- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
YA
解: YB P / 2()
2
B
l
XB
2
YB
YA P / 2()
X B P / 4() X A P / 4()
P/4
P/4
M 2 Pl / 4(右侧受拉) M1 Pl / 4(上侧受拉) M1 M 2 (外侧受拉)
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
另外,根据这些关系,常可不经计算直观检查 M 图的轮廓是否正确。 ①M图与荷载情况不符。 ②M图与结点性质、约束情况不符。 ③作用在结点上的各杆端弯矩及结点集中力偶不满足平衡条件。
内力图形状特征
Q图 M图
1.无何载区段 2.均布荷载区段 3.集中力作用处
平行轴线
↓↓↓↓↓↓
+ -
发生突变
+P -
斜直线
2.三铰刚架(三铰结构)的支座反力(约束力)计算
方法:取两次隔离体,每个隔离体包含一或两个刚片,建立六
个平衡方程求解--双截面法.
例1: 求图示刚架的支座反力
解:1)取整体为隔离体
P
XA YA
XC
C
A
B
l
l
l 2
l 2
MA Fy
0, P 0,YA
l 2
YB
l
0,
YB
YB 0,YA YB
对O点取矩可求出B点水平反力,由B支座开始做弯矩图。
2、集中力偶作用处,弯矩图发生突变,突变前后弯矩两条线平行。
3、三铰刚架绘制弯矩图时,关键是求出一水平反力!!
4、主从结构绘制弯矩图 可以利用弯矩图与荷载、支承及连结之
间的对应关系,不求或只求部分约束力。
绘制图示刚架的
↓↓↓↓↓↓↓↓↓↓
D
E
弯矩图
+,-号;竖标大致成比例。
NDC QDC
1m
8kN
QDA MDA NDA
QDA=8kN NDB MDB NMDDAA==08k0NQ.DmB (左D拉)
8kN.m 8kN
MDC
8QkNDC=-6kAN NDC=0 MDC=24kDN.m(下拉)
6kN C
QDB=8kN
6kN
NM8DDkBBN==61k6NkN.mB(右拉)
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
1/2qa2
A
a
a
qa2 q
B XqBa/2 YB
2 绘制弯矩图
注意:三铰刚架绘制弯矩图往往只须求一水平反力,然后由 支座作起!!
画三铰刚架弯矩图
CM
O M
M/2
M/2
a
C
A
B
a
a
Mo=m-2a×XB=0, 得 XB=M/2a
注意:
A
RA
B
XB
YB
1、三铰刚架仅半边有荷载,另半边为二力体,其反力沿两铰连线,
MA= qa2+2qa2-2aYB=0 (1)
2) 对中间铰C建立矩平衡方程 qa
MB=0.5qa2+2aXB -aYB=0 (2) 解方程(1)和(2)可得
a
XB=0.5qa YB=1.5qa 3) 再由整体平衡 X=0 解得 XA=-0.5qa Y=0 解得 YA=0.5qa
qa/X2 A YA
120 q=20kN/m
2m 2m
仅绘M图,并不需要 求出全部反力.
A
80kN 90
120 ↓↓↓↓↓↓↓↓
F
C
先由AD
180 MEA=80×6-½×2200×kN6²=120
60
120
62.5
180
3m
∑Y=0 得 YA=80kN
20kN
M60图 B kM.m
再由整体平衡方程 ∑X=0
得 XB=20kN
NEF 4P()
MA 0, P3l YB l 0,YB 3P()
Fy 0, NCD 6P()
Fx 0, X A 0
Fy 0,YA YB P 0,YA 2P()
3.复合刚架(主从结构)的支座反力(约束力)计算
例1: 求图示刚架的支座反力
方法:先算附属部分,后算基本部 分,计算顺序与几何组成顺序相
然后先由A.B支座开始 作弯矩图.
4m
2m
5m
5、对称性的利用
对称结构在对称荷载作用下,反力和内力都呈对称分布;对 称结构在反对称荷载作用下,反力和内力都呈反对称分布。
m
m
m
h
q ↓↓↓↓↓↓↓↓↓↓↓
ql2/8
ql2/8
ql2/8
h
l/2
l/2
静定刚架的 M图正误判别
利用上述内力图与荷载、支承和联结之间的对应关系,可在绘制内力图时减 少错误,提高效率。
2
2kN
3kN sin 1
5
3.13
-3
3m
3m 9kN
cos 2 5
lDC lEC 3.35m
-
0.45
-
5.82D
ααQQC1CC.NEC7DNC9EDC↓↓↓47α↓k.↓1N↓6α↓/m3.58 E
1.79 3.13QDC2
Q 2
EC
NC 9E
校∑Q核NX∑Q∑QNXCMCNMMECEEDCEXC(D==CED=NC32===13-C066EY6.N..-+547N75-58D3339.3.kC1k(.E.831×.(3N1CNc65Q32k.3×o81k)kkNCs32N4cNNDo1×)4s.0×=75.×1194Q..×53751()D973+.s.235Ci.s.35n1+i5.8n363=05.13Q(.157012E.9Q7C)9=Cs50iEn3=0.5008)0cos
二次抛物线
凸向即q指向
出现尖点
尖点指向即P的指向
4.集中力偶作用处
无变化
发生突变
m
两直线平行
注备
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用点
面剪力无定义
弯矩无定义
5、在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩等于零, 有集中力偶作用,截面弯矩等于集中力偶的值。
方法:切断两个刚片之间的约束,取一个刚片为隔离体,假定 约束力的方向,由隔离体的平衡建立三个平衡方程.
例1: 求图示刚架的支座反力
C
B
C
B
l
2
YB
P
lP
A
l
2
A X A YA
解:
Fx 0, X A P 0, X A P()
MA
0, P
l 2
YB
l
0,YB
P 2
()
Fy
0,YA
YB
0,YA
QDC=-6kN NDC=0 MDC=24kN.m(下拉)
8 6
- +
Q kN
6
+
N kN
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算 三. 刚架指定截面内力计算 四.刚架的内力分析及内力图的绘制 五.刚架弯矩图的绘制
做法:拆成单个杆,求出杆两端的弯矩,按与单跨 梁相同的方法画弯矩图.
l
2
解:
Fx 0, X B P() l P
MB
Fy 0,YA 0
2
A
MB 0, MB pl / 2(顺时针转) YA
l
例4: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
N AB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
1 Fx 0, NAB XC 2 ql()
P
2
() P () 2
X B Fx 0, X A P XB 0
2
2
YB
2)取右部分为隔离体
C YC
B
XB
l
P
MC
0,
XB
l
YB
2
0,
XB
P4
()
Fy Fx
0,YC YB 0, X B
0,YC YB XC 0, XC
P
4
() 2 ()
YB
例2: 求图示刚架的支座反力和约束力
ql l
5ql / 4
q
l
l 5ql / 4 l
5ql2 / 4
ql2
3ql2 / 2
5ql2 / 4
例四: 作图示结构弯矩图
3M / 4
M /2
M
M /4 M /2
M / 4l
2ql 2 ql2
0
ql
l
l
l
ql2 / 2 ql
3、三铰刚架弯矩图
1 反力计算 0
1) 整体对左底铰建立矩平衡方程
a
例题2: 作图示结构弯矩图 练习: 作图示结构弯矩图
ql2 / 2
q
q ql / 2 l
ql
l
ql l / 2 l/2
l
练习: 作图示结构弯矩图
P
l
P l/2
l
l/2
l
l
l
例题3: 作图示结构弯矩图
P
Pl / 2
Pl / 4
P
Pl / 2
l
Pl / 4
l 3Pl / 4
3Pl / 4
l
l