰,书写规范。
此外,全品作业本八下数学答案还提供了一些解题技巧和策略,帮助学生更高效地解决问题。
例如,在解决几何问题时,学生可以利用图形的性质和定理来简化问题;在解决代数问题时,学生可以运用代数公式和运算法则来简化计算。
在完成作业本的练习后,学生应该认真检查自己的答案,确保没有遗漏或错误。
如果遇到难题,学生可以向老师或同学求助,共同探讨解题方法。
通过不断的练习和反思,学生的数学能力将得到显著提高。
总之,全品作业本八下数学答案新课标RJ版是一本非常实用的数学练习册,它不仅提供了大量的练习题,还帮助学生巩固数学知识,提高解题技巧。
通过认真完成这本作业本,学生将能够在数学学习上取得更好的成绩。
人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。
长江作业本答案-八年级数学下册答案-2014年2月版(同步练习册)-智能一对一教材目录第十六章二次根式16.1 二次根式16.2 二次根式的乘除(一)16.2 二次根式的乘除(二)16.3 二次根式的加减(一)16.3 二次根式的加减(二)复习与小结单元检测题第十七章勾股定理17.1 勾股定理(一)17.1 勾股定理(二)17.2 勾股定理的逆定理复习与小结单元检测题第十八章平行四边形18.1 平行四边形18.1.1 平行四边形的性质(一)18.1.1 平行四边形的性质(二)18.1.2 平行四边形的判定(一)18.1.2 平行四边形的判定(二)18.1.2 平行四边形的判定(三)18.2 特殊的平行四边形18.2.1 矩形(一)18.2.1 矩形(二)18.2.2 菱形(一)18.2.2 菱形(二)18.2.3 正方形(一)18.2.3 正方形(二)复习与小结单元检测题第十九章一次函数19.1 函数19.1.1 变量与函数19.1.2 函数的图像(一)19.1.2 函数的图像(二)19.2 一次函数19.2.1 正比例函数19.2.2 一次函数(一)19.2.2 一次函数(二)19.2.3 一次函数与方程、不等式(一)19.2.3 一次函数与方程、不等式(二)19.3 课题学习选择方案复习与小结单元检测题第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数(一)20.1.1 平均数(二)20.1.2 中位数和众数(一)20.1.2 中位数和众数(二)20.2 数据的波动程度(一)20.2 数据的波动程度(二)20.3 课题学习优质健康测试中的数据分析复习与小结单元检测题期中测试卷期末测试卷智能一对一 (长江作业本视频答案-八年级数学下册答案) 智能一对一简介:智能学习系统就是无人值守的学习系统,从此解放家长,方便老师,帮助学生;智能一对一系统是一个解决学生作业难题的智能学习系统;一个老师一个学生一道习题一个视频,做到全方位辅导孩子写作业,帮助解决家庭作业难题;智能一对一,做到无人值守也能有老师指导学习的情况下,还做到了随时随地学习,随时随地解决作业难题,让学生的难题无处可躲,发现一个解决一个。
八年级人教版数学下册作业本数学练习对巩固学生所学知识,培养数学思维有着积极的促进作用。
那么八年级人教版数学下册作业本该怎么写呢?下面是小编为大家整理的八年级人教版数学下册作业本,希望对大家有帮助。
八年级人教版数学下册全等三角形作业本第十一章全等三角形§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE —∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2 可得∠ACE=∠FDB八年级人教版数学下册分式的运算作业本第17章分式§17.1分式及其基本性质(一)一、选择题. 1.C 2.B二、填空题. 1. 1320, 2.1,1 3. 小时 3vx+11132x-,(x-y),x; 分式:2,,,254am+nx-y三、解答题.1. 整式:2a-3 ,6x+1131b2x-(x-y); 有理式:2a-3,,2,,,,,x 2ab5am+n4abx-y2. (1) x≠0时, (2)x≠-3时, (3)x取任意实数时,(4)x≠±3 时 2§17.1分式及其基本性质(二)一、选择题. 1.C 2.D22二、填空题. 1. 12x3y3, 2. a-b 3. a≠1三、解答题. 1.(1) 1a+211,(2) ,(3) ,(4) a-2b4acy-x2.(1) x2(x-y)21xyz14z15x ,,;(2) ,x(x+y)(x-y)x(x+y)(x-y)21x2y2z21x2y2z21x2y2z3.bccm πa§17.2分式的运算(一)一、选择题. 1.D 2.A21b3二、填空题. 1. , 2. 2 3. -3 ax8a三、解答题.1.(1)21,(2)-1,(3)-c,(4)-; 2. -x-4, -6 x-23xy§17.2分式的运算(二)一、选择题. 1.D 2.Bm2-n2二、填空题. 1. , 2. 1, 3. -1 mn142a2三、解答题. 1.(1) ,(2)2,(3)x,(4)- a+2ab。
习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4. 解析:(1)由a +2≥0,得a ≥-2; (2)由3-a ≥0,得a ≤3; (3)由5a ≥0,得a ≥0; (4)由2a +1≥0,得12a -≥.2、计算:(1)2;(2)2(;(3)2;(4)2;(5;(6)2(-;(7(8).解析:(1)25=;(2)222((1)0.2=-⨯=;(3)227=;(4)2225125=⨯=;(510==;(6)222((7)14-=-⨯=;(723==;(8)25==-.3、用代数式表示:(1)面积为S 的圆的半径;(2)面积为S 且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r (r>0),由2r S r π==,得;(2)设两条邻边长为2x ,3x (x>0),则有2x ·3x=S ,得x =所以两条邻边长为4、利用2(0)a a =≥,把下列非负数分别写成一个非负数的平方的形式: (1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)212=;(6)0=02.5、半径为r cm 的圆的面积是,半径为2cm 和3cm 的两个圆的面积之和.求r 的值.解析:222223,13,0,r r r r πππππ=⨯+⨯∴=>∴=.6、△ABC 的面积为12,AB 边上的高是AB 边长的4倍.求AB 的长.7、当x 是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4 答案:(1)x 为任意实数;(2)x 为任意实数;(3)x >0;(4)x >-1.8、小球从离地面为h (单位:m )的高处自由下落,落到地面所用的时间为t (单位:s ).经过实验,发现h 与t 2成正比例关系,而且当h=20时,t=2.试用h 表示t ,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t 29、(1n 所有可能的值;(2n 的最小值. 答案:(1)2,9,14,17,18;(2)6.因为24n=22×6×n n 是6.10、一个圆柱体的高为10,体积为V .求它的底面半径r (用含V 的代数式表示),并分别求当V=5π,10π和20π时,底面半径r 的大小.