4.3.3静定平面桁架(结点法和截面法的联合应用)
- 格式:ppt
- 大小:1023.50 KB
- 文档页数:7
第1节 静定平面桁架一、桁架的内力计算方法1、结点法取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。
该法最适用于计算简单桁架。
根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化:(1)两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a )。
(2)三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力)(图2-2-1b)。
(3)四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c )。
推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d )。
F N3F N3=0F N1=F N2=0F N3=F N4(a)(b)(c)F N4(d)F N3=F PF PN1F F N2F N1F N2F N1F N2F N1F N2F N3F N3F N1=F N2,F N1=F N2,F N1=F N2,图2-2-1(4)对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。
例如图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。
1A2F PF PAF PF PBF PF PBA(b)(a)X =0图2-2-2 图2-2-3(5)对称结构在反对称荷载作用下,对称轴处正对称的未知力为零。
如图2-2-3a 中AB 杆为零杆,因为若将结构从对称轴处截断,则AB 杆的力是一组正对称的未知力,根据上述结论可得。
(6)对称结构在反对称荷载作用下,对称轴处的竖杆为零杆。
如图2-2-4a 中AB 杆和B 支座的反力均为零。
其中的道理可以这样理解:将图a 结构取左右两个半结构分析,对中间的杆AB 和支座B 的力,若左半部分为正,则根据反对称,右半部分必定为相同大小的负值,将半结构叠加还原回原结构后正负号叠加,结果即为零。
第五节静定结构的内力分析四、静定平面桁架静定桁架是由若干根直杆在其两端用铰连接而成的静定结构。
在结点荷载作用下,桁架各杆均为只受轴力的二力杆。
静定桁架架内力分析的一般步骤是先求支座反力,再计算杆件内力。
计算杆件内力(轴力)的基本方法是结点法和截面法。
1 .节点法和截面法截取析架的结点为隔离体,利用各结点的静力平衡条件来计算各杆件内力的方法,称为结点法。
对每一结点,可列出两个独立的投影平衡方程进行解算。
桁架计算中的截面法与其他结构计算的截面法原理相同。
截面法截取的隔离体上的各力(包括荷载、反力和杆件轴力)通常组成一个平面任意力系,因此只要未知力不多于三个,就可直接由三个平衡方程求出各未知力。
截面法中的平衡方程可以是力矩方程,也可以是投影方程。
【例 3 一18 】求图3 一47 (a )所示桁架 1 、2 杆的内力。
该桁架是从一个基本铰接三角形ACF 开始,依次增加二元体FGC 、FDC 、GHD 、GED 、HIE 、H 刀E 和IJB 所组成,这种桁架称为简单桁架。
对于简单桁架,在求出支座反力后,如果采用结点法,则按照撤除二元体的顺序依次选取结点(本例可按J , I , B , H , E , G , D , C 顺序取),即可顺利求出所有杆件的内力。
本例只需求两根指定杆件的内力,为简化计算,可以联合应用结点法和截面法。
利用结点法,由结点I 可直接求出腹杆IE 的内力,再由结点 E 可求得1 杆的内力。
有了 1 杆的内力,在该杆所在节间截开,利用截面法可求得 2 杆的内力。
( 1 )求支座反力由整体结构的∑M A=0和∑M B=0 ,可得由∑Y=0校核计算无误。
(2 )求2 杆内力取出结点I (图 3 -47b ),根据∑Y=0,有再取结点E (图3 -47c ),由∑Y=0得(3 )求1 杆内力作截面m-m,并取左半部分为隔离体(图3 -47 d),根据∑Y=0。
有结点法和截面法是析架内力计算的通用方法。