椭圆的简单几何性质练习题
- 格式:doc
- 大小:74.00 KB
- 文档页数:9
40分钟课时作业 椭圆的简单几何性质(一)一、选择题1.椭圆4x 2+49y 2=196的长轴长,短轴长,离心率依次是( )A.7,2,357B.14,4,357C.7,2,57D.14,4,57 答案 B解析 先将椭圆方程化为标准形式为x 249+y 24=1,其中b =2,a =7,c =3 5.所以椭圆长轴长,短轴长,离心率依次为14,4,357.2.已知焦点在y 轴上的椭圆x 2m +y 2=1,其离心率为32,则实数m 的值是( )A.4B.14C.4或14D.12答案 B 解析 ∵焦点在y 轴上,∴a 2=1,b 2=m ,∴e =ca=1-b 2a2=1-m =32,∴m =14. 3.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=1 答案 A 解析 依题意得c =25, a +b =10 ,又a 2=b 2+c 2,从而解得a =6,b =4. 所以所求椭圆的方程为x 236+y 216=1.4.椭圆(m +1)x 2+my 2=1的长轴长是( ) A.2m -1m -1B.-2-m mC.2m mD.-21-mm -1答案 C解椭圆方程可简化为x 211+m +y 21m =1,由题意知m >0,∴11+m <1m ,∴a =m m ,∴椭圆的长轴长2a =2mm .5.设椭圆中心在原点,两焦点F 1,F 2在x 轴上,点P 在椭圆上,若椭圆的离心率为12,△PF 1F 2的周长为12,则椭圆的标准方程是( )A.x 24+y 23=1B.x 216+y 212=1C.x 23+y 24=1D.x 212+y 216=1答案 B 解析 由题意知c a =12,①2a +2c =12,②由①②可知,a =4,c =2,∴b =a 2-c 2=23,∴椭圆的标准方程为x 216+y 212=1.6.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ) A.24 B.12 C.22 D.32答案 C解析 由题意可设P (-c ,y 0)(c 为半焦距),则k OP =-y 0c ,k AB =-b a ,∵OP ∥AB ,∴-y 0c =-ba ,即y 0=bc a .把P (-c ,bc a )代入椭圆方程,得(-c )2a 2+(bc a )2b 2=1,∴(c a )2=12,∴e =c a =22.7.设AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴,若把线段AB 分为100等份,过每个分点作AB 的垂线,分别交椭圆的上半部分于点P 1,P 2,…,P 99,F 1为椭圆的左焦点,则|F 1A |+|F 1P 1|+|F 1P 2|+…+|F 1P 99|+|F 1B | 的值是( ) A.98a B.99a C.100a D.101a 答案 D解析 由椭圆的定义及其对称性可知,|F 1P 1|+|F 1P 99|=|F 1P 2|+|F 1P 98|=…=|F 1P 49|+|F 1P 51|=|F 1A |+|F 1B | =2a ,|F 1P 50|=a,50×2a +|F 1P 50|=101a . 二、填空题8.已知椭圆的短半轴长为1,离心率0<e ≤32,则长轴长的取值范围是________.答案 (2,4] 解析 ∵e =1-b 2a2=1-1a2,∴0<1-1a 2≤32,得1<a ≤2,∴2<2a ≤4. 9.若椭圆长轴长是短轴长的2倍,且焦距为2,则此椭圆的标准方程为___答案 x 243+y 213=1或y 243+x 213=1解析 由题意可知a =2b ,c =1,所以1+b 2=4b 2,故b 2=13,a 2=43,则此椭圆的标准方程为x 243+y 213=1或x 213+y 243=1.10.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,左焦点为F ,上顶点为B ,若∠BAO +∠BFO =90°,则椭圆的离心率是________.答案5-12解析 ∵∠BAO +∠BFO =90°,∴∠BAO =∠FBO ,∴tan ∠BAO =tan ∠FBO , 即b a =c b ,得b 2=ac ,∴a 2-c 2=ac ,即e 2+e -1=0,∵0<e <1,∴e =5-12. 11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为__答案6解析 由题意,得F (-1,0),设点P (x 0,y 0),则有x 204+y 203=1,解得y 20=3(1-x 204).因为FP →=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 204+x 0+3.此二次函数对应的抛物线的对称轴为x 0=-2,因为-2≤x 0≤2,所以当x 0=2时,OP →·FP →取得最大值224+2+3=6.三、解答题12.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程,并研究其性质.解 (1)由椭圆C 1:x 2100+y 264=1,可得其长半轴长为10,短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④离心率e =35.13.设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左,右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B (如图).(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解 (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c .所以a =2c , e =c a =22. (2)由题意知A (0,b ),F 1(-c,0),F 2(c,0).其中c =a 2-b 2,设B (x ,y ).由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ),解得x =3c 2,y =-b 2,即B (3c 2,-b 2).将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2.① 又由AF 1→·AB →=(-c ,-b )·(3c 2,-3b 2)=32⇒b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.。
精品文档椭圆及其标准方程1。
平面内 ,叫做椭圆。
叫做椭圆的焦点, 叫做椭圆的焦距。
2。
根据椭圆的定义可知:集合{}A MF MF M P 221=+=,0,0,221>>=c a c F F ,且c a ,为常数。
当 时,集合P 为椭圆;当 时,集合P 为线段;当 时,集合P 为空集。
3。
焦点在x 轴上的椭圆的标准方程为 。
焦点在y 轴上的椭圆的标准方程为 。
其中c b a ,,满足关系为 。
练习1判定下列椭圆的焦点在?轴,并指明a 2、b 2,写出焦点坐标练习2将下列方程化为标准方程,并判定焦点在哪个轴上,写出焦点坐标练习3 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a b ==y 轴上;⑶10,a b c +==例1 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.1162522=+y x 116914422=+y x 112222=++m y m x 022525922=-+y x 13222-=--y x 0,,22<=+C B A C By Ax精品文档例2 在圆x 2+y 2=4上任取一点P ,向x 轴作垂线段PD ,D 为垂足。
当点P 在圆上运动时,求线段PD 中点M 的轨迹方程。
轨迹是什么图形?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.例3 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程..知识小结: 1、椭圆的定义(强调2a>|F 1F 2|)和椭圆的标准方程 2、椭圆的标准方程有两种,注意区分 3、根据椭圆标准方程判断焦点位置的方法 4、求椭圆标准方程的方法写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=.精品文档椭圆的简单几何性质1.范围方程中x 、y 的取值范围是什么? 由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式22a x ≤1, 22by ≤1 即 x 2≤a 2, y 2≤b 2所以 |x|≤a , |y|≤b即 -a ≤x ≤a, -b ≤y ≤b这说明椭圆位于直线x =±a, y =±b 所围成的矩形里。