答案:2r =习题16.21、计算:(1(2(;(3(4答案:(1)(2)-(3)(4)2、计算:(1(2;(3(4答案:(1)32;(2)(3(43、化简:(1(2(3(4答案:(1)14;(2)(3)37;(4.4、化简:(1)2;(2(3;(4;(5(6.答案:(1;(2)2(3)30;(4)3;(5)(6).5、根据下列条件求代数式2b a-的值;(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)5-+(26、设长方形的面积为S,相邻两边分别为a,b.(1)已知a=b=S;(2)已知a=,b=,求S.答案:(1);(2)240.7、设正方形的面积为S,边长为a.(1)已知S=50,求a;(2)已知S=242,求a.答案:(1)(2).8、计算:(1(2(3;(4答案:(1)1.2;(2)32;(3)13;(4)15.9 1.414≈的近似值.答案:0.707,2.828.10、设长方形的面积为S,相邻两边长分别为a,b.已知S a==,求b.11、已知长方体的体积V=h=S.答案:263.12、如图,从一个大正方形中裁去面积为15cm 2和24cm 2的两个小正方形,求留下部分的面积.答案:210cm .13、用计算器计算:(19919⨯+(29999199⨯+;(39999991999⨯+(49999999919999⨯+.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9999999991999________.n n n ⨯+=个个个答案:(1)10;(2)100;(3)1000;(4)10000.01000n 个.习题16.31、下列计算是否正确?为什么? (1235=(2)2222+=(3)3223=;(418894321-==-=. 答案:(123不能合并; (2)不正确,22 (3)不正确,32222=(4)不正确,222==2、计算:(1);(2(3(4)3a答案:(1)(2(3)(4)17a3、计算:(1(2(3)-;(4)1324-.答案:(1)0;(2(3)(4)4、计算:(1);(2);(3)2;(4)答案:(1)6+(2)-6;(3)95+(4)43+5、已知5 2.236≈,求154545545-+的近似值(结果保留小数点后两位). 答案:7.83.6、已知31,31x y =+=-,求下列各式的值: (1)x 2+2xy +y 2;(2)x 2-y 2. 答案:(1)12;(2)43.7、如图,在Rt △ABC 中,∠C=90°,CB=CA=a .求AB 的长.2a .8、已知110a a+=1a a -的值.答案:6.9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1)2x 2-6=0,(3,6,3,6);(2)2(x +5)2=24,(523,523,523,523)+--+--. 答案:(1)3(2)235±.复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (13x + (221x -;(3(4答案:(1)x ≥-3;(2)12x >;(3)23x <;(4)x ≠1.2、化简:(1 (2; (3 (4(5 (6答案:(1)(2);(3)3;(4)3a (5)(6)6a .3、计算:(1)-;(2)(3);(4)(5)2;(6)2.答案:(1;(2(3)6;(4)2-;(5)35+;(6)5-4、正方形的边长为a cm ,它的面积与长为96cm ,宽为12cm 的长方形的面积相等.求a 的值.答案:5、已知1x =-,求代数式x 2+5x -6的值.答案:5.6、已知2x =-2(7(2x x ++的值.答案:23+.7、电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足Q=I 2Rt .已知导线的电阻为5Ω,1s 时间导线产生30J 的热量,求电流I 的值(结果保留小数点后两位).答案:2.45A .8、已知n 是正整数,189n 是整数,求n 的最小值.答案:21. 9、(1)把一个圆心为点O ,半径为r 的圆的面积四等分.请你尽可能多地设想各种分割方法. (2)如图,以点O 为圆心的三个同心圆把以OA 为半径的大圆O 的面积四等分.求这三个圆的半径OB ,OC ,OD 的长.答案:(1)例如,相互垂直的直径将圆的面积四等分; (2)设OA=r ,则12OD r =,2OC =,3OB =.10、判断下列各式是否成立:2233442;33;44.33881515=== 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明.答案:2211n n n nn n +=--32211n n n n n +=--,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a和b,斜边长为c.(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.答案:(1)13;(2)7;(3)19.2、一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高AO=2.4,底面半径OB=0.7.AB的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点A到电线杆底部B的距离(结果保留小数点后一位).答案:4.9m.6、在数轴上作出表示20的点.答案:略.7、在△ABC中,∠C=90°,AB=c.(1)如果∠A=30°,求BC,AC;(2)如果∠A=45°,求BC,AC.答案:(1)12BC c=,32AC c=;(2)22BC c=,22AC c=.8、在△ABC中,∠C=90°,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB;(3)高CD.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2.求斜边AB的长.答案:43 3.12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.13、如图,分别以等腰Rt△ACD的边AD,AC,CD为直径画半圆.求证:所得两个月形图案AGCE 和DHCF的面积之和(图中阴影部分)等于Rt△ACD的面积.答案:2211()228AEC AC S AC ππ==半圆,218CFD S CD π=半圆,218ACD S AD π=半圆.因为∠ACD=90°,根据勾股定理得AC 2+CD 2=AD 2,所以S 半圆AEC +S 半圆CFD =S 半圆ACD ,S 阴影=S △ACD + S 半圆AEC +S 半圆CFD -S 半圆ACD , 即S 阴影=S △ACD .14、如图,△ACB 和△ECD 都是等腰直角三角形,△ACB 的顶点A 在△ECD 的斜边DE 上.求证:AE 2+AD 2=2AC 2.证明:证法1:如图(1),连接BD .∵△ECD 和△ACB 都为等腰直角三角形, ∴EC=CD ,AC=CB ,∠ECD=∠ACB=90°. ∴∠ECA=∠DCB . ∴△ACE ≌△DCB .∴AE=DB ,∠CDB=∠E=45°. 又∠EDC=45°, ∴∠ADB=90°.在Rt △ADB 中,AD 2+DB 2=AB 2,得AD 2+AE 2=AC 2+CB 2, 即AE 2+AD 2=2AC 2.