结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
- 格式:pptx
- 大小:2.75 MB
- 文档页数:68
第1节 静定平面桁架一、桁架的内力计算方法1、结点法取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。
该法最适用于计算简单桁架。
根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化:(1)两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a )。
(2)三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力)(图2-2-1b)。
(3)四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c )。
推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d )。
F N3F N3=0F N1=F N2=0F N3=F N4(a)(b)(c)F N4(d)F N3=F PF PN1F F N2F N1F N2F N1F N2F N1F N2F N3F N3F N1=F N2,F N1=F N2,F N1=F N2,图2-2-1(4)对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。
例如图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。
1A2F PF PAF PF PBF PF PBA(b)(a)X =0图2-2-2 图2-2-3(5)对称结构在反对称荷载作用下,对称轴处正对称的未知力为零。
如图2-2-3a 中AB 杆为零杆,因为若将结构从对称轴处截断,则AB 杆的力是一组正对称的未知力,根据上述结论可得。
(6)对称结构在反对称荷载作用下,对称轴处的竖杆为零杆。
如图2-2-4a 中AB 杆和B 支座的反力均为零。
其中的道理可以这样理解:将图a 结构取左右两个半结构分析,对中间的杆AB 和支座B 的力,若左半部分为正,则根据反对称,右半部分必定为相同大小的负值,将半结构叠加还原回原结构后正负号叠加,结果即为零。
1 结构力学多媒体课件◆几何特性:无多余约束的几何不变体系◆静力特征:仅由静力平衡条件可求全部反力和内力◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。
◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。
◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。
◆注意静力分析(拆)与构造分析(搭)的联系◆学习中应注意的问题:多思考,勤动手。
本章是后面学习的基础,十分重要,要熟练掌握!容易产生的错误认识:“静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”一、反力的计算4kN1kN/mDCBA2m2m 4mCB A20kN/m 4m4m2m6mDCB A(1)上部结构与基础的联系为3个时,对整体利用3个平衡方程,就可求得反力。
(2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。
1、内力分量及正负规定轴力F N :截面上应力沿杆轴法线方向的合力。
以拉力为正,压力为负。
剪力F Q :截面上应力沿杆轴切线方向的合力。
以绕隔离体顺时针转为正,反之为负。
弯矩M :截面应力对截面中性轴的力矩。
不规定正负,但弯矩图画在受拉侧。
在水平杆中, 当弯矩使杆件下部纤维受拉时为正。
A 端B 端杆端内力 F Q ABF N ABM AB正 F N BA F Q BAM BA 正2、内力的计算方法K截面法:截开、代替、平衡。
内力的直接算式(截面内力代数和法)=截面一边所有外力沿截面法线方向投影的代数和。
轴力FN外力背离截面投影取正,反之取负。
剪力F=截面一边所有外力沿截面切线方向投影代数和。
Q外力绕截面形心顺时针转动,投影取正,反之取负。
弯矩M =截面一边所有外力对截面形心的外力矩之和。
外力矩和弯矩使杆同侧受拉时取正,反之取负。
2、内力的计算方法【例】如图所示简支梁,计算截面C 、D 1、D 2的内力。
2m 4m 2mA2kN/mCBD 1 D 210kN0.2m10kN3.75kN0.25kN3、绘制内力图的规定内力图是表示结构上各截面的内力各杆件轴线分布规律的图形, 作图规定:弯矩图一律绘在受拉纤维一侧,图上不注明正负号;剪力图和轴力图可绘在杆轴线的任一侧(对水平杆件通常把正号的剪力和轴力绘于上方),但必须注明正负号,且正负不能绘在同一侧。
第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。
重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。
一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。
1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。
图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。
图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。
图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。
图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。
5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。
二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。
采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。
计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。
结点法一般适用于求简单桁架中所有杆件轴力。
2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。
T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。
X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。
K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。
若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。
Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。
若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。
对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。
内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。
轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力。
剪力以绕微段隔离体顺时针转者为正。
内力的概念和表示弯矩----截面上应力对截面形心的力矩。
在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。
作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。
内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。
2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。
3.平衡----利用隔离体的平衡条件,确定该截面的内力。
内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。
= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。
例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。
(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。
下图为简化的静定多跨连续梁。
静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。
受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。