2.2.2 椭圆的简单几何性质第1课时 椭圆的简单几何性质及其应用基础过关练题组一 椭圆的性质及应用1.焦点在x 轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是( )A.x 24+y 23=1B.x 24+y 2=1 C.y 24+x 23=1 D.x 2+y24=1 2.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为()A.8,6B.4,3C.2,√3D.4,2√3 3.(2019陕西宝鸡高二上学期期末)把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线分别交椭圆的上半部分于点P 1,P 2,…,P 7,F 是左焦点,则|P 1F|+|P 2F|+…+|P 7F|等于( ) A.21 B.28 C.35 D.424.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA=π4,若AB=4,BC=√2,则椭圆的两个焦点之间的距离为 .题组二 与椭圆离心率有关的问题5.已知椭圆的两个焦点和短轴的两个端点恰好是一个正方形的四个顶点,则该椭圆的离心率为( ) A.13 B.12C.√33D.√226.已知焦点在y 轴上的椭圆mx 2+y 2=1的离心率为√32,则m 的值为( )A.1B.2C.3D.4 7.已知焦点在x轴上的椭圆方程为x 2a2+y 2=1(a>0),过焦点作垂直于x轴的直线交椭圆于A,B 两点,且|AB|=1,则该椭圆的离心率为( ) A.√32B.12C.√154D.√338.已知椭圆x 2a 2+y 2b2=1(a>b>0)的左焦点为F 1,右顶点为A,点B 在椭圆上,且BF 1⊥x 轴,直线AB 与y 轴交于点P,其中AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为 .题组三 与椭圆有关的范围问题 9.若点O 和点F分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 的最大值为( ) A.2 B.3 C.6 D.8 10.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a>b>0)的两个焦点,若椭圆上存在一点P,使得∠F 1PF 2=60°,则椭圆的离心率e 的取值范围是( ) A.[√22,1) B.(0,√22)C.[12,1) D.[12,√22) 11.已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|PA|的最小值为 .12.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,离心率e=√22,连接椭圆的四个顶点所得四边形的面积为4√2. (1)求椭圆C 的标准方程;(2)设A,B 是直线l:x=2√2上的不同两点,若AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,求|AB|的最小值.能力提升练一、选择题1.(2019辽宁抚顺六校期末联考,★★☆)已知椭圆x 2+y 2b 2+1=1(b>0)的离心率为√1010,则b 等于( )A.3B.13C.910D.3√10102.(2019山西大同高三开学考试,★★☆)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为√22,过F 1的直线l交C 于A,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为( )A.x 236+y 218=1B.x 216+y 210=1 C.x 24+y 22=1 D.x 216+y 28=1 3.(2020重庆沙坪坝高二期末,★★☆)已知F 是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左焦点,经过原点的直线l 与椭圆E 交于P,Q 两点,若|PF|=2|QF|,且∠PFQ=120°,则椭圆E 的离心率为( ) A.√33 B.12C.13D.√224.(2019黑龙江大庆四中高二上学期期中,★★★)已知点P(x,y)(x≠0,y≠0)是椭圆x 216+y 28=1上的一个动点,F 1,F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·PM ⃗⃗⃗⃗⃗⃗ =0,则|OM ⃗⃗⃗⃗⃗⃗ |的取值范围为( ) A.[0,3) B.(0,2√2) C.[2√2,3) D.[0,4]二、填空题5.(2019皖西南联盟高二期末联考,★★☆)阿基米德不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为35,面积为20π,则椭圆C的标准方程为.6.(2019河北石家庄二中高二月考,★★☆)已知椭圆x 2a2+y2b2=1(a>b>0),点P是椭圆上且在第一象限的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为.三、解答题7.(2019河北张家口高三开学考试,★★☆)设F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,M是C上且在第一象限内的一点,且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b的值.8.(★★★)如图,F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,AF1=F1F2.(1)求椭圆C的离心率;(2)已知△AF1B的面积为40√3,求a,b的值.答案全解全析 基础过关练1.A 依题意得a=2,a+c=3,故c=1,b=√22-12=√3,故所求椭圆的标准方程是x 24+y 23=1.2.B 过椭圆焦点的最长弦为长轴,其长度为4,最短弦为垂直于长轴的弦.易知c=1,将x=1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y=±32,所以最短弦的长为2×32=3.故选B.3.C 设椭圆的右焦点为F',则由椭圆的定义得|P 1F|+|P 1F'|=10,由椭圆的对称性,知|P 1F'|=|P 7F|,∴|P 1F|+|P 7F|=10.同理,|P 2F|+|P 6F|=10,|P 3F|+|P 5F|=10.又|P 4F|=5,∴|P 1F|+|P 2F|+…+|P 7F|=35. 4.答案4√63解析 不妨设椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0),由题意知2a=4,∴a=2. ∵∠CBA=π4,BC=√2,∴不妨设点C 的坐标为(-1,1). ∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c=2√63,则椭圆的两个焦点之间的距离为4√63. 5.D 依题意得椭圆的焦距和短轴长相等,故b=c,∴a 2-c 2=c 2,∴e=√22. 6.D 将椭圆的方程化为标准形式为y 2+x 21m=1,由题意得a 2=1,b 2=1m ,∴c 2=a 2-b 2=1-1m ,∴离心率e=ca =√1-1m =√32,∴m=4.7.A 易知椭圆的焦点坐标为(±√a 2-1,0),∵|AB|=1,∴当x=±√a 2-1时,y=±12.不妨设A (√a 2-1,12),则a 2-1a 2+14=1,解得a=2,∴椭圆的离心率为e=√a 2-1a=√32.故选A.8.答案 12解析 如图,易知△ABF 1∽△APO, 则|AP ||AB |=|AO ||AF 1|,即23=aa+c ,所以a=2c,所以e=c a =12.9.C 由题意得F(-1,0),设点P(x 0,y 0),则y 02=3(1-x 024)(-2≤x 0≤2),OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+y 02=x 02+x 0+y 02=x 02+x 0+3(1-x 024)=14(x 0+2)2+2,当x 0=2时,OP⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 取得最大值,最大值为6. 