高考数学一轮复习第七章数列推理与证明第36课数列求和教师用书
- 格式:doc
- 大小:103.50 KB
- 文档页数:13
2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。
§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d .②等比数列的前n 项和公式 (i)当q =1时,S n =na 1; (ii)当q ≠1时,S n =a 1-qn1-q=a 1-a n q1-q. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1nn +=1n -1n +1; (2)1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n .【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n-12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.已知在每项均大于零的数列{a n }中,首项a 1=1,且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则a 81=________. 答案 640解析 由已知S n S n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,∴{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2, ∴a 81=S 81-S 80=1612-1592=640. 2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.答案 -200解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________ 答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.4.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n=________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-12n -1]1-12-n +22n =4-n +42n .题型一 分组转化法求和例1 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n . 解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3, 所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.(1)数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }前12项和为________.(2)已知数列{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,则数列{a n }的通项公式a n =________,其前n 项和S n =________. 答案 (1)78 (2)3n -1+2n 12n (3n +1)+2n +1-2解析 (1)由已知a n +1+(-1)na n =2n -1,① 得a n +2+(-1)n +1a n +1=2n +1,②由①②得a n +2+a n =(-1)n·(2n -1)+(2n +1), 取n =1,5,9及n =2,6,10, 结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.(2)由已知得数列{a n }的通项公式为a n =3n +2n -1=3n -1+2n ,∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+ (2))=n+3n -2+-2n1-2=12n (3n +1)+2n +1-2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式; (2)设b n =(4-a n )qn -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .思维点拨 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3,d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·qn -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1.若q ≠1,将上式两边同乘以q 有qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n-1-q 1-q 2-…-q n -1=nq n-q n -1q -1=nq n +1-n +q n +1q -1.于是,S n =nq n +1-n +q n +1q -2.若q =1,则S n =1+2+3+…+n =n n +2.所以S n=⎩⎪⎨⎪⎧n n +2,q =1,nq n +1-n +q n +1q -2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{c n }对应项之积组成的数列{a n },即a n =b n ×c n 的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用范围.已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列.(1)求数列{a n }的通项公式;(2)若b n =a n ·log 2a n ,数列{b n }的前n 项和为T n ,求满足不等式T n +2n +2≥116的最大n 值. 解 (1)设等比数列{a n }的公比为q ,由题意知a 1=12,又∵S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴2(S 2+a 2)=S 1+a 1+S 3+a 3, 变形得S 2-S 1+2a 2=a 1+S 3-S 2+a 3, 即得3a 2=a 1+2a 3,∴32q =12+q 2,解得q =1或q =12, 又由{a n }为递减数列,于是q =12,∴a n =a 1qn -1=(12)n . (2)由于b n =a n log 2a n =-n ·(12)n,∴T n =-[1·12+2·(12)2+…+(n -1)·(12)n -1+n ·(12)n],于是12T n =-[1·(12)2+…+(n -1)·(12)n +n ·(12)n +1],两式相减得:12T n =-[12+(12)2+…+(12)n -n ·(12)n +1]=-12·[1-12n]1-12+n ·(12)n +1,∴T n =(n +2)·(12)n-2.∴T n +2n +2=(12)n ≥116,解得n ≤4, ∴n 的最大值为4. 题型三 裂项相消法求和例3 (2014·山东)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14nn -n +=(-1)n -1(12n -1+12n +1). 当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n 2n +1. 当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+-n -12n +1)思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.四审结构定方案典例:(14分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .S n =-12n 2+kn 及S n 最大值为8――→S n 是n 的函数n =k 时S n max =S k =8(根据S n 的结构特征确定k 值)2利用a n 、S n 的关系a n =92-n化简数列{9-2a n2n }9-2a n 2n=n2n -1 根据数列的结构特征,确定求和方法:错位相减法 T n =1+22+322+…+n -12n -2+n 2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .[8分](2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1, ①所以2T n =2+2+32+…+n -12n -3+n2n -2 ②[10分]②-①得:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.[13分]2温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数. (3)可以通过n =1,2时的特殊情况对结论进行验证.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值为________.答案 n 2+1-12n解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案 -100解析 f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2n 为奇数n 2n 为偶数=(-1)n ·n 2,由a n =f (n )+f (n +1) =(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n[n 2-(n +1)2] =(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201) =50×(-2)=-100.3.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为________. 答案 130解析 a 1+…+a k +…+a 10 =240-(2+…+2k +…+20) =240-+2=240-110=130.4.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =________.答案 ⎩⎪⎨⎪⎧6n -n 2n ,n 2-6n +n解析 ∵由S n =n 2-6n 得{a n }是等差数列, 且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7, ∴n ≤3时,a n <0,n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n 2n ,n 2-6n +n5.数列a n =1nn +,其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n=0在y 轴上的截距为________. 答案 -9解析 数列的前n 项和为 11×2+12×3+…+1n n +=1-1n +1=n n +1=910,∴n =9,∴直线方程为10x +y +9=0. 令x =0,得y =-9,∴在y 轴上的截距为-9.6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.答案 6解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.7.已知数列{a n }满足a n +a n +1=-n +12(n ∈N *),a 1=-12,S n 是数列{a n }的前n 项和,则S 2 013=________.答案 -1 0072解析 由题意知,a 1=-12,a 2=1,a 3=-32,a 4=2,a 5=-52,a 6=3,…,所以数列{a n }的奇数项构成了首项为-12,公差为-1的等差数列,偶数项构成了首项为1, 公差为1的等差数列,通过分组求和可得S 2 013=[(-12)×1 007+1 007×1 0062×(-1)]+(1×1 006+1 006×1 0052×1)=-1 0072.8.设f (x )=4x4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.