证法2:如图(2),作AF ⊥EC ,AG ⊥CD ,由条件可知,AG=FC .在Rt△AFC中,根据勾股定理得AF2+FC2=AC2.∴AF2+AG2=AC2.在等腰Rt△AFE和等腰Rt△AGD中,由勾股定理得AF2+FE2=AE2,AG2+GD2=AD2.又AF=FE,AG=GD,∴2AF2=AE2,2AG2=AD2.而2AF2+2AG2=2AC2,∴AE2+AD2=2AC2.习题17.21、判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=7,b=24,c=25;(2)a=b=4,c=5;(3)54a=,b=1,34c=;(4)a=40,b=50,c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角.不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求AC.答案:13.5、如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.答案:36.6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且14CF CD.求证∠AEF=90°.答案:设AB=4k,则BE=CE=2k,CF=k,DF=3k.∵∠B=90°,∴AE2=(4k)2+(2k)2=20k2.同理,EF2=5k2,AF2=25k2.∴AE2+EF2=AF2.根据勾股定理的逆定理,△AEF为直角三角形.∴∠AEF=90°.7、我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)也是一组勾股数吗?一般地,如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?答案:因为(3k)2+(4k)2=9k2+16k2=25k2=(5k)2,所以3k,4k,5k(k是正整数)为勾股数.如果a,b,c为勾股数,即a2+b2=c2,那么(ak)2+(bk)2=a2k2+b2k2=(a2+b2)k2=c2k2=(ck)2.因此,ak,bk,ck(k是正整数)也是勾股数.复习题171、两人从同一地点同时出发,一人以20 m/min的速度向北直行,一人以30m/min的速度向东直行.10min后他们相距多远(结果取整数)?答案:361m.2、如图,过圆锥的顶点S和底面圆的圆心O的平面截圆锥得截面△SAB,其中SA=SB,AB是圆锥底面圆O的直径.已知SA=7cm,AB=4cm,求截面△SAB的面积.65cm.答案:23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).答案:109.7mm.4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽a=3m,高b=1.5m,长d=10m.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).答案:33.5m 2.5、一个三角形三边的比为1:3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k ,3k ,2k ,其中k >0.由于2222(3)4(2)k k k k +==,根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗? (1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数; (3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等. 答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立. (3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为231+和231-,求斜边c 的长..26答案:كىتىلانائ8、如图,在△ABC 中,AB=AC=BC ,高AD=h .求AB .答案:233h .9、如图,每个小正方形的边长都为1. (1)求四边形ABCD 的面积与周长; (2)∠BCD 是直角吗?答案:(1)14.5,351726++; (2)由20BC =,5CD =,BD=5,可得BC 2+CD 2=BD 2.根据勾股定理的逆定理,△BCD是直角三角形,因此∠BCD 是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a=2m ,b=m 2-1,c=m 2+1,那么a ,b ,c 为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2=(2m )2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2=c 2, 所以a ,b ,c 为勾股数.用m=2,3,4等大于1的整数代入2m ,m 2-1,m 2+1,得4,3,5;6,8,10;8,15,17;等等.12、如图,圆柱的底面半径为6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm ,40cm ,30cm 的长方体木箱中,能放进去吗?答案:能.14、设直角三角形的两条直角边长及斜边上的高分别为a ,b 及h .求证:222111a b h+=.答案:由直角三角形的面积公式,得221122ab h a b =+,等式两边平方得a 2b 2=h 2(a 2+b 2),等式两边再同除以a 2b 2c 2,得222111h a b=+,即222111abh+=.习题18.11、如果四边形ABCD 是平行四边形,AB=6,且AB 的长是□ABCD 周长的316,那么BC 的长是多少?答案:10.2、如图,在一束平行光线中插入一张对边平行的纸板.如果光线与纸板右下方所成的∠1是72°15′,那么光线与纸板左上方所成的∠2是多少度?为什么?答案:72°15′,平行四边形的对角相等.3、如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=36,AB=11.求△OCD的周长.答案:29.4、如图,在□ABCD中,点E,F分别在BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.答案:提示:利用AF CE.5、如图,□ABCD的对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.答案:提示:利用AD=EF=BC.7、如图,直线l1∥l2,△ABC与△DBC的面积相等吗?为什么?你还能画出一些与△ABC面积相等的三角形吗?答案:相等.提示:在直线l1上任取一点P,△PBC的面积与△ABC的面积相等(同底等高).8、如图,□OABC的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c).求顶点B的坐标.答案:B(a+b,c).9、如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;(2)已知AD=BC,求证∠A=∠B.答案:提示:过点C作CE∥AD,交AB于点E,可得四边形AECD为平行四边形.10、如图,四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC且交AD于点E,DF∥BE 且交BC于点F.