10. C 在△PF 1F 2中,设|PF 1|=m,|PF 2|=n,则m+n=2a,根据余弦定理,得(2c)2=m 2+n 2-2mncos 60°,整理得(m+n)2-3mn=4c 2,所以3mn=4a 2-4c 2, 所以4a 2-4c 2=3mn≤3(m+n 2)2=3a 2(当且仅当m=n 时,等号成立),即a 2≤4c 2,故e 2=c 2a 2≥14,又0<e<1, 所以12≤e<1.11.答案 2解析 设P(x,y),则|PA|=√x 2+(y -5)2=√x 2+y 2-10y +25. 因为点P 为椭圆x 2+2y 2=98上的一点,所以x 2=98-2y 2,-7≤y≤7,则|PA|=√98-2y 2+y 2-10y +25 =√-(y +5)2+148, 因为-7≤y≤7,所以当y=7时,|PA|min =2. 12.解析 (1)由题意得{ e =c a =√22,a 2=b 2+c 2,12×2a ×2b =4√2,解得{a =2,b =√2,c =√2.所以椭圆的标准方程为x 24+y 22=1.(2)由(1)知,F 1(-√2,0),F 2(√2,0),设直线l:x=2√2上的不同两点A,B 的坐标分别为(2√2,y 1),(2√2,y 2),则AF 1⃗⃗⃗⃗⃗⃗⃗ =(-3√2,-y 1),BF 2⃗⃗⃗⃗⃗⃗⃗ =(-√2,-y 2),由AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,得y 1y 2+6=0, 即y 2=-6y 1,不妨设y 1>0,则|AB|=|y 1-y 2|=y 1+6y 1≥2√6,当且仅当y 1=√6,y 2=-√6时等号成立,所以|AB|的最小值是2√6.能力提升练一、选择题1.B 易知b 2+1>1,由题意得(b 2+1)-1b 2+1=b 2b 2+1=110,解得b=13或b=-13(舍去),故选B.2.D 由△ABF 2的周长为16,得|BF 2|+|AF 2|+|BF 1|+|AF 1|=16,根据椭圆的性质,得4a=16,即a=4.又椭圆的离心率为√22,即c a =√22,所以c=2√2,b 2=a 2-c 2=8,则椭圆C 的方程为x 216+y 28=1.3.A 如图,设椭圆的右焦点为F',连接PF',QF',根据椭圆的对称性知,线段FF'与线段PQ 在点O 处互相平分,所以四边形PFQF'为平行四边形,∴|FQ|=|PF'|,∠FPF'=60°.根据椭圆的定义,得|PF|+|PF'|=2a,又|PF|=2|QF|,∴|PF'|=23a,|PF|=43a,而|FF'|=2c.在△F'PF 中,由余弦定理,得(2c)2=(23a)2+(43a)2-2×23a×43a×cos 60°,即c 2a2=13,∴椭圆的离心率e=c a =√33.4.B 如图,延长PF 2,F 1M 交于点N,则△PF 1N 为等腰三角形,M 为F 1N 的中点,|OM ⃗⃗⃗⃗⃗⃗ |=12|F 2N ⃗⃗⃗⃗⃗⃗⃗ |=12(|PN ⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ |)=12·||PF 1⃗⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ ||.由图可知,当P 在短轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最小值,此时|OM⃗⃗⃗⃗⃗⃗ |=0,当P 在长轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最大值,此时|OM ⃗⃗⃗⃗⃗⃗ |=2√2,但点P 不能在坐标轴上,所以|OM⃗⃗⃗⃗⃗⃗ |的取值范围为(0,2√2).二、填空题 5.答案y 225+x 216=1解析 设椭圆C 的标准方程为y 2a 2+x 2b 2=1(a>b>0),则椭圆C 的面积为S=πab=20π,又e=√1-b 2a 2=35,解得a 2=25,b 2=16.所以椭圆C 的标准方程为y 225+x 216=1.6.答案√32解析 如图,延长F 2A 交F 1P 的延长线于点M.由题意可知|PM|=|PF 2|,由椭圆的定义可知|PF 1|+|PF 2|=2a, 则|PF 1|+|PM|=|MF 1|=2a. 易知OA 是△F 1F 2M 的中位线, ∴|OA|=12|MF 1|=a. 又|OA|=2b,∴2b=a,则a 2=4b 2=4(a 2-c 2), 即c 2=34a 2,∴e 2=34,又e∈(0,1),∴e=√32.三、解答题 7.解析 (1)根据c=√a 2-b 2及题设知M (c ,b 2a ),由k MN =k MF 1=34,得b 2a-0c -(-c )=34,即2b 2=3ac.将b 2=a 2-c 2代入,得2c 2+3ac-2a 2=0,即2e 2+3e-2=0,解得e=12或e=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,设直线MF 1与y 轴的交点为D,则D(0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|, 则F 1D ⃗⃗⃗⃗⃗⃗⃗ =2NF 1⃗⃗⃗⃗⃗⃗⃗ .设N(x 1,y 1),由题意知y 1<0,则{2(-c -x 1)=c ,-2y 1=2,即{x 1=-32c ,y 1=-1, 代入C 的方程,得9c 24a 2+1b 2=1.② 由①②及a 2=b 2+c 2得9(a 2-4a )4a 2+14a =1,解得a=7,则b=√4a =2√7. 8.解析 (1)∵AF 1=F 1F 2, ∴a=2c,∴e=c a =12.(2)设|BF 2|=m,则|BF 1|=2a-m.∵AF 1=F 1F 2=AF 2,∴△AF 1F 2是等边三角形, ∴∠F 1F 2B=180°-∠F 1F 2A=180°-60°=120°.在△BF 1F 2中,|BF 1|2=|BF 2|2+|F 1F 2|2-2|BF 2||F 1F 2|cos∠F 1F 2B,即(2a-m)2=m 2+a 2-2am×(-12), ∴m=35a. ∵△AF 1B 的面积S=12|BA||F 1A|sin 60° =12×(a +35a)×a×√32=40√3,∴a=10,∴c=5,b=5√3.。
高二上学期数学练习题(7)(椭圆的简单几何性质)班级 姓名 学号一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69) 2. 椭圆x 2+4y 2=1的离心率为 ( ) A.32 B.34 C.22 D.233. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12C .2D .4 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.136. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( ). A.15 B.25 C.55 D.2557. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .88. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-139. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 12.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.13.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.14.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________15.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.17.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=_______18.如图,在平面直角坐标系xOy 中,A1,A 2,B 1,B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 则该椭圆的离心率为________. 三.解答题19.求椭圆x 24+y 2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.20.已知椭圆长轴长是短轴长的2倍,且过点A (2,-6).求椭圆的标准方程.21.