答案 1 007解析 ∵f (x )=4x4x +2,∴f (1-x )=41-x41-x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x =1.S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014,∴S =2 0142=1 007.9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=143log a n (n ∈N *),数列{c n }满足c n =a n ·b n . (1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n . 解 (1)由题意,知a n =(14)n (n ∈N *),又b n =143log a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *),所以c n =(3n -2)×(14)n (n ∈N *).所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n,于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1.两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *).10.(2013·江西)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0, 由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式.∴a n =2n (n ∈N *).(2)证明 由a n =2n (n ∈N *)得b n =n +1n +2a 2n=n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n2-1n +2T n =116⎣⎢⎡⎝⎛⎭⎪⎫1-132+⎝⎛⎭⎪⎫122-142+⎝⎛⎭⎪⎫132-152+…⎦⎥⎤+⎝⎛⎭⎪⎫1n -2-1n +2+⎝⎛⎭⎪⎫1n 2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116⎝ ⎛⎭⎪⎫1+122=564(n ∈N *). 即对于任意的n ∈N *,都有T n <564.B 组 专项能力提升 (时间:25分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014=________. 答案 2 010解析 由已知得a n =a n -1+a n +1(n ≥2), ∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008, -2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0. ∵2 014=6×335+4,∴S 2 014=S 4 =2 008+2 009+1+(-2 008)=2 010. 2.1-4+9-16+…+(-1)n +1n 2=________.答案 (-1)n +1n n +2解析 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n2+2n -2=-n n +2;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+n --1]2+n 2=n n +2,综上可得,原式=(-1)n +1n n +2.3.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________;(2)S 1+S 2+…+S 100=________. 答案 (1)-116 (2)13⎝ ⎛⎭⎪⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2),∴a n =(-1)na n -(-1)n -1a n -1+12n (n ≥2).当n 为偶数时,a n -1=-12n ,当n 为奇数时,2a n +a n -1=12n ,∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128.∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝ ⎛⎭⎪⎫12+122+123+…+12100=⎝ ⎛⎭⎪⎫12+123+…+1299-⎝ ⎛⎭⎪⎫12+122+…+12100=13⎝ ⎛⎭⎪⎫12100-1.4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *). (1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b na n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N *时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2,当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b na n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=14+14-12n1-12-n +12n +2=14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1,当n ≥2时,T n -T n -1=-n +32n +1+n +22n=n +12n +1>0,∴{T n }为递增数列,∴T n ≥T 1=12.5.直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2.(1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -n 为奇数,a n n 为偶数,求数列{b n }的前n 项和T n .解 (1)由题意,知圆C n 的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n .又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1)=n n -2+-2n1-4=n 2-n 2+23(2n-1). 当n 为奇数时,n +1为偶数,T n +1=n +2-n +2+23(2n +1-1) =n 2+n 2+23(2n +1-1).而T n +1=T n +b n +1=T n +2n, 所以T n =n 2+n 2+13(2n-2).所以T n=⎩⎪⎨⎪⎧n 2-n 2+23n-n 为偶数,n 2+n 2+13n-n 为奇数。
第37课 合情推理与演绎推理[最新考纲]1.合情推理2.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)归纳推理与类比推理都是由特殊到一般的推理.( )(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (3)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( )(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) [答案] (1)× (2)× (3)√ (4)×2.由“半径为R 的圆内接矩形中,正方形的面积最大”,推出“半径为R 的球的内接长方体中,正方体的体积最大”是________.①归纳推理; ②类比推理; ③演绎推理;④以上都不是.② [类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).所以,由“半径为R 的圆内接矩形中,正方形的面积最大”,推理出“半径为R 的球的内接长方体中,正方体的体积最大”是类比推理.]3.(教材改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是________.a n =n 2 [a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.]4.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于________.①大前提错误导致结论错误; ②小前提错误导致结论错误; ③推理形式错误导致结论错误; ④大前提和小前提错误导致结论错误.① [“指数函数y =a x是增函数”是本推理的大前提,它是错误的.因为实数a 的取值范围没有确定,所以导致结论是错误的.]5.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.A [由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A.](1)数列12,3,3,4,4,4,…,m +1,m +1,…,m +1,…的第20项是________.(2)(2016·山东高考)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; … 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝⎛⎭⎪⎫sin 2n π2n +1-2=________. (1)57 (2)43n (n +1) [(1)数列m m +1在数列中是第1+2+3+…+m =m m +2项,当m=5时,即56是数列中第15项,则第20项是57.(2)通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).][规律方法] 1.常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目归纳和图形变化规律归纳,合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.2.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质; (2)从相同性质中推出一个明确表述的一般性命题.[变式训练1] (1)(2017·如皋市高三调研一)观察下列等式: 12=1; 32=2+3+4; 52=3+4+5+6+7; 72=4+5+6+7+8+9+10;92=5+6+7+8+9+10+11+12+13;…n 2=100+101+102+…+m ,则n +m =________. 【导学号:62172200】(2)下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是__________.(1)497 (2)n n +2(n ∈N +) [(1)观察所给等式,得:第2个等式右边为自然数2到4的和,左边为3平方;第3个等式右边为自然数3到7的和,左边为5平方;…故第n 个等式右边为n 起共2n -1个自然数的和,左边为2n -1的平方.∴第100个等式为:100+101+102+…+299=n 2=1982;所以n =198,m =299,n +m =497.(2)由题图知第n 个图形的小正方形个数为1+2+3+…+n ,所以总个数为n n +2(n∈N +).](1)若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎪⎫b n =12a n n 也是等差数列,类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为________.①d n =c 1+c 2+…+c nn;②d n =c 1·c 2·…·c nn ;③d n =n c n 1+c n 2+…+c n nn;④d n =nc 1·c 2·…·c n .(2)(2017·贵州六校联考)在平面几何中,△ABC 的∠C 的平分线CE 分AB 所成线段的比为AC BC =AE BE.把这个结论类比到空间:在三棱锥A BCD 中(如图371),DEC 平分二面角A CD B 且与AB 相交于E ,则得到类比的结论是________________.图371(1)④ (2)AE EB =S △ACDS △BCD[(1)法一:从商类比开方,从和类比到积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·c n .