求∠1的大小.答案:35°.11、如图,A′B′∥BA,B′C′∥CB,C′A′∥AC,∠ABC与∠B′有什么关系?线段AB′与线段AC′呢?为什么?答案:由四边形ABCB′是平行四边形,可知∠ABC=∠B′,AB′=BC;再由四边形C′BCA是平行四边形,可知C′A=BC.从而AB′=AC′.12、如图,在四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的长和四边形ABCD的面积.答案:因为AD=12,DO=5,利用勾股定理可得AO=13,从而四边形ABCD的对角线互相平分,它是一个平行四边形.所以BC=AD=12,四边形ABCD的面积为120.13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处,并使细木条可以绕点O转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与□ABCD的边AD,BC分别交于点E,F,可以发现OE=OF,AE=CF,DE=BF,△AOE≌△COF,△DOE≌△BOF等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形面积相等?为什么?答案:□AEPH与□PGCF面积相等.利用△ABD与△CDB,△PHD与△DFP,△BEP与△PGB 分别全等,从而□AEPH与□PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠2.它是一个矩形吗?为什么?答案:是.利用∠1=∠2,可知BO=CO,从而BD=AC,□ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°,四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ABC中,∠C=90°,AB=2AC.求∠A,∠B的度数.答案:∠A=60°,∠B=30°.5、如图,四边形ABCD是菱形,∠ACD=30°,BD=6.求:(1)∠BAD,∠ABC的度数;(2)AB,AC的长.AC答案:(1)∠BAD=60°,∠ABC=120°;(2)AB=6,36、如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.答案:提示:由∠ABD=∠DBC=∠ADB,可知AB=AD,同理可得AB=BC.从而AD BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕应成多少度的角?答案:45°.8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了.纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点.∠ECD是多少度?为什么?答案:45°.提示:∠BCD=∠EAC=∠ECA=22.5°.10、如图,四边形ABCD是菱形,点M,N分别在AB,AD上,且BM=DN,MG∥AD,NF∥AB;点F,G分别在BC,CD上,MG与NF相交于点E.求证:四边形AMEN,EFCG都是菱形.答案:提示:四边形AMEN,EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H.求DH的长.答案:DH=4.8.提示:由AB·DH=2AO·OD=2S△ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(b,0),(0,d).求点C的坐标.(2)如下图(2),四边形ABCD是菱形,C,D两点的坐标分别是(c,0),(0,d),点A,B在坐标轴上.求A,B两点的坐标.(3)如下图(3),四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,d).求B,C 两点的坐标.答案:(1)C(b,d);(2)A(-c,0),B(0,-d);(3)B(d,0),C(d,d).13、如图,E,F,M,N分别是正方形ABCD四条边上的点,且AE=BF=CM=DN.试判断四边形EFMN是什么图形,并证明你的结论.答案:正方形.提示:△BFE ≌△CMF ≌△DNM ≌△AEN ,证明四边形EFMN 的四条边相等,四个角都是直角.14、如图,将等腰三角形纸片ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.答案:3种.可以分别以AD ,AB (AC ),BD (CD )为四边形的一条对角线,得到3种平行四边形,它们的对角线长分别为h ,22224(3)n h n m ++或;m ,m ;n ,22224(3)n h h m ++或.15、如图,四边形ABCD 是正方形.G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ∥DE ,且交AG 于点F .求证:AF -BF=EF .答案:提示:由△ADE ≌△BAF ,可得AE=BF ,从而AF -BF=EF .16、如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O .BO 与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答案:BO=2OD,BC边上的中线一定过点O.利用四边形EMND是平行四边形,可知BO=2OD;设BC边上的中线和BD相交于点O′,可知BO′=2O′D,从而O与O′重合.17、如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.答案:分法有无数种.只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题.(1)若平行四边形中两个内角的度数比为1︰2,则其中较小的内角是().A.90°B.60°C.120°D.45°(2)若菱形的周长为8,高为1,则菱形两邻角的度数比为().A.3︰1 B.4︰1 C.5︰1 D.6︰1(3)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB为()A.10°B.15°C.20°D.125°答案:(1)B;(2)C;(3)B.2、如图,将□ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF是平行四边形.答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个50°的角.对角线与各边组成的角是多少度?答案:65°和25°.4、如图,你能用一根绳子检查一个书架的侧边是否和上、下底都垂直吗?为什么?答案:可以.通过测量对边以及对角线是否分别相等来检验.5、如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD.求证:四边形OCED 是菱形.答案:提示:一组邻边相等的平行四边形是菱形.6、如图,E,F,G,H分别是正方形ABCD各边的中点.四边形EFGH是什么四边形?为什么?答案:正方形.提示:证明四边形EFGH四边相等、四个角都是直角.7、如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.