已知椭圆E 的中心在坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0). (1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t ,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围.22.已知直线l :y =kx +1与椭圆x 22+y 2=1交于M 、N 两点,且|MN |=423.求直线l 的方程.23.已知过点A (-1,1)的直线与椭圆x 28+y24=1交于点B 、C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程.24.如图所示,点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF . (1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.高二上学期数学练习题(7)(椭圆的简单几何性质)参考答案班级 姓名 学号 (5-12页)一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).答案 D 2. 椭圆x 2+4y 2=1的离心率为 ( ). A.32 B.34 C.22 D.23解析:将椭圆方程x 2+4y 2=1化为标准方程x 2+y 14=1,则a 2=1,b 2=14,即a =1,c =a 2-b 2=32,故离心率e =c a =32.答案 A 3. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 解析 因为c a =63,且c =2,所以a =3,b =a 2-c 2=1.所以椭圆C 的方程为x 23+y 2=1.答案 A4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12 C .2 D .4 解析 将椭圆方程化为标准方程为x 2+y 21m=1,∵焦点在y 轴上,∴1m >1,∴0<m <1.由方程得a =1m ,b =1.∵a =2b ,∴m =14. 答案 A 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.13解析:记|F 1F 2|=2c ,则由题设条件,知|PF 1|=2c 3,|PF 2|=4c3, 则椭圆的离心率e =2c 2a =|F 1F 2||PF 1|+|PF 2|=2c 2c 3+4c 3=33,故选B.答案 B6. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B A.15 B.25 C.55 D.255解析:由条件知,F 1(-2,0),B (0,1),∴b =1,c =2,∴a =22+12=5,∴e =c a =25=255.答案 D7. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .8 解析 如图,两条平行直线分别经过椭圆的两个焦点,连接 AF 1、FD .由椭圆的对称性可知,四边形AFDF 1(其中F 1为椭 圆的下焦点)为平行四边形,∴AF 1=FD ,同理BF 1=CF , ∴AF +BF +CF +DF =AF +BF +BF 1+AF 1=4a =8.答案 D8. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-13解析 设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 12=b 2-b 2x 12a2,所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 12x 2-x 12=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案 D 9. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 解析 设点A (2,n ),B (x 0,y 0).由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1,∴右焦点F (1,0).∴由F A →=3FB →得(1,n )=3(x 0-1,y 0).∴1=3(x 0-1)且n =3y 0,∴x 0=43,y 0=13n ,将x 0,y 0代入x 22+y 2=1,得12³(43)2+(13n )2=1.解得n 2=1,∴|AF →|=(2-1)2+n 2=1+1= 2.所以选A.答案 A 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( D )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 解析:设椭圆的长半轴长为a ,短半轴长为b ,焦距为2c ,则b =1,a 2+b 2=(5)2,即a 2=4. 所以椭圆的标准方程是x 24+y 2=1或y 24+x 2=1.答案 x 24+y 2=1或y 24+x 2=112.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.解析:①当k +8>9时,e 2=c 2a 2=k +8-9k +8=14,k =4;②当k +8<9时,e 2=c 2a 2=9-k -89=14,k =-54.答案4或-5413.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.解析:依题意设椭圆G 的方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆上一点到其两个焦点的距离之和为12.∴2a =12,即a =6.∵椭圆的离心率为32,∴e =c a =a 2-b 2a =32,∴36-b 26=32,∴b 2=9.∴椭圆G 的方程为x 236+y 29=1.答案 x 236+y 29=114.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________解析:由题意知⎩⎪⎨⎪⎧a +b =92,c a =35,a 2=b 2+c 2,解得⎩⎨⎧a =52,b =42.但焦点位置不确定.答案 x 250+y 232=1或x 232+y 250=115.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.解析:由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1消去y ,整理得(3+m )x 2+4mx +m =0,若直线与椭圆有两个公共点,则⎩⎪⎨⎪⎧3+m ≠0,Δ=(4m )2-4m (3+m )>0,解得⎩⎪⎨⎪⎧m ≠-3,m <0或m >1.由x 2m +y 23=1表示椭圆知,m >0且m ≠3. 综上可知,m 的取值范围是(1,3)∪(3,+∞).答案 (1,3)∪(3,+∞) 16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.解析:由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+(12x 1-12x 2)2=54[(x 1+x 2)2-4x 1x 2]=54(4+24)=35,答案 35。