法二:若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n n -2d ,∴b n =a 1+n -2d=d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q 1+2+…+(n -1)=c n1·qn n -2,∴d n =n c 1·c 2·…·c n =c 1·qn -12,即{d n }为等比数列,故选④.(2)由平面中线段的比转化为空间中面积的比可得AE EB =S △ACDS △BCD.][规律方法] 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想,其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等差数列与等比数列类比;运算类比(和与积、乘与乘方,差与除,除与开方).数的运算与向量运算类比;圆锥曲线间的类比等.[变式训练2] 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的有________.(填序号) ①② [类比结论正确的有①②.]数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nS n (n ∈N +).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n . 【导学号:62172201】 [证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)[规律方法] 演绎推理的一般模式为三段论,三段论推理的依据是:如果集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素都具有性质P .应用三段论解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.[变式训练3] 如图372所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).图372[证明] (1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提)ED 和AF 为平行四边形的对边,(小前提)所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒ 四边形AFDE 是平行四边形⇒ED =AF .[思想与方法]1.合情推理的过程概括为从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错与防范]1.在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.2.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.3.演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严谨性,书写格式的规范性.课时分层训练(三十七)A组基础达标(建议用时:30分钟)一、填空题1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理________.(填序号)①结论正确;②大前提不正确;③小前提不正确;④全不正确.③[因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.]2.如图373,根据图中的数构成的规律,得a表示的数是________.图373144 [由题图中的数可知,每行除首末两数外,其他数都等于它肩上两数的乘积,所以a=12×12=144.]3.某种树的分枝生长规律如图374所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________. 【导学号:62172202】图37455 [因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.]4.给出下面几个推理:①由“6=3+3,8=3+5,10=3+7,12=5+7,…”得到结论:任何一个不小于6的偶数都等于两个奇质数之和;②由“三角形内角和为180°”得到结论:等腰三角形内角和为180°;③由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;④由“a2+b2≥2ab(a,b∈R)”推得:sin 2x≤1.其中是演绎推理的序号是________.②④[演绎推理的模式是三段论模式,包括大前提、小前提和结论,演绎推理是从一般到特殊的推理,根据以上特点,可以判断②④是演绎推理.易得①是归纳推理,③是类比推理.故答案为②④.]5.由代数式的乘法法则类比推导向量的数量积的运算法则:①由“mn=nm”类比得到“a·b=b·a”;②由“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③由“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;④由“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”.以上结论正确的是________.(填序号)①②[因为向量运算满足交换律、乘法分配律,向量没有除法,不能约分,所以①②正确,③错误.又因为|a·b|=|a|·|b|·|cos〈a,b〉|,所以④错误.] 6.把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r=a2+b22(其中a,b为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a,b,c且两两垂直的三棱锥的外接球半径R=__________.a2+b2+c22[由平面类比到空间,把矩形类比为长方体,从而得出外接球半径为a2+b2+c22.]7.(2017·徐州模拟)观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为__________.1+122+132+142+152+162<116[左边的式子的通项是1+122+132+…+1n+2,右边式子的分母依次增加1,分子依次增加2,还可以发现右边分母与左边最后一项分母的关系,所以第五个不等式为1+122+132+142+152+162<116.]8.给出以下数对序列:(1,1);(1,2)(2,1);(1,3)(2,2)(3,1);(1,4)(2,3)(3,2)(4,1);…记第i行的第j个数对为a ij,如a43=(3,2),则a nm=________.(m,n-m+1) [由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).]9.(2017·泰州模拟)如图(1)若从点O所作的两条射线OM、ON上分别有点M1、M2与点N 1、N 2,则三角形面积之比S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为________________.(1) (2)图375VO P 1Q 1R 1VO P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2[考查类比推理问题,由图看出三棱锥P 1OR 1Q 1及三棱锥P 2OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为VO P 1Q 1R 1VO P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.]10.在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说“甲没有得优秀”,乙说“我得了优秀”,甲说“丙说的是真话”.事实证明,在这三名同学中,只有一人说的是假话,那么得优秀的同学是__________. 【导学号:62172203】丙 [如果丙说的是假话,则“甲得优秀”是真话,又乙说“我得了优秀”是真话,所以矛盾;若甲说的是假话,即“丙说的是真话”是假的,则说明“丙说的是假的”,即“甲没有得优秀”是假的,也就是说“甲得了优秀”是真的,这与乙说“我得了优秀”是真话矛盾;若乙说的是假话,即“乙没得优秀”是真的,而丙说“甲没得优秀”为真,则说明“丙得优秀”,这与甲说“丙说的是真话”符合.所以三人中说假话的是乙,得优秀的同学是丙.]二、解答题11.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;…请类比上述性质,写出空间中四面体的相关结论.[解] 由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.12.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明. 【导学号:62172204】[解] f (0)+f (1)=130+3+131+3 =11+3+13+3=3-12+3-36=33, 同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均有f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1,f (x 1)+f (x 2)=13x 1+3+13x 2+3 =x 1+3+x 2+3x 1+3x 2+3=3x 1+3x 2+233x 1+x 2+3x 1+3x 2+3=3x 1+3x 2+233x 1+3x 2+2×3=3x 1+3x 2+233x 1+3x 2+23=33. B 组 能力提升(建议用时:15分钟)1.(2017·南京模拟)已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N +),则a m +n =bn -ma n -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N +),若b m =c ,b n =d (n -m ≥2,m ,n ∈N +),则可以得到b m +n =________.n -m d nc m[设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -ma n -m, 所以类比得b m +n =n -m d nc m.] 2.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.1和3 [法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.]3.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解] (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α=34. 法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+-2α2-sin α(cos 30° cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34. 4.已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似特性的性质,并加以证明. [解] 类似的性质为:若M ,N 是双曲线x 2a 2-y 2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则N (-m ,-n ).因为点M (m ,n )在已知双曲线上,所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a 2x 2-b 2. 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).。