求证∠1=∠2.答案:由△ABE≌△CDF,可知BE=DF.又BE∥DF,所以四边形BFDE是平行四边形.所以DE∥BF,从而∠1=∠2.8、如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?答案:由△ABE≌△DAF可知,BE和AF等长,并且互相垂直.9、我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)任意四边形的中点四边形是什么形状?为什么?(2)任意平行四边形的中点四边形是什么形状?为什么?(3)任意矩形、菱形和正方形的中点四边形分别是什么形状?为什么?答案:(1)平行四边形,利用三角形中位线定理可证一组对边平行且相等,或两组对边分别平行;(2)平行四边形;(3)菱形、矩形、正方形.10、如果一个四边形是轴对称图形,并且有两条互相垂直的对称轴,它一定是菱形吗?一定是正方形吗?答案:一定是菱形,不一定是正方形.11、用纸板剪成的两个全等三角形能够拼成什么四边形?要想拼成一个矩形,需要两个什么样的全等三角形?要想拼成菱形或正方形呢?动手剪拼一下,并说明理由.答案:平行四边形;要拼成一个矩形,需要两个全等的直角三角形;要拼成一个菱形,需要两个全等的等腰三角形;要拼成一个正方形,需要两个全等的等腰直角三角形.12、如图,过□ABCD的对角线AC的中点O作两条互相垂直的直线,分别交AB,BC,CD,DA 于E,F,G,H四点,连接EF,FG,GH,HE.试判断四边形EFGH的形状,并说明理由.答案:菱形.提示:先证明△AOE≌△COG,△AOH≌△COF,可得OE=OG,OF=OH,所以四边形EFGH是平行四边形.又EG⊥FH,从而□EFGH是菱形.13、如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm.点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?答案:6s;6s或7s.提示:设经过t s,四边形PQCD成为平行四边形,根据PD=QC,可列方程24-t=3t,解得t=6.若PQ=CD,则四边形PQCD为平行四边形或梯形(腰相等),为平行四边形时有t=6;为梯形(腰相等)时,有QC=PD+2(BC-AD),可列方程3t=24-t+4,解得t=7.14、如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.答案:提示:证明△AGE≌△ECF.15、求证:平行四边形两条对角线的平方和等于四条边的平方和.答案:提示:如图,在□ABCD中,设AD=a,AB=b,BD=m,AC=n,DE=h,AE=x,则分别有h2=a2-x2①,h2=n2-(b+x)2②,h2=m2-(b-x)2③,由①×2=②+③,化简可得m2+n2=2a2+2b2.习题19.11、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.答案:常量0.2,变量x,y,自变量x,函数y,y=0.2x.2、一个三角形的底边长为5,高h可以任意伸缩.写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围.答案:常量5,变量h,S,自变量h(h>0),函数S,52hS .3、在计算器上按下面的程序操作:填表:x 1 3 -4 0 101 -5.2y显示的计算结果y是输入数值x的函数吗?为什么?答案:7,11,-3,5,207,-5.4,y是x的函数,符合函数定义.4、下列式子中的y是x的函数吗?为什么?(1)y=3x-5;(2)21xyx-=-;(3)1y x=-.请再举出一些函数的例子.答案:y是x的函数,符合函数定义.例子略.5、分别对上一题中的各函数解析式进行讨论:(1)自变量x在什么范围内取值时函数解析式有意义?(2)当x=5时对应的函数值是多少?答案:(1)y=3x-5,x可为任意实数;21xyx-=-,x≠1;1y x=-,x≥1.(2)y=3x-5,x=5,y=10;21xyx-=-,x=5,34y=;1y x=-,x=5,y=2.6、画出函数y=0.5x的图象,并指出自变量x的取值范围.答案:自变量x的取值范围是全体实数.7、下列各曲线中哪些表示y是x的函数?答案:图(1)(2)(3)中y是x的函数,图(4)中y不是x的函数.8、“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下列哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)答案:图(2).9、下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图象回答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)张强从文具店回家的平均速度是多少?答案:(1)2.5km,15min;(2)1km;(3)20min;(4)3km/min 70.10、某种活期储蓄的月利率是0.06%,存入100元本金.求本息和y(本金与利息的和,单位:元)随所存月数x变化的函数解析式,并计算存期为4个月时的本息和.答案:y=100+0.06x,100.24元.11、正方形边长为3.若边长增加x,则面积增加y.求y随x变化的函数解析式,指出自变量与函数,并以表格形式表示当x等于1,2,3,4时y的值.答案:y=x2+6x,自变量x,函数y,x 1 2 3 4y 7 16 27 4012、甲、乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m处,设x s (0≤x≤100)后两车相距y m.用解析式和图象表示y与x的对应关系.答案:y=500-5x(0≤x≤100).13、甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如下图所示.(1)A,B两城相距多远?(2)哪辆车先出发?哪辆车先到B城?(3)甲、乙两车的平均速度分别为多少?(4)你还能从图中得到哪些信息?答案:(1)300km;(2)甲先出发,乙先到达;(3)甲60km/h,乙100km/h;(4)6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前.14、在同一直角坐标系中分别画出函数y=x与1yx的图象.利用这两个图象回答:(1)x取什么值时,x比1x大?(2)x取什么值时,x比1x小?答案:(1)-1<x<0或x>1;(2)x<-1或0<x<1.15、四边形有两条对角线,五边形、六边形分别有多少条对角线?n边形呢?多边形对角线的条数是边数的函数吗?答案:五边形有5条对角线,六边形有9条对角线,n边形有(3)2n n条对角线,多边形对角线的条数是边数的函数.习题19.21、一列火车以90km/h的速度匀速前进.求它的行驶路程s(单位:km)关于行驶时间t(单位:h)的函数解析式,并画出函数图象.答案:s=90t(t≥0).图象略.2、函数y=-5x的图象在第__________象限内,经过点(0,__________)与点(1,__________),y随x的增大而__________.答案:二,四,0,-5,减小.3、一个弹簧不挂重物时长12 cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1 kg 的物体后,弹簧伸长2 cm.求弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式.答案:y=12+2x(0≤x≤m,m是弹簧能承受物体的最大质量).4、分别画出下列函数的图象:(1)y=4x;(2)y=4x+1;(3)y=-4x+1;(4)y=-4x-1.答案:(1)(2)(3)(4)5、在同一直角坐标系中,画出函数y=2x+4与y=-2x+4的图象,并指出每个函数中当x增大时y如何变化.答案:y=2x+4随x增大而增大,y=-2x+4随x增大而减小.6、已知一次函数y=kx+b,当x=2时y的值为4,当x=-2时y的值为-2,求k与b.答案:32k=,b=1.7、已知一次函数的图象经过点(-4,9)和点(6,3),求这个函数的解析式.答案:33355y x=-+.8、当自变量x取何值时,函数512y x=+与y=5x+17的值相等?这个函数值是多少?答案:325x=-,y=-15.9、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象.(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?答案:(1)S=-3x+24(0<x<8);(2)9;(3)不能大于24,因为0<x<8,所以0<S=-3x+24<24.10、不画图象,仅从函数解析式能否看出直线y=3x+4与y=3x-4具有什么样的位置关系?答案:平行.11、从A 地向B 地打长途电话,通话时间不超过3min 收费2.4元,超过3min 后每分加收1元.写出通话费用y (单位:元)关于通话时间x (单位:min )的函数解析式.有10元钱时,打一次电话最多可以通话多长时间?(本题中x 取整数,不足1min 的通话时间按1min 计费.)答案: 2.4, 03,0.6, 3.x y x x <⎧=⎨->⎩≤由函数解析式得x=10.6.由不足1min 的通话时间要按1min 计算可知,有10元钱最多通话10min .12、(1)当b >0时,函数y=x +b 的图象经过哪几个象限? (2)当b <0时,函数y=-x +b 的图象经过哪几个象限? (3)当k >0时,函数y=kx +1的图象经过哪几个象限? (4)当k <0时,函数y=kx +1的图象经过哪几个象限? 答案:(1)第一、二、三象限; (2)第二、三、四象限; (3)第一、二、三象限; (4)第一、二、四象限.13、在同一直角坐标系中,画出函数512y x =+和y=5x +17的图象.并结合图象比较这两个函数的函数值的大小关系.答案:当325x <-时,51517;2y x y x =+>=+ 325,1517;52x y x y x =-=+==+当时325,1517.52x y x y x >-=+<=+当时14、图中的折线表示一骑车人离家的距离y 与时间x 的关系.骑车人9:00离开家,15:00回家.请。
2020人教版八年级数学下册课时作业本《四边形--菱形性质与判断》一、选择题1.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC2.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC的长等于( )A.5B.10C.15D.203.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,且∠CDF=24°,则∠DAB等于( )A.100°B.104°C.105°D.110°4.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°5.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10B.8C.6D.56.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.57.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为 ( )8.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.4二、填空题9.如图所示,在菱形ABCD中,AE垂直平分BC,垂足为E,AB=4 cm.那么,菱形ABCD的面积是________,对角线BD的长是________.10.如图,在菱形ABCD中,AC=6,BD=8,则这个菱形的边长为________.11.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是________(写出一个即可).12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为.三、解答题13.如图在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.14.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.16.如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线于点F.试问:(1)图中△APD与哪个三角形全等?并说明理由(2)猜想:线段PC、PE、PF之间存在什么关系?并说明理由参考答案1.B2.A3.B4.C5.D6.C7.A;10.答案为:5;11.答案为:C;B=BF或BE⊥CF或∠EBF=60°或BD=BF(答案不唯一)12.答案为:15.13.解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD=5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.14.证明:∵AF∥BC,∴∠EAF=∠ECD,∠EFA=∠EDC,又∵E是AC的中点,∴AE=CE,∴△AEF≌△CED.∴AF=CD,又AF∥CD,∴四边形ADCF是平行四边形.∵AC=2AB,E为AC的中点,∴AE=AB,由已知得∠EAD=∠BAD,又AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.15.解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=8,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.16.解:(1)略;(2)PC2=PE PF。