典型例题例1椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置・解:(1)当4(2,0)为长轴端点时,《= 2, b = l,椭圆的标准方程”令+F(2)当A(2,0)为短轴端点时,b = 2, d = 4,椭圆的标准方程为:宁+P说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况•典型例题例2 —个椭圆的焦点将英准线间的距离三等分,求椭圆的离心率.解:•/ 2c = — X 2 X - /. V" = rc 3说明:求椭圆的离心率问题,通常有两种处理方法,一是求求C,再求比.二是列含《和C 的齐次方程,再化含€的方程,解方程即可.典型例题例3已知中心在原点,焦点在兀轴上的椭圆与宜线x+y-1 = 0交于A、B两点,M为A8中点,OM的斜率为,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为亠+尸=44 月+|CF| = 2|BF,且BF=-. 5 18 yx + y-\ = O由 1牙2 分.W(l + t/)\'-2rt-x = 0,2 a\ + aA —+ y-=l 为所求.4说明:(1)此题求椭圆方程采用的是待定系数法:(2)直线与曲线的综合问题,经常要 借用根与系数的关系,来解决弦长、弦中点、弦斜率问题•典型例题四(Q \=1上不同三点A (・X[, yj, B 4T - , C{x^,儿)与焦点F (4・0)的\ 5丿距离成等差数列.(1)求证X] +x^ =8:(2)若线段AC 的垂直平分线与X 轴的交点为7\求直线的斜率a. 证明:(1)由椭圆方程知a = 5 , h = 3 . c = 4・Ccr a---- 斗cAF 由圆锥曲线的统一泄义知:(2)因为线段AC 的中点为(4,匹尹}所以它的垂直平分线方程为又T 点r 在X 轴上,设其坐标为(心,0),代入上式,得33歼一兀 2(X|-X2)又•••点”),B (与 儿)都在椭圆上• -);=却25-彳)y ;=善(25 一卅)-K _ 衣=一舟(“1 + 兀2 -吃)•将此式代入①,并利用西+勺=8的结论得%0-4 =-—0 25典型例题五例5已知椭圆宁+寸=1,片、&为两焦点,问能否在椭圆上找一点M ,便M 到左准线/的距离MN 是M 斥与MF ;的等比中项若存在,则求出点M 的坐标;若不存在, 请说明理由•a = 2tb = Vs ,c = 1 r e = —2「左准线/的方程是x = r ,R - 5 -5 47。
《椭圆的简单几何性质》练习题二1.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若 △F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A )22(B )212- (C )2—2 (D )2—1 2.如图,有公共左顶点和公共左焦点F 的椭圆Ⅰ与Ⅱ的长半轴的长分别为a 1和a 2,半焦距分别为c 1和c 2,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.则下列结论不.正确的是( ) A .a 1+c 1>a 2+c 2 B .a 1-c 1=a 2-c 2 C .a 1c 2<a 2c 1 D .a 1c 2>a 2c 13.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且 BF ⊥x 轴,直线AB 交y 轴于点P .若AP =2PB ,则椭圆的离心率是( )A.32B.22C.13D.124. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴5.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8776.椭圆192522=+y x 上一点P 到左焦点距离为8,则点P 到右准线的距离是( ) (A ) 25 (B ) 45 (C ) 35 (D ) 425 7.椭圆()012222>>=+b a by a x 的两个焦点 1F 、2F ,若椭圆上存在点P ,使得 02190=∠PF F ,则椭圆的离心率的取值范围是( )(A ) ⎥⎦⎤ ⎝⎛22,0 (B ) ⎪⎪⎭⎫⎢⎣⎡1,22 (C ) ⎥⎦⎤ ⎝⎛23,0 (D ) ⎪⎪⎭⎫⎢⎣⎡1,23 8.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为( ) (A )53 (B )312 (C )43 (D )9109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点 M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25B .27C .3D .410. 如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子:①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.c c a a < 其中正确式子的序号是( )A.①③B.②③C.①④D.②④10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0).若椭圆 上存在点P 使a sin ∠PF 1F 2=c sin ∠PF 2F 1,则该椭圆的离心率的取值范围为____.11.椭圆1162522=+y x 上的点M 到左准线的距离是5.2,M 到左焦点的距离为 , M 到右焦点的距离为 .12.椭圆14922=+y x 的两个焦点 1F 、2F ,点P 是椭圆上的动点,当21PF F ∠为钝 角时,则点P 的横坐标的范围是13.直线062=+-y x 过椭圆12522=+my x 的左焦点,则椭圆的右准线方程是 . 14.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上, 且B F x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是15.已知, 是椭圆 内的点, 是椭圆上的动点,则的最大值为______________,最小值为___________.16已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求(1)||35||1MF MA +的最小值 (2)||5||31MF MA +的最小值17.已知椭圆C 的方程为1121622=+y x ,F 1、F 2是它的左右两个焦点,点A 的坐标 为(3,1),试在椭圆上求一点P ,(1)使得|PA|+|PF 2|最小;(2)使得|PA|+2|PF 2|最小,并求出相应的最小值。
《椭圆的简单几何性质》练习题一1.椭圆6x 2+y 2=6的长轴的端点坐标是( )A.(-1,0)、(1,0)B.(-6,0)、(6,0)C.(-6,0)、(6,0)D.(0,-6)、(0,6)2.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m+4的取值范围是( )A.[4-23,4+23]B.[4-3,4+3]C.[4-22,4+22]D.[4-2,4+2]3.椭圆25x 2+9y 2=225的长轴上、短轴长、离心率依次是( )A.5,3,0.8B.10,6,0.8C.5,3,0.6D.10,6,0.64.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A.51 B.43 C.33 D.21 5.离心率为23,且过点(2,0)的椭圆的标准方程是( ) A.1422=+y x B.1422=+y x 或1422=+y x C.1422=+y x D.1422=+y x 或116422=+y x 6.已知椭圆22a x +22b y =1与椭圆252x +162y =1有相同的长轴,椭圆22ax +22b y =1的短轴长与椭圆 212y +92x =1的短轴长相等,则( ) A.a 2=25,b 2=16 B.a 2=9,b 2=25 C.a 2=25,b 2=9或a 2=9,b 2=25 D.a 2=25,b 2=97.已知椭圆C :22ax +22b y =1与椭圆42x +92y =1有相同离心率,则椭圆C 的方程可能是( ) A.82x +42y =m 2(m ≠0) B.162x +642y =1 C. 82x +22y =1 D.以上都不可能 8.椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A.3422y x +=1 B.31622y x +=1 C.121622y x +=1 D.41622y x +=1 9.两对称轴与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( ) A.92522y x +=1或92522x y +=1 B.92522y x +=1或162522y x +=1 C.162x +92y =1 D.162522x y +=1 10.已知F 1、F 2为椭圆(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率23=e ,则椭圆的方程是 ( ) A.13422=+y x B.1342=+y x C.1342=+y x D.1342=+y x 11.椭圆12222=+ay b x (a >b >0)的准线方程是 ( ) A.222b a a y +±= B.222b a a y -±= C.222b a b y -±= D.222b a a y +±=12.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .877 13. 分别求出符合下列条件的椭圆的标准方程.(1)椭圆过(3,0)点,离心率e =36。