第36课 数列求和[最新考纲]数列求和的常用方法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ; (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n)1-q ,q ≠1.2.分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形: ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.5.倒序相加法如果一个数列{a n}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.6.并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)如果数列{a n}为等比数列,且公比不等于1,则其前n项和S n=a1-a n+11-q.()(2)当n≥2时,1n2-1=12⎝⎛⎭⎪⎫1n-1-1n+1.()(3)求S n=a+2a2+3a3+…+na n之和时只要把上式等号两边同时乘以a即可根据错位相减法求得.()(4)如果数列{a n}是周期为k(k为大于1的正整数)的周期数列,那么S km=mS k.()[答案](1)√(2)√(3)×(4)√2.(教材改编)数列{a n}的前n项和为S n,若a n=1n(n+1),则S5等于____________。
城东蜊市阳光实验学校2021届高三数学一轮复习精品教案――数列〔附高考预测〕一、本章知识构造: 二、重点知识回忆 1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或者者101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或者者1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.特别地,假设2m n p +=,那么2m n p a a a =·.③(0)n m nma q m n q a -*=∈≠N ,,. ④232k kk k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质 例1.〔2021模拟〕数列.12}{2n n S n a nn -=项和的前〔1〕求数列}{n a 的通项公式;〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n点评:此题考察了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。
高考数学一轮总复习数学推理与证明题经典题目数学推理与证明题是高考数学中的一种重要题型,对学生的逻辑思维和推理能力提出了较高的要求。
在高考中,这类题目常常考查学生的分析和推理能力,对于学生而言,掌握一定的解题技巧和方法是非常重要的。
本文将为大家介绍一些经典的高考数学推理与证明题,帮助大家加深对这一题型的理解和应对能力。
一、数列推导与证明题数列是高考数学中经常出现的题型,其推导与证明题目主要考查学生的数学归纳法和推理能力。
下面我们来看一个经典的数列推导与证明题。
例题1: 已知数列{an}满足a1=2,an+1=an+1/n,证明该数列单调递增。
解析: 首先我们将证明该数列是递增的,即an+1≥an。
当n=1时,根据题目条件有a2=a1+1/1=3/1=3,显然3≥2,满足条件。
假设当n=k时,an+1≥an成立,即ak+1≥ak。
当n=k+1时,根据题目条件有a(k+1)+1=a(k+1)+1/(k+1)=ak+1+1/(k+1)。
由假设条件可得a(k+1)+1≥ak+1+1/(k+1)≥ak+1。
综上所述,根据数学归纳法,可证明该数列是递增的。
通过这个例子,我们可以看到数学归纳法在数列推导与证明题中的重要性。
在解这类题目时,我们要善于利用归纳法的思想,合理运用数学推理的方法。
二、平面几何推理与证明题平面几何推理与证明题是高考数学中的又一个重要考点,其解题过程需要注意严谨的逻辑推理和几何图形的分析。
下面我们来看一个经典的平面几何推理与证明题。
例题2: 在平面直角坐标系xOy中,点A(a,0),B(b,0)与C(0,c)所构成的三角形ABC为正三角形,证明ab=3c²。
解析: 首先我们知道如果三角形ABC为正三角形,则其三个内角均为60°。
利用点A、B和C的坐标可以得到三条边的长度分别为√((a-b)²+c²),|a-b|和√(a²+b²)。
课时36 等差数列(课前预习案)班级: 姓名:一、高考考纲要求1.利用等差数列的概念、性质、通项公式与前n 项和公式解决等差数列的问题.2.在具体的问题情境中能识别具有等差关系的数列,并能用有关知识解决相应的问题. 二、高考考点回顾 (一)等差数列的概念1.定义:如果数列{}n a 从第二项起每一项与它的前一项的 等于 常数,那么这个数列叫做等差数列,这个常数叫等差数列的 .2.定义式: d =*(n N ∈,且2n ≥)或()*121n n n n a a a a n N +++-=-∈。
(d 为公差) 问题:数列{n a b λ+},{n n a b +},{n n a b -}是否为等差数列?(其中{n a },{n b }为等差数列) 3.等差中项:若,,a A b 是等差数列,则称A 是,a b 的 ,且A = 。
(二)通项公式:(已知{}n a 是等差数列)1.通项公式:n a = ,变式:d = ()1n ≠或n a = ,变式:d = ()n m ≠(其中*,m n N ∈)或n a = 。
(函数的一次式)通项公式的形式特点: .当0d >时,{}n a 为 数列;0d <时,{}n a 为 数列;0d =时,{}n a 为 数列。
2.在等差数列中,从第二项起每一项都是与它等距离的两项的等差中项:即:2n m n mn a a a -++=,由此得到:m a +n a =p q a a +(其中m n p q +=+)特别地:1213243n n n n a a a a a a a a ---+=+=+=+=3.下标为等差数列,且公差为m 的项:()*23,k k m k m k m a a a a k m N +++∈,,, 组成公差为md 的等差数列。
(三)前n 项和公式1.求和公式:n S = 其推导方法是 。
公式的变形:n S =2.若等差数列{n a },{n b }的前n 项和分别为n n S T ,,则2121n n n n a S b T --= 3.23243m m m m m m m S S S S S S S ---,,,,为等差数列。
第37课合情推理与演绎推理[最新考纲]内容要求A B C合情推理与演绎推理√1.合情推理类型定义特点归纳推理根据一类事物的部分对象具有某种特征,推出这类事物的全部对象都具有这种特征的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)归纳推理与类比推理都是由特殊到一般的推理.( )(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(3)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( )(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )[答案](1)×(2)×(3)√(4)×2.由“半径为R 的圆内接矩形中,正方形的面积最大”,推出“半径为R 的球的内接长方体中,正方体的体积最大”是________.①归纳推理; ②类比推理; ③演绎推理; ④以上都不是.② [类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).所以,由“半径为R 的圆内接矩形中,正方形的面积最大”,推理出“半径为R 的球的内接长方体中,正方体的体积最大”是类比推理.]3.(教材改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是________.a n =n 2 [a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.]4.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于________.①大前提错误导致结论错误; ②小前提错误导致结论错误; ③推理形式错误导致结论错误; ④大前提和小前提错误导致结论错误.① [“指数函数y =a x是增函数”是本推理的大前提,它是错误的.因为实数a 的取值X 围没有确定,所以导致结论是错误的.]5.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.A [由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A.]归纳推理(1)数列12,13,23,14,24,34,…,1m +1,2m +1,…,mm +1,…的第20项是________.(2)(2016·某某高考)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; … 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝⎛⎭⎪⎫sin 2n π2n +1-2=________. (1)57 (2)43n (n +1) [(1)数列m m +1在数列中是第1+2+3+…+m =m m +12项,当m=5时,即56是数列中第15项,则第20项是57.(2)通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).][规律方法] 1.常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目归纳和图形变化规律归纳,合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.2.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质; (2)从相同性质中推出一个明确表述的一般性命题.[变式训练1] (1)(2017·如皋市高三调研一)观察下列等式: 12=1; 32=2+3+4; 52=3+4+5+6+7; 72=4+5+6+7+8+9+10;92=5+6+7+8+9+10+11+12+13;…n 2=100+101+102+…+m ,则n +m =________. 【导学号:62172200】(2)下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是__________.(1)497 (2)n n +12(n ∈N +) [(1)观察所给等式,得:第2个等式右边为自然数2到4的和,左边为3平方;第3个等式右边为自然数3到7的和,左边为5平方;…故第n 个等式右边为n 起共2n -1个自然数的和,左边为2n -1的平方.∴第100个等式为:100+101+102+…+299=n 2=1982;所以n =198,m =299,n +m =497.(2)由题图知第n 个图形的小正方形个数为1+2+3+…+n ,所以总个数为n n +12(n∈N +).]类比推理(1)若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也是等差数列,类比这一性质可知,若正项数列{}是等比数列,且{d n }也是等比数列,则d n 的表达式应为________.①d n =c 1+c 2+…+n ; ②d n =c 1·c 2·…·n; ③d n =n c n 1+c n 2+…+c n n n; ④d n =nc 1·c 2·…·.(2)(2017·某某六校联考)在平面几何中,△ABC 的∠C 的平分线CE 分AB 所成线段的比为AC BC =AE BE.把这个结论类比到空间:在三棱锥A BCD 中(如图371),DEC 平分二面角A CD B 且与AB 相交于E ,则得到类比的结论是________________.图371(1)④ (2)AE EB =S △ACDS △BCD[(1)法一:从商类比开方,从和类比到积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·.