2020人教版八年级数学下册课时作业本《勾股定理--解答题专练》1.在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm(1)求这个三角形的斜边AB的长和斜边上的高CD的长.(2)求斜边被分成的两部分AD和BD的长.2.如图,AB^BC,DC^BC,垂足分别为B、C,设AB=4,DC=1,BC=4.(1)求线段AD的长.(2)在线段BC上是否存在点P,使△APD是等腰三角形,若存在,求出线段BP的长;若不存在,请说明理由.3.如图,长方体的底面是边长为1cm 的正方形,高为3cm.(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多长?(2)如果从点A开始缠绕2圈到达点B,那么所用细线最短需要多长?4.在寻找马航MH370航班过程中,两艘搜救舰艇接到消息,在海面上有疑似漂浮目标A、B.接到消息后,一艘舰艇以16海里/时的速度离开港口O(如图所示)向北偏东40°方向航行,另一艘舰艇在同时以12海里/时的速度向北偏西一定角度的航向行驶,已知它们离港口一个半小时后相距30海里,问另一艘舰艇的航行方向是北偏西多少度?5.如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=4m,b=4m2﹣1,c=4m2+1,请你根据勾股数的定义,说明a、b、c为勾股数.6.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.7.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断:△ABC是否为直角三角形?8.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.9.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?10.若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)请你写一个最小的三位“丰利数”是,并判断20 “丰利数”.(填是或不是);(2)已知S=x2+y2+2x﹣6y+k(x、y是整数,k是常数),要使S为“丰利数”,试求出符合条件的一个k值(10≤k<200),并说明理由.参考答案1.解:(1)∵△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm∴AB2=AC2+BC2=2.12+2.82=12.25∴AB=3.5 cm∵S△ABC=AC·BC=AB·CD∴AC·BC=AB·CD∴CD===1.68(cm)(2)在Rt△ACD中,由勾股定理得:AD2+CD2=AC2∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.21×0.21∴AD=2×3×0.21=1.26(cm)∴BD=AB-AD=3.5-1.26=2.24(cm)2.(1)过D作DE⊥AB于E点,AE=3,BC=4,所以AD=5;(2)当AP=AD时,BP=3;当PA=PD时,BP=0.125;3.(1)5cm;(2)cm.4.解:由题意得,OB=12×1.5=18海里,OA=16×1.5=24海里,又∵AB=30海里,∵182+242=302,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=40°,∴∠BOD=50°,则另一艘舰艇的航行方向是北偏西50°.5.解:∴3、4、5是一组勾股数;(2)∵122+162=202,且12,16,20都是正整数,∴一组勾股数可以是12,16,20.答案不唯一;故答案为12,16,20(3)∵m表示大于1的整数,∴由a=4m,b=4m2﹣1,c=4m2+1得到a、b、c均为正整数;又∵a2+b2=(4m)2+(4m2﹣1)2=16m2+16m4﹣8m2+1=16m4+8m2+1,而c2=(4m2+1)2=16m4+8m2+1,∴a2+b2=c2,∴a、b、c为勾股数.6.解:(1)设t秒后P,Q相遇.在Rt△AOB中,∵∠BAO=90°,OA=12,OB=20,∴AB===16,由题意:5t+2t=12+16,解得t=4,此时BQ=8.AQ=AB﹣BQ=16﹣8=8,∴P(8,12).(2)当P,Q都在AB边上时,•|16﹣(5t﹣12)﹣2t|×12=6,解得t=或当点Q在OA上时,•16•(28﹣2t)=6,解得t=,综上所述,满足条件的值为或或.7.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.8.解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.9.解:10.解:(1)∵62=36,82=64,∴最小的三位“丰利数”是:62+82=100,∵20=42+22,∴20是“丰利数”故答案为:101;是;(2)S=x2+y2+2x﹣6y+k,…6分=(x2+2x+1)+(y2﹣6y+9)+(k﹣10),=(x+1)2+(y﹣3)2+(k﹣10),当(x+1)2、(y﹣3)2是正整数的平方时,k﹣10为零时,S是“丰利数”,故k的一个值可以是10备注:k的值可以有其它值:0+4+1,得k=11;9+0+4,得k=14.。
2023义务教育课程标准数学作业本配人教版八年级下册愿景教育出版社2023义务教育课程标准数学作业本配人教版八年级下册随着教育体制的改革和发展,教育出版社不断努力创新教辅资料,以满足广大学生和教师的需求。
在2023年义务教育课程标准数学作业本配人教版八年级下册中,我们秉承高质量、创新思维和实际应用的原则,打造了一本内容丰富、专注提升学生数学综合素养的作业本。
第一章:整数与有理数第一节:整数的加减法作业本以生动有趣的方式引导学生理解整数的概念,并通过拓展思维深入浅出地讲解整数的加减法。
通过选择题、填空题、解答题等形式的练习,激发学生对整数的兴趣,培养他们的数学思维和逻辑推理能力。
第二节:有理数的加减法引入有理数的概念,通过生活中的实际例子,帮助学生理解有理数的含义。
作业本通过数轴、绝对值等图形化方式,让学生更加形象地认识有理数,并通过练习题强化他们对有理数加减法的理解和应用。
第二章:代数与方程第一节:代数式与代数运算作业本以场景化的问题引导学生进入代数思维的世界,通过示例分析、拆解思路等方式,帮助学生掌握代数式的基本性质和运算规律。
作业本还提供丰富的练习题,让学生在实践中巩固所学知识。
第二节:一元一次方程通过引入实际问题,将一元一次方程与学生的生活联系起来,激发学生学习的兴趣。
作业本设计了多种类型的一元一次方程练习题,帮助学生掌握方程的解法和实际应用,提升他们的问题解决能力。
第三章:图形与几何第一节:几何图形的认识通过直观的图像和实物,引导学生认识各种几何图形的特征和性质。
作业本通过举例分析、图形比较等方式,帮助学生深入理解几何图形的特点,并通过相应的练习题提高学生对几何图形的辨识能力。
第二节:平面图形的计算在学习了各种几何图形的特征后,作业本通过计算图形的周长、面积等方式,进一步巩固学生对图形的认识。
通过实际问题的练习,培养学生的计算思维和逻辑能力,提升他们的问题解决能力。
第四章:数据与概率第一节:统计与概率作业本以生动有趣的方式教授学生统计和概率的基本知识,让学生了解统计的意义和方法,培养他们的数据分析能力。
人教版八年级下册数学暑假作业答案一、1 D,2 C, 3 D,4 A,5 B,6 B,7 B,8 A,9 C,10 D.二、(11)2,(12)10cm或 cm,(13)4cm,(14)矩形,(15)5,(16)6,(17)4,(18)xlt;0.三、19、(1)300人,(2)75、66,(3)66、75.20、(1)m=3,n=1. (5分)(2)xlt;2.(3分)21(1)解:设AE=x,则ED=4-x, ∵四边形EBFD是菱形,there4;EB=4-X,由勾股定理建立方程得到x= ,(5分)(2)AE= ,(3分)22、(1)y=-0.2x+3000.(5分)(2)由题意可得:2x+3(5000-x)le;12000,解得xge;3000,在函数y=-0.2x+3000中,k=-0.2,所以y随 x的增大而减小,所以当x=3000时,最大利润y=-0.2×3000+3000=2400.(4分)23、(1)证明:∵DEperp;BC,ang;ACB=90deg;there4;AC∥DE,又∵MN∥AB, there4;四边形CADE是平行四边形,there4;CE=AD.(5分)(2)四边形BECD是菱形,理由:D是AB边的中点,所以AD=DB,又AD=CE,所以DB=CE,而DB∥CE,四边形DBEC是平行四边形,因为Delta;ACB是直角三角形,D是斜边AB的中点,所以CD=DB,所以四边形BECD是菱形。