3.1.2椭椭椭椭椭椭椭椭椭椭2椭一、单选题1. 已知点(4,2)M 是直线l 被椭圆221369x y +=所截得的线段AB 的中点,则直线l 的斜率为( )A. 2-B.12 C. 12-D. 22. 过椭圆22221(0)x y a b a b+=>>中心的直线交椭圆于,A B 两点,右焦点为2(,0)F c ,则2ABF ∆的最大面积是( )A. abB. acC. bcD. 2b3. 已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x⊥轴,直线AB 交y 轴于点P ,若2AP PB =,则椭圆的离心率是( )A.B.C.13D.124. 过椭圆22143x y +=的右焦点F 作两条相互垂直的直线分别交椭圆于A ,B ,C ,D 四点,则11||||AB CD +的值为( ) A.18B.16C. 1D.712二、多选题5. 已知椭圆的左、右焦点为12,F F ,O为坐标原点,直线y x =-过2F 交C 于,A B 两点,若1AF B 的周长为8,则( )A. 椭圆焦距为3;B. 椭圆方程为2214x y +=;C. 弦长;D. 46=.5OABS6. 已知直线l :23y x =+被椭圆C :22221(0)x y a b a b+=>>截得的弦长为7,则下列直线中被椭圆C 截得的弦长一定为7的有( )A. 23y x =-B. 21y x =+C. 23y x =--D. 23y x =-+2222:1(0)x y C a b a b+=>>7. 画法几何的创始人-法国数学家加斯帕尔⋅蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,1F ,2F 分别为椭圆的左、右焦点,A ,B 为椭圆上两个动点.直线l 的方程为220.bx ay a b +--=下列说法正确的是( )A. C 的蒙日圆的方程为2223x y b +=B. 对直线l 上任意点P ,0PA PB ⋅>C. 记点A 到直线l 的距离为d ,则2||d AF -的最小值为3D. 若矩形MNGH 的四条边均与C 相切,则矩形MNGH 面积的最大值为26b三、填空题8. 已知点(2,0)A -,(0,1)B 在椭圆C :22221(0)x y a b a b+=>>上,则椭圆C 的方程为__________,若直线12y x =交椭圆C 于M ,N 两点,则||MN =__________. 9. 已知点(0,1)P ,椭圆22(1)4x y m m +=>上两点A ,B 满足AP 2PB =,则当m =___________时,点B 横坐标的绝对值最大.10. 过点(1,1)P 的直线l 与椭圆22143x y +=交于点A 和B ,且.AP PB λ=点Q 满足AQ QB λ=-,若O 为坐标原点,则||OQ 的最小值为__________.11. 已知椭圆22+=12x y ,若此椭圆上存在不同的两点A ,B 关于直线=2+y x m 对称,则实数m 的取值范围是__________. 四、解答题12. 已知双曲线C 和椭圆22141x y += ()Ⅰ求双曲线C 的方程.()Ⅱ经过点(2,1)M 作直线l 交双曲线C 于A ,B 两点,且M 为AB 的中点,求直线l 的方程并求弦长.13.设椭圆C :2212x y +=的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:.OMA OMB ∠=∠14. 已知椭圆C :22221(0)x y a b a b+=>>的短轴长为2(1)求椭圆C 的方程;(2)设过定点(0,2)T 的直线l 与(1)中的椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角,求直线l 的斜率k 的取值范围.15. 已知椭圆2222:1(0)x y C a b a b+=>>,1(,0)A a -,2(,0)A a ,(0,)B b ,12A BA 的面积为2.()Ⅰ求椭圆C 的方程;()Ⅱ设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线1A M与直线2A B 交于点.Q 求证:BPQ 为等腰三角形.16. 在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y a b a bΓ+=>>的长轴长为4.过左顶点A 且倾斜角为4π的直线1l 与椭圆的另一个交点为B ,与y 轴交于点C ,且2.AB BC = (1)求椭圆Γ的标准方程;(2)过点(1,0)H 且不与x 轴重合的直线2l 交椭圆Γ于点,M N ,连接NO 并延长交AM 于点.P 若AP AM λ=,求实数λ的取值范围.答案和解析1.【答案】C解:设直线l 与椭圆相交于两点11(,)A x y ,22(,).B x y代入椭圆方程可得22111369x y +=,22221369x y +=,两式相减得12121212()()()()0369x x x x y y y y +--++=,12248x x +=⨯=,12224y y +=⨯=,2121l y y k x x -=-,480369l k ∴+=,解得1.2l k =- 故选.C2.【答案】C解:设,则,2ABF ∆的面积是,当最大时,2ABF ∆的面积S 取最大值,所以直线AB 与x 轴垂直时,2ABF ∆的面积S 取最大值, 则2ABF ∆的面积的最大值为12.2b c bc ⨯⨯= 故选.C3.【答案】B解: 由题意,可设2(,)b B c a-,设(0,)P t ,(,0)A a ,,2(,)b PB c t a=--, 2AP PB =,2(,)2(,)b a t c t a∴-=--,2a c ∴=,c e a ∴==, 故选.B4.【答案】D解:由椭圆22143x y +=,得椭圆的右焦点为(1,0)F , 当直线AB 的斜率不存在时,AB :1x =, 则CD :0.y =此时||3AB =,||4CD =, 则11117||||3412AB CD +=+=; 同理易得当直线AB 的斜率为0时,11117||||4312AB CD +=+=; 当直线AB 的斜率存在且不为0时,设AB :(1)(0)y k x k =-≠,则 CD :1(1).y x k=-- 又设点11(,)A x y ,22(,).B x y 联立方程组22(1)3412y k x x y =-⎧⎨+=⎩, 消去y 并化简得2222(43)84120k x k x k +-+-=,221212228412,3434k k x x x x k k -∴+==++,||AB ∴==2212(1)34k k +=+, 由题知,直线CD 的斜率为1k-, 同理可得2212(1)||.43k CD k+=+ 22117(1)7||||12(1)12k AB CD k +∴+==+为定值. 故选.D5.【答案】BC解:直线3y x =-过2F ,得,即3c =,椭圆焦距为23,故A 错误;1AF B 的周长为8,根据椭圆定义得1AF B 的周长为4a ,所以48a =,得2a =,所以221b a c =-=,所以椭圆方程为2214x y +=,故B 正确; 联立得258380x x -+=,1212838,55x x x x +==, 所以,故C 正确;O 到直线3y x =-的距离3622d ==, 所以18626==.2525OABS⨯⨯故D 错误, 故选.BC6.【答案】ACD解:由于直线l :23y x =+被椭圆2222:1(0)x y C a b a b+=>>截得的弦长为7,根据对称性可得:23y x =-,23y x =--,2 3.y x =-+满足条件. 直线21y x =+被椭圆C 截得的弦长不为7.综上可得:下列直线中被椭圆C 截得的弦长一定为7的有.ACD 故选.ACD7.【答案】AD解:.A 当1l 与2l 一个斜率为0,另一个斜率不存在时,易知交点(,)P a b ±±, 当1l 与2l 的斜率均不为0时,可设000()(P x y x a ≠±且0)y b ≠±, 因为过P 点的切线方程为100:()(0)l y y k x x k -=-≠,所以联立2222001()x y a b y y k x x ⎧+=⎪⎨⎪-=-⎩得2222222220000()2()()0a k b x ka kx y x a kx y a b +--+--=,因为l 与椭圆相切,所以0=,整理得222222200000()20(0)x a k x y k y b x a --+-=-≠①,而PA k 与PB k 即为①式的两根,222200222200,,1,1PA PBPA PBy b y b k k PA PB k k x a x a --∴⋅=⊥∴⋅=-∴=---又,222222220000y b x a x y a b ∴-=-++=+即,所以蒙日圆的方程为2222x y a b +=+,22222122b e a b a =-=∴=,所以蒙日圆的方程为2223x y b +=,故A 正确;B .