法二:若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n n -12d ,∴b n =a 1+n -12d=d 2n +a 1-d2,即{b n }为等差数列;若{}是等比数列,则c 1·c 2·…·=c n1·q 1+2+…+(n -1)=c n 1·qn n -12,∴d n =n c 1·c 2·…·=c 1·q n -12,即{d n }为等比数列,故选④. (2)由平面中线段的比转化为空间中面积的比可得AE EB =S △ACDS △BCD.][规律方法] 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想,其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等差数列与等比数列类比;运算类比(和与积、乘与乘方,差与除,除与开方).数的运算与向量运算类比;圆锥曲线间的类比等.[变式训练2] 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的有________.(填序号) ①② [类比结论正确的有①②.]演绎推理数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N +).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n . 【导学号:62172201】 [证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)[规律方法] 演绎推理的一般模式为三段论,三段论推理的依据是:如果集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素都具有性质P .应用三段论解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.[变式训练3] 如图372所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).图372[证明] (1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提)ED 和AF 为平行四边形的对边,(小前提)所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒ 四边形AFDE 是平行四边形⇒ED =AF .[思想与方法]1.合情推理的过程概括为从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错与防X]1.在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.2.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.3.演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严谨性,书写格式的规X性.课时分层训练(三十七)A组基础达标(建议用时:30分钟)一、填空题1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理________.(填序号)①结论正确;②大前提不正确;③小前提不正确;④全不正确.③[因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.]2.如图373,根据图中的数构成的规律,得a表示的数是________.图373144 [由题图中的数可知,每行除首末两数外,其他数都等于它肩上两数的乘积,所以a=12×12=144.]3.某种树的分枝生长规律如图374所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________. 【导学号:62172202】图37455 [因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.]4.给出下面几个推理:①由“6=3+3,8=3+5,10=3+7,12=5+7,…”得到结论:任何一个不小于6的偶数都等于两个奇质数之和;②由“三角形内角和为180°”得到结论:等腰三角形内角和为180°;③由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;④由“a2+b2≥2ab(a,b∈R)”推得:sin 2x≤1.其中是演绎推理的序号是________.②④[演绎推理的模式是三段论模式,包括大前提、小前提和结论,演绎推理是从一般到特殊的推理,根据以上特点,可以判断②④是演绎推理.易得①是归纳推理,③是类比推理.故答案为②④.]5.由代数式的乘法法则类比推导向量的数量积的运算法则:①由“mn=nm”类比得到“a·b=b·a”;②由“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③由“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;④由“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”.以上结论正确的是________.(填序号)①②[因为向量运算满足交换律、乘法分配律,向量没有除法,不能约分,所以①②正确,③错误.又因为|a·b|=|a|·|b|·|cos〈a,b〉|,所以④错误.] 6.把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r=a2+b22(其中a,b为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a,b,c且两两垂直的三棱锥的外接球半径R=__________.a2+b2+c22[由平面类比到空间,把矩形类比为长方体,从而得出外接球半径为a2+b2+c22.]7.(2017·某某模拟)观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为__________.1+122+132+142+152+162<116[左边的式子的通项是1+122+132+…+1n+12,右边式子的分母依次增加1,分子依次增加2,还可以发现右边分母与左边最后一项分母的关系,所以第五个不等式为1+122+132+142+152+162<116.]8.给出以下数对序列:(1,1);(1,2)(2,1);(1,3)(2,2)(3,1);(1,4)(2,3)(3,2)(4,1);…记第i行的第j个数对为a ij,如a43=(3,2),则a nm=________.(m,n-m+1) [由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).]9.(2017·某某模拟)如图(1)若从点O所作的两条射线OM、ON上分别有点M1、M2与点N 1、N 2,则三角形面积之比S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为________________.(1) (2)图375VO P 1Q 1R 1VO P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2[考查类比推理问题,由图看出三棱锥P 1OR 1Q 1及三棱锥P 2OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为VO P 1Q 1R 1VO P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.]10.在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说“甲没有得优秀”,乙说“我得了优秀”,甲说“丙说的是真话”.事实证明,在这三名同学中,只有一人说的是假话,那么得优秀的同学是__________. 【导学号:62172203】丙 [如果丙说的是假话,则“甲得优秀”是真话,又乙说“我得了优秀”是真话,所以矛盾;若甲说的是假话,即“丙说的是真话”是假的,则说明“丙说的是假的”,即“甲没有得优秀”是假的,也就是说“甲得了优秀”是真的,这与乙说“我得了优秀”是真话矛盾;若乙说的是假话,即“乙没得优秀”是真的,而丙说“甲没得优秀”为真,则说明“丙得优秀”,这与甲说“丙说的是真话”符合.所以三人中说假话的是乙,得优秀的同学是丙.]二、解答题11.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;…请类比上述性质,写出空间中四面体的相关结论.[解] 由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.12.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明. 【导学号:62172204】[解]f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33, 同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均有f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1,f (x 1)+f (x 2)=13x 1+3+13x 2+3 =3x 1+3+3x 2+33x 1+33x 2+3=3x 1+3x 2+233x 1+x 2+33x 1+3x 2+3 =3x 1+3x 2+2333x 1+3x 2+2×3=3x 1+3x 2+2333x 1+3x 2+23=33. B 组 能力提升(建议用时:15分钟)1.(2017·某某模拟)已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N +),则a m +n =bn -ma n -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N +),若b m =c ,b n =d (n -m ≥2,m ,n ∈N +),则可以得到b m +n =________.n -m d nc m[设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -ma n -m, 所以类比得b m +n =n -m d nc m.] 2.(2016·全国卷Ⅱ)有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.1和3 [法一:由题意得丙的卡片上的数字不是2和3.若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.故甲的卡片上的数字是1和3.法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.]3.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解] (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α=34. 法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos 60°-2α2-sin α(cos 30° cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34. 4.已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似特性的性质,并加以证明. [解] 类似的性质为:若M ,N 是双曲线x 2a 2-y 2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则N (-m ,-n ). 因为点M (m ,n )在已知双曲线上,所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a 2x 2-b 2. 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).。