(4分)(3)ang;A=45deg;时,四边形BECD是正方形,理由:∵ang;ACB=90deg;又ang;A=45deg;there4;CA=CB,点D是AB 的中点,there4;CDperp;AB,即ang;CDB=90deg;,而四边形BECD是菱形,there4;四边形BECD是正方形。
(3分) 为大家推荐的八年级下册数学暑假作业答案,还满意吗?相信大家都会仔细阅读,加油哦!初二数学暑假作业答案2015苏教版针对初二年级下册暑假作业本数学。
八年级下册数学作业本答案人教版参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD 和∠DEC,同旁内角是∠AFD 和∠AED6.各4对.同位角有∠B 与∠GAD,∠B 与∠DCF,∠D 与∠HAB,∠D 与∠ECB;内错角有∠B 与∠BCE,∠B 与∠HAB,∠D 与∠GAD,∠D 与∠DCF;同旁内角有∠B 与∠DAB,∠B 与∠DCB,∠D 与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,两直线平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是∠ADE 和∠ABC 的角平分线,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB 与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)×(2)× 3.(1)DAB (2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB 与CD 平行.量得线段BD 的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.1 5cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理由如下:作AM ⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于 M,BN ⊥l3于 N,则△ABM ≌△BCN,得AB=BC6.(1)略(2)CF=1 5cm7.AP 平分∠BAC.理由如下:由 AP 是中线,得 BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1∴∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°(2)100°,40° 2.3,90°,50° 3.略4.(1)90°(2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题) ∠BDC=∠CEB=90°,BC=CB,∴△BDC≌△CEB(AAS).∴BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰 2.3 3.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD 是等腰三角形.理由如下:由BD,CD 分别是∠ABC,∠ACB 的平50 分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF 和△EFC 都是等腰三角形.理由如下:1.C 2.45°,45°,6 3.5∵△ADE 和△FDE 重合,∴∠ADE=∠FDE.4.∵∠B+∠C=90°,∴△ABC 是直角三角形∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴∠B=∠DFB.∴DB=DF,即△DBF 是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC 是等腰三角形∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100°(2)把60°分成20°和40°∴∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3 (2)51.D 2.33° 3.∠A=65°,∠B=25° 4.DE=DF=3m2.△ADE 是等边三角形.理由如下:∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE 6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12 (3)槡5 2.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ 是等边三角形.则∠APQ=60°.而 BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4. 槡2 2cm (或槡8cm) 5.169cm2 6.18米∴∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)·BD′=1(a+b)2,6.△DEF 是等边三角形.理由如下:由∠ABE+ ∠FCB=∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴△DEF 是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能 2.是直角三角形,因为满足m2=p2+n2 3.符合4.∠BAC,∠ADB,∠ADC 都是直角(第7题)5.连结BD,则∠ADB=45°,BD= 槡32. ∴BD2+CD2=BC2,∴∠BDC=90°.∴∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形) 2.8,12,6,长方形1.BC=EF 或AC=DF 或∠A=∠D 或∠B=∠E 2.略3.直五棱柱,7,10,3 4.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴∠AEC=90°,即△AEC 是等腰直角三角形状、面积完全相同的长方形5.∵∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,7. 正多面体顶点数(V) 面数(F) 棱数(E) V+F-E∴OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A1220302 2.D 3.22 4.13或槡119 5.B 6.等腰符合欧拉公式7.72°,72°,4 8.槡7 9.64°10.∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.【3.2】又∵BD=EC,∴△ABD≌△ACE.∴AB=AC1.C11.4 8 2.直四棱柱 3.6,7 12.B13.连结BC. ∵AB=AC,∴∠ABC=∠ACB.4.(1)2条(2)槡5 5.C又∵∠ABD=。