直线22:0l bx ay a b +--=过定点,而刚好在蒙日圆2222x y a b +=+上,过 M 做椭圆的两条切线,切点为 A , B ,由蒙日圆的定义知PA PB PA PB 0⊥∴⋅=,故 B 错误; C .点A 在椭圆上,,的最小值为到1F 到l 的距离,而1F 到l 的距离为,2222bc a b 43c b,3a b b++∴=∴=+, 的最小值为4323ba -,故 C 错误. D .因为矩形MNGH 的四条边均与C 相切,所以矩形MNGH 为C 的素日圆的内接矩形, 设长为m ,宽为n ,蒙日圆半径为R ,3Rb =,则,,当且仅当m n =时等号成立,故D 正确.故选.AD8.【答案】2214x y +=2||d AF -解:由题意可知:椭圆C :22221(0)x y a b a b+=>>上,由点(2,0)A -,(0,1)B ,焦点在x 轴上,则2a =,1b =,∴椭圆的标准方程:2214x y +=; ()Ⅱ设11(,)M x y ,22(,)N x y ,则221412x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,消去y ,整理得224x =,则1x =2x =12y =,22y =-,则||MN == 故答案为:2214x y +=9.【答案】5解:设11(,)A x y ,22(,)B x y , 由(0,1)P ,2AP PB =,可得122x x -=,1212(1)y y -=-, 即有122x x =-,1223y y +=, 又221144x y m +=,即为2221x y m +=,①又222244x y m +=,②①-②得1212(2)(2)3y y y y m -+=-, 可得122y y m -=-, 解得132m y -=,234my +=, 则2223()2m m x -=+, 即有2223()2m x m -=-22109(5)1644m m m -+---+==,即有5m =时,22x 有最大值4,即点B 横坐标的绝对值最大. 故答案为:5.10.【答案】125解:设1122(,),(,),(,)A x y B x y Q m n , 由,AP PB AQ QB λλ==-, 得则22212()(1)x x m λλ-=-,同理22212()(1)y y n λλ-=-,于是2222221122()()(1)().434343x y x y m n λλ+-+=-+ 又1λ≠±,则143m n +=,所以点Q 的轨迹是直线143x y+=, min ||OQ 即为原点到直线的距离,所以min 112||.511169OQ ==+ 故答案为12.511.【答案】解:设11(,)A x y ,22(,)B x y ,线段AB 的中点00(,).M x y 此椭圆上存在不同的两点A 、B 关于直线2y x m =+对称,∴直线AB 的方程可设为1.2y x t =-+ 联立,化为2234440.x tx t -+-=221612(44)0t t ∆=-->,解得23(*).2t < 1243x x t ∴+=, 023x t ∴=,012.33y t t t =-+= 22(,).33M t t ∴ 代入直线2y x m =+可得:2433t t m =+,解得3.2m t =- 代入(*)可得:233()22m -<,解得66.33m -<< m ∴的取值范围是66.33m -<< 故答案为12.【答案】解:()Ⅰ由题意得椭圆22141x y +=的焦点坐标分别为(和, 设双曲线方程为22221(0,0)x y a b a b-=>>, 则2223c a b =+=,c e a==,c ∴=,解得21a =,22b =,∴双曲线方程为221.2y x -= ()Ⅱ设11(,)A x y ,22(,)B x y ,分别代入双曲线可得2211112x y -=,2222112x y -=, 两式相减,得121212121()()()()02x x x x y y y y -+--+=, 点(2,1)M 为AB 的中点,可得124x x +=,122y y +=,则12124()()0x x y y ---=,12124AB y y k x x -∴==-,∴直线l 的方程为47y x =-,把47y x =-代入2212y x -=, 消去y 得21456510x x -+=,124x x ∴+=,125114x x =,4k =,||7AB ∴===13.【答案】解:(1)211c =-=,(1,0)F ∴, l 与x 轴垂直, ∴直线l 的方程为1x =,由,解得或,A ∴的坐标为2(1,)2或2(1,)2-, ∴直线AM 的方程为222y x =-+或222y x =-; (2)当l 与x 轴重合时,0OMA OMB ︒∠=∠=,当l 与x 轴垂直时,OM 为AB 的垂直平分线,OMA OMB ∴∠=∠,当l 与x 轴不重合也不垂直时,设l 的方程为(1)y k x =-,0k ≠,11(,)A x y ,22(,)B x y ,则12x <,22x <,则121222MA MB y y k k x x +=+--, 由11y kx k =-,22y kx k =-,得12121223()4(2)(2)MA MB kx x k x x kk k x x -+++=--, 将(1)y k x =-代入2212x y +=,整理可得2222(21)4220k x k x k +-+-=, 则0∆>,2122421k x x k ∴+=+,21222221k x x k -=+, 121223()4kx x k x x k ∴-++33321(441284)021k k k k k k =--++=+,从而0MA MB k k +=,故MA ,MB 的倾斜角互补,OMA OMB ∴∠=∠,综上,.OMA OMB ∠=∠14.【答案】解:(1)由已知得 22b =,c a = 又222a b c =+,解得a =1b = ∴椭圆C 的方程为22 1.3x y += (2)由题意知,直线l 斜率存在,可设直线l 方程为2y kx =+,将其代入2213x y +=, 得22(31)1290k x kx +++=,设11(,)A x y ,22(,)B x y ,22(12)36(13)0k k ∴=-+>,解得21k >, 由根与系数的关系,得1221213k x x k +=-+,122913x x k =+ AOB ∠为锐角,0OA OB ∴⋅>,12120x x y y ∴+>,1212(2)(2)0x x kx kx ∴+++>,21212(1)2()40k x x k x x ∴++++>, 代入1221213k x x k +=-+,122913x x k=+, 化简得22133013k k->+, 解得2133k <,由21k >且2133k <,解得(1)k ∈-⋃15.【答案】解:()Ⅰ由题2222,.c a ab a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,1.a b =⎧⎨=⎩ 所以椭圆C 的方程为22 1.4x y += ()Ⅱ证明:由(1)知1(2,0)A -,2(2,0)A ,设0000(,)(2,1)M x y x y ≠±≠±,则220014x y +=, 212000200012244A M A M y y y k k x x x ⋅=⋅==--+-, 设直线2A M 方程为1(2)(0)2y k x k k =-≠≠±且,直线1A B 方程为112y x =+, 由(2),1 1.2y k x y x =-⎧⎪⎨=+⎪⎩解得点424(,).2121k k P k k +-- 由于2114A M A M k k ⋅=-, 于是直线1A M 的方程为1(2)4y x k =-+,直线2A B 的方程为1 1.2y x =-+ 由1(2)4112y x k y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得点422(,).2121k Q k k +--- 于是P Q x x =,所以PQ x ⊥轴.设PQ 中点为N ,则N 点的纵坐标为422121 1.2k k k -+--= 故PQ 中点在定直线1y =上.从上边可以看出点B 在PQ 的垂直平分线上,所以||||BP BQ =, 所以BPQ 为等腰三角形.16.【答案】解:(1)由题意:2a =,(2,0)A -,所以直线1l 的方程为2y x =+,所以(0,2)C ,因为2.AB BC =所以,由B 在椭圆上可得:∴椭圆Γ的标准方程为:221.42x y += (2)设直线2l :1x my =+,点,点,所以 12222m y y m +=-+,12232y y m =-+, 所以直线AM :1122x x y y +=-,直线ON :22x x y y =, 设点, 所以 ,,令12y t y =,,所以11(,)M x y 22(,)N x y所以,∴实数λ的取值范围为。