第七章数列、推理与证明第33课数列的概念与简单表示法[最新考纲]内容要求A B C数列的概念√1.数列的定义按照一定次序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.2.数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N+递减数列a n+1<a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫作这个数列的通项公式.5.数列的递推公式如果已知数列的第一项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫作这个数列的递推公式.6.a n与S n的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1n =1,S n -S n -1n ≥2.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)如果数列{a n }的前n 项和为S n ,则对∀n ∈N +,都有a n +1=S n +1-S n .( ) (4)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )[答案] (1)× (2)√ (3)√ (4)√2.设数列{a n }的前n 项和S n =n 2,则a 8的值为____________. 15 [当n =8时,a 8=S 8-S 7=82-72=15.]3.(教材改编)数列1,23,35,47,59,…的一个通项公式a n =__________.n 2n -1 [由已知得,数列可写成11,23,35,…,故通项a n =n 2n -1.] 4.把1,3,6,10,15,21,…这些数叫作三角形数,这是因为以这些数目的点可以排成一个正三角形(如图331).图331则第7个三角形数是____________.28 [由题图可知,第7个三角形数是1+2+3+4+5+6+7=28.] 5.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=__________.12 [由a n +1=11-a n ,得a n =1-1a n +1, ∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,…,∴{a n }是以3为周期的数列,∴a 1=a 7=12.]由数列的前几项归纳数列的通项公式(1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,7,-13,19,…;(4)3,33,333,3 333,…. 【导学号:62172180】 [解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…, 所以a n =2n-12n .(3)数列中各项的符号可通过(-1)n表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6.故通项公式为a n =(-1)n(6n -5).(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n-1).[规律方法] 1.求数列通项时,要抓住以下几个特征: (1)分式中分子、分母的特征; (2)相邻项的变化特征;(3)拆项后变化的部分和不变的部分的特征; (4)各项符号特征等,并对此进行归纳、化归、联想.2.若关系不明显时,应将部分项作适当的变形,统一成相同的形式,让规律凸现出来.对于正负符号变化,可用(-1)n或(-1)n +1来调整,可代入验证归纳的正确性.[变式训练1] (1)数列0,23,45,67,…的一个通项公式为____________.(填序号)①a n =n -1n +1(n ∈N +); ②a n =n -12n +1(n ∈N +);③a n =2n -12n -1(n ∈N +);④a n =2n2n +1(n ∈N +). (2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =__________.(1)③ (2)2n +1n 2+1[(1)注意到分子0,2,4,6都是偶数,对照选项排除即可.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.]由a n 与S n 的关系求通项a nn n n (1)S n =2n 2-3n ;(2)S n =3n +b . 【导学号:62172181】 [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.[规律方法] 由S n 求a n 的步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应写成分段函数的形式.易错警示:利用a n =S n -S n -1求通项时,应注意n ≥2这一前提条件,易忽视验证n =1致误.[变式训练2] 已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N +),则a n =____________.2n +1[由S n =2a n -4可得S n -1=2a n -1-4(n ≥2),两式相减可得a n =2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).又a 1=2a 1-4,a 1=4,所以数列{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1.]由递推公式求数列的通项公式根据下列条件,确定数列{a n }的通项公式:(1)a 1=2,a n +1=a n +3n +2; (2)a 1=1,a n +1=2na n ; (3)a 1=1,a n +1=3a n +2. [解] (1)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合上式,∴a n =32n 2+n 2.(2)∵a n +1=2na n ,∴a n a n -1=2n -1(n ≥2), ∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n n -12.又a 1=1符合上式,故a n =2n n -12.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,因此a n =2·3n -1-1.[规律方法] 1.已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n ;已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . 2.已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为{a n +k }为等比数列.易错警示:本题(1)(2)中常见的错误是忽视验证a 1是否适合所求式,(3)中常见错误是忽视判定首项是否为零.[变式训练3] (2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[思想与方法]1.数列是一种特殊的函数,因此,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.2.a n =⎩⎪⎨⎪⎧S n n =1,S n -S n -1n ≥2.3.由递推关系求数列的通项的基本思想是转化,常用的方法是: (1)a n +1-a n =f (n )型,采用叠加法.(2)a n +1a n=f (n )型,采用叠乘法. (3)a n +1=pa n +q (p ≠0,p ≠1)型,转化为等比数列解决. [易错与防范]1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.课时分层训练(三十三)A 组 基础达标 (建议用时:30分钟)一、填空题1.数列1,23,35,47,59,…的一个通项公式a n =____________.①n2n +1; ②n2n -1; ③n2n -3; ④n 2n +3. ② [由已知得,数列可写成11,23,35,…,故通项为n2n -1.]2.已知数列{a n }的前n 项和S n =2n,则a 3+a 4=__________. 12 [当n ≥2时,a n =2n-2n -1=2n -1,所以a 3+a 4=22+23=12.]3.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第______项.10 [令n -2n2=0.08,得2n 2-25n +50=0, 则(2n -5)(n -10)=0,解得n =10或n =52(舍去).∴a 10=0.08.]4.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N +),则“λ<1”是“数列{a n }为递增数列”的____________条件.充分不必要 [当a n +1-a n =(n +1)2-2λ(n +1)-n 2+2λn=1+2n -2λ>0,即λ<1+2n 2时数列{a n }为递增数列,又n ∈N +,∴λ<32.∴“λ<1”是“数列{a n }为递增数列”的充分不必要条件.]5.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =__________.【导学号:62172182】2n-1 [法一:由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n-1. 法二:由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n,∴a n =2n-1.]6.数列{a n }的首项a 1=2,且(n +1)a n =na n +1,则a 3的值为____________. 6 [由(n +1)a n =na n +1得a n +1n +1=a n n ,所以数列⎩⎨⎧⎭⎬⎫a n n 为常数列,则a n n =a 11=2,即a n =2n ,所以a 3=2×3=6.]7.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N +),则a n =____________.【导学号:62172183】3n[当n ≥2时,a n =S n -S n -1=32(a n -1)-32(a n -1-1),整理,得a n =3a n -1,由a 1=32(a 1-1),得a 1=3,∴a na n -1=3,∴数列{a n }是以3为首项,3为公比的等比数列, ∴a n =3n.]8.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 017=____________.2 [由a n =a n +1-1a n +1+1,得a n +1=1+a n1-a n,而a 1=2,则有a 2=-3,a 3=-12,a 4=13,a 5=2,故数列{a n }是以4为周期的周期数列,且a 1a 2a 3a 4=1, 所以T 2 017=(a 1a 2a 3a 4)504a 1=1504×2=2.]9.已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N +),则a n =__________. 2n 2-n +2 [由已知得,1a n +1-1a n =n ,所以1a n -1a n -1=n -1,1a n -1-1a n -2=n -2,…,1a 2-1a 1=1,所以1a n -1a 1=n n -12,a 1=1,所以1a n=n 2-n +22,所以a n =2n 2-n +2.]10.(2017·南京模拟)对于数列{a n },定义数列{b n }满足:b n =a n +1-a n (n ∈N +),且b n +1-b n =1(n ∈N +),a 3=1,a 4=-1,则a 1=____________.【导学号:62172184】8 [由b n +1-b n =1(n ∈N +)可知,数列{b n }成等差数列, 又b 3=a 4-a 3=-1-1=-2,∴b 3-b 2=1, ∴b 2=b 3-1=-3. ∴a 3-a 2=-3, ∴a 2=3+a 3=4.∴b 1=b 2-1=-3-1=-4. ∴a 2-a 1=-4, ∴a 1=a 2+4=4+4=8.] 二、解答题11.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? [解] (1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去). 所以从第7项起各项都是正数.12.已知S n 为正项数列{a n } 的前n 项和,且满足S n =12a 2n +12a n (n ∈N +).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.[解] (1)由S n =12a 2n +12a n (n ∈N +),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .B 组 能力提升 (建议用时:15分钟)1.设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20=____________.245[由2na n =(n -1)a n -1+(n +1)a n +1得na n -(n -1)a n -1=(n +1)a n +1-na n ,又因为1×a 1=1,2×a 2-1×a 1=5,所以数列{na n }是首项为1,公差为5的等差数列,则20a 20=1+19×5,解得a 20=245.]2.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=3S n ,则a n =__________.⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2[由a n +1=3S n ,得a n =3S n -1(n ≥2),两式相减可得a n +1-a n =3S n -3S n -1=3a n (n ≥2), ∴a n +1=4a n (n ≥2). ∵a 1=1,a 2=3S 1=3≠4a 1,∴数列{a n }是从第二项开始的等比数列, ∴a n =a 2qn -2=3×4n -2(n ≥2).故a n =⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2.]3.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N +,都有a n +1>a n ,求实数k 的取值范围. [解] (1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N +,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N +,所以-k 2<32,即得k >-3.11 所以实数k 的取值范围为(-3,+∞).4.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1.于是a 1=1,a 2=31a 1,a 3=42a 2,……a n -1=nn -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘, 整理得a n =nn +12.显然,当n =1时也满足上式. 综上可知,{a n }的通项公式a n =nn +12.。
第34课 等差数列及其前n 项和[最新考纲]内容 要求ABC 等差数列√1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.用符号表示为a n +1-a n =d (n ∈N +,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -1d 2=n a 1+a n2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N +,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )[答案] (1)× (2)√ (3)√ (4)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d =____________. -2 [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2.]3.(2017·某某模拟)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =____________时,{a n }的前n 项和最大.8 [由等差数列的性质可知,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,故a 8>0,a 8+a 9<0,∴a 9<0,即当n =8时,{a n }的前n 项和最大.]4.(2016·某某高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.20 [法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d=2,即a 1=2-2d ,所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知5a 1+a 52=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20.]5.(教材改编)在100以内的正整数中有__________个能被6整除的数. 16 [由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n . 由a n =6n ≤100,即n ≤1646=1623,则在100以内有16个能被6整除的数.]等差数列的基本运算(1)(2017·某某模拟)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=____________. 【导学号:62172185】(2)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =____________. (1)192(2)10 [(1)∵公差为1,∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.(2)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+11×11-12d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.][规律方法] 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.[变式训练1] (1)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是____________.(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________. (1)2 (2)-72 [(1)∵S n =n a 1+a n2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.(2)设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.]等差数列的判定与证明已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N +),数列{b n }满足b n =1a n -1(n∈N +).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的通项公式a n . 【导学号:62172186】 [解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N +),b n =1a n -1.所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52, 所以数列{b n }是以-52为首项,1为公差的等差数列.(2)由(1)知,b n =n -72,则a n =1+1b n =1+22n -7.[规律方法] 1.判断等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于客观题中的简单判断.2.用定义证明等差数列时,常采用两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a n 无意义.[变式训练2] (1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是____________.(填序号)①公差为3的等差数列; ②公差为4的等差数列; ③公差为6的等差数列; ④公差为9的等差数列. ③[∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.](2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N +),则该数列的通项为____________.a n =1n [由已知2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.]等差数列的性质与最值(1)如图所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a 52=____________.⎝ ⎛⎭⎪⎫a 41a 42a 43a 51a 52a 53a61a 62a63(2)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 取得最大值.(1)7 [法一:第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7.法二:由于每行每列都成等差数列,不妨取特殊情况,即这9个数均相同,显然满足题意,所以有63÷9=7,即a 52=7.](2)法一:由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:由法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.法三:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. [规律方法] 1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[变式训练3] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=____________.99 [因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.](2)设等差数列{a n }的前n 项和为S n ,且S 5=10,S 10=30,则S 15=____________. 60 [因为数列{a n }为等差数列,所以S 5,S 10-S 5,S 15-S 10也成等差数列,设S 15=x ,则10,20,x -30成等差数列,所以2×20=10+(x -30),所以x =60,即S 15=60.][思想与方法]1.等差数列的通项公式,前n项和公式涉及“五个量”,“知三求二”,需运用方程思想求解,特别是求a1和d.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,….2.等差数列{a n}中,a n=an+b(a,b为常数),S n=An2+Bn(A,B为常数),均是关于“n”的函数,充分运用函数思想,借助函数的图象、性质简化解题过程.3.等差数列的四种判断方法:(1)定义法:a n+1-a n=d(d是常数)⇔{a n}是等差数列.(2)等差中项法:2a n+1=a n+a n+2(n∈N+)⇔{a n}是等差数列.(3)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(4)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.[易错与防X]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.3.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.课时分层训练(三十四)A 组 基础达标 (建议用时:30分钟)一、填空题1.在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=____________.5 [法一:由题意得⎩⎪⎨⎪⎧10a 1+45d =60,a 1+6d =7,解得⎩⎪⎨⎪⎧a 1=3,d =23,∴a 4=a 1+3d =5.