课时作业(八)[学业水平层次]一、选择题1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为35的椭圆的标准方程是( ) A.x 2100+y 236=1 B.x 2100+y 264=1 C.x 225+y 216=1 D.x 225+y 29=1 【解析】 本题考查椭圆的标准方程.由题意知2b =8,得b =4,所以b 2=a 2-c 2=16,又e =c a =35,解得c =3,a =5,又焦点在x 轴上,故椭圆的标准方程为x 225+y 216=1,故选C.【答案】 C2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( )A.12B.13C.14D.22【解析】 由题意知a =2c ,∴e =c a =c 2c =12.【答案】 A3曲线x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系是( )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不等的焦距,不同的焦点D .以上都不对 【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k+y 225-k=1(0<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B.【答案】 B4.已知O 是坐标原点,F 是椭圆x 24+y 23=1的一个焦点,过F且与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( )A.513 B .-513C.21313D .-21313【解析】 由题意,a 2=4,b 2=3,故c =a 2-b 2=4-3=1.不妨设M (1,y 0),N (1,-y 0),所以124+y 203=1,解得y 0=±32,所以|MN |=3,|OM |=|ON |=12+⎝ ⎛⎭⎪⎪⎫322=132.由余弦定理知cos ∠MON =|OM |2+|ON |2-|MN |22|OM ||ON |=⎝ ⎛⎭⎪⎪⎫1322+⎝ ⎛⎭⎪⎪⎫1322-322×132×132=-513.【答案】 B 二、填空题5.已知长方形ABCD ,AB =4,BC =3,则以A ,B 为焦点,且过C 、D 的椭圆的离心率为________.【解析】 如图,AB =2c =4,∵点C 在椭圆上,∴CB +CA =2a =3+5=8,∴e =2c 2a =48=12.【答案】 126.设AB 是椭圆x 2a 2+y 2b2=1的不垂直于对称轴的弦,M 为AB的中点,O 为坐标原点,则k AB ·k OM =________.【解析】 设A (x 1,y 1),B (x 2,y 2),则中点M ⎝⎛⎭⎪⎪⎫x 1+x 22,y 1+y 22,得k AB =y 2-y 1x 2-x 1,k OM =y 2+y 1x 2+x 1,k AB ·k OM =y 22-y 21x 22-x 21,b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2, 得b 2(x 22-x 21)+a 2(y 22-y 21)=0,即y 22-y 21x 22-x 21=-b 2a2. 【答案】 -b 2a27.(2014·天津高二检测)已知P (m ,n )是椭圆x 2+y 22=1上的一个动点,则m 2+n 2的取值范围是________.【解析】 因为P (m ,n )是椭圆x 2+y 22=1上的一个动点,所以m 2+n 22=1,即n 2=2-2m 2,所以m 2+n 2=2-m 2,又-1≤m ≤1,所以1≤2-m 2≤2,所以1≤m 2+n 2≤2.【答案】 [1,2] 三、解答题8.(1)求与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准方程;(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x 轴上的椭圆的标准方程.【解】 (1)∵c =9-4=5,∴所求椭圆的焦点为(-5,0),(5,0).设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).∵e =c a =55,c =5,∴a =5,b 2=a 2-c 2=20,∴所求椭圆的方程为x 225+y 220=1.(2)因椭圆的焦点在x 轴上,设它的标准方程为x 2a 2+y 2b2=1(a >b >0),∵2c =8,∴c =4, 又a =6,∴b 2=a 2-c 2=20. ∴椭圆的方程为x 236+y 220=1.9.(2014·菏泽高二检测)设椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴交于点A ,以OA 为边作等腰三角形OAP ,其顶点P 在椭圆上,且∠OPA =120°,求椭圆的离心率.【解】 不妨设A (a,0),点P 在第一象限,由题意,点P 的横坐标是a2,设P ⎝⎛⎭⎪⎪⎫a 2,y ,由点P 在椭圆上,得⎝ ⎛⎭⎪⎪⎫a 22a 2+y 2b 2=1,y 2=34b 2,即P ⎝⎛⎭⎪⎪⎫a 2,32b ,又∠OPA =120°,所以∠POA =30°,故tan ∠POA =32b a 2=33,所以a =3b ,所以e =c a =a 2-b 2a=3b 2-b 23b =223.[能力提升层次]1.(2015·福州高二期末)设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A.22 B.2-1 C .2- 2 D.2-12【解析】 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题得|PF 2|=b 2a =2c ,即a 2-c 2a=2c ,得离心率e =2-1,故选B. 【答案】 B2.(2014·清远高二期末)“m =3”是“椭圆x 24+y 2m=1的离心率为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 椭圆x 24+y 2m =1离心率为12,当0<m <4时,4-m 2=12,得m =3,当m >4时,m -4m=12,得m =163, 即“m =3”是“椭圆x 24+y 2m =1的离心率为12”的充分不必要条件.【答案】 A3.(2015·济南历城高二期末)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP →=2PB →,则椭圆的离心率是________.【解析】 由AP →=2PB →,得|AO |=2|FO |(O 为坐标原点),即a =2c ,则离心率e =12.【答案】 124.(2014·青海省西宁)已知点A ,B 分别是椭圆x 236+y 220=1的左、右顶点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,且M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.【解】 (1)由已知可得A (-6,0),B (6,0),F (4,0), 设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ). 由已知得⎩⎪⎨⎪⎧x 236+y 220=1,x +6x -4+y 2=0,则2x 2+9x -18=0,解得x =32或x =-6.由于y >0,只能取x =32,于是y =523.所以点P 的坐标是⎝⎛⎭⎪⎪⎫32,523. (2)直线AP 的方程是x -3y +6=0. 设点M 的坐标是(m,0),则M 到直线AP 的距离是|m +6|2,又B (6,0),于是|m +6|2=|m -6|,又-6≤m ≤6,解得m =2,设椭圆上的点(x ,y )到点M 的距离为d ,有 d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49⎝⎛⎭⎪⎪⎫x -922+15, 由于-6≤x ≤6,所以当x =92时,d 取最小值15.。