法二:由等差数列的性质有a 1+a 10=a 7+a 4,∵S 10=10a 1+a 102=60,∴a 1+a 10=12.又∵a 7=7,∴a 4=5.]2.已知数列{a n }是等差数列,且a 7-2a 4=6,a 3=2,则公差d =____________.【导学号:62172187】4 [法一:由题意得a 3=2,a 7-2a 4=a 3+4d -2(a 3+d )=6,解得d =4.法二:由题意得⎩⎪⎨⎪⎧a 7-2a 4=a 1+6d -2a 1+3d =6,a 3=a 1+2d =2,解得⎩⎪⎨⎪⎧a 1=-6,d =4.]3.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为____________.8 [设等差数列的公差为d ,由等差数列的性质可得2d =a 3-a 1=4,得d =2,所以a n=1+2(n -1)=2n -1,S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,解得k =8.]4.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为________. 23 [∵3a n +1=3a n -2, ∴a n +1-a n =-23,∴a n =15+-23(n -1)=-23n +473.由a n =-23n +473>0得n <23.5,∴使a k ·a k +1<0的k 值为23.]5.(2017·某某期中)等差数列{a n }中,前n 项和为S n ,若S 4=8a 1,a 4=4+a 2,则S 10=____________.120 [∵{a n }为等差数列,∴2d =a 4-a 2=4,d =2. 由S 4=8a 1得4a 1+4×32×2=8a 1,即a 1=3.∴S 10=10×3+10×92×2=120.]6.(2016·全国卷Ⅰ改编)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=____________.98 [法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98. ]7.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N +),则a 10=____________. 【导学号:62172188】14 [由1a n +1=1a n +13得⎩⎨⎧⎭⎬⎫1a n 为首项为1,公差为13的等差数列,∴1a n =1+(n -1)×13=n +23, ∴a 10=312=14.]8.设数列{a n }的通项公式为a n =2n -10(n ∈N +),则|a 1|+|a 2|+…+|a 15|=____________.130 [由a n =2n -10(n ∈N +)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n <5时,a n <0,当n ≥5时,a n ≥0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.]9.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =____________. 5 [∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S mm, 即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.]10.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N +),若b 3=-2,b 10=12,则a 8=____________.3 [设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.] 二、解答题11.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . 【导学号:62172189】[解] (1)设该等差数列为{a n }, 则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k k -12·d =2k +k k -12×2=k 2+k .由S k =110,得k 2+k -110=0, 解得k =10或k =-11(舍去), 故a =2,k =10. (2)证明:由(1)得S n =n 2+2n2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n 2+n +12=n n +32.12.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .[解] (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧ a 1=1,d =4. 所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+n n -12×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去), 经验证c =-12时,{b n }是等差数列, 故c =-12. B 组 能力提升(建议用时:15分钟)1.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为____________.1941[∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941.] 2.(2017·某某模拟)设数列{a n }的前n 项和为S n ,若S n S 2n 为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为____________.b n =2n -1 [设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1d , 即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14, 所以数列{b n }的通项公式为b n =2n -1.]3.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[解] (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1,由于a n +1≠0,所以a n +2-a n =λ.(2)由题设知a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2,因此存在λ=4,使得数列{a n }为等差数列.4.(2017·苏北四市摸底)已知数列{a n }满足2a n +1=a n +a n +2+k (n ∈N +,k ∈R ),且a 1=2,a 3+a 5=-4.(1)若k =0,求数列{a n }的前n 项和S n ;(2)若a 4=-1,求数列{a n }的通项公式a n .[解] (1)当k =0时,2a n +1=a n +a n +2,即a n +2-a n +1=a n +1-a n , 所以,数列{a n }是等差数列.设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧ a 1=2,2a 1+6d =-4,解得⎩⎪⎨⎪⎧a 1=2,d =-43. 所以,S n =na 1+n n -12d =2n +n n -12×⎝ ⎛⎭⎪⎫-43=-23n 2+83n . (2)由题意,2a 4=a 3+a 5+k ,即-2=-4+k ,所以k =2. 又a 4=2a 3-a 2-2=3a 2-2a 1-6,所以a 2=3,由2a n +1=a n +a n +2+2,得(a n +2-a n +1)-(a n +1-a n )=-2.所以,数列{a n +1-a n }是以a 2-a 1=1为首项,-2为公差的等差数列. 所以a n +1-a n =-2n +3.当n ≥2时,有a n -a n -1=-2(n -1)+3,于是,a n -1-a n -2=-2(n -2)+3,a n -2-a n -3=-2(n -3)+3,…a 3-a 2=-2×2+3,a 2-a 1=-2×1+3,叠加得,a n -a 1=-2(1+2+…+(n -1))+3(n -1)(n ≥2), 所以a n =-2×n n -12+3(n -1)+2=-n 2+4n -1(n ≥2), 又当n =1时,a 1=2也适合.所以数列{a n }的通项公式为a n =-n 2+4n -1,n ∈N +.。
第36课 数列求和[最新考纲]内容 要求ABC 数列求和√数列求和的常用方法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -12d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 11-q n1-q ,q ≠1.2.分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)裂项时常用的三种变形: ①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)如果数列{a n }是周期为k (k 为大于1的正整数)的周期数列,那么S km =mS k .( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1n n +1,则S 5等于____________。
56 [∵a n =1nn +1=1n -1n +1, ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.]3.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和S n =__________. 2n +1-2+n 2[S n =21-2n1-2+n 1+2n -12=2n +1-2+n 2.]4.(2017·南京模拟)数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________.100 [由题意可知,S 100=-1+3-5+7-…-197+199 =(-1+3)+(-5+7)+…+(-197+199) =2+2+…+2 =2×50=100.]5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n=__________. 4-n +42n[设S =3×12+4×122+5×123+…+(n +2)×12n , 则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+⎝ ⎛⎭⎪⎫122+123+…+12n -n +22n +1.∴S =3+⎝ ⎛⎭⎪⎫12+122+…+12n -1-n +22n=3+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-n +22n =4-n +42n .]分组转化求和(2016·北京高考)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.[解] (1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q=1,b 4=b 3q =27,所以b n =3n -1(n =1,2,3,…).设等差数列{a n }的公差为d .因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2. 所以a n =2n -1(n =1,2,3,…). (2)由(1)知a n =2n -1,b n =3n -1.因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -12+1-3n 1-3=n 2+3n-12. [规律方法] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.易错警示:注意在含有字母的数列中对字母的分类讨论.[变式训练1] (2016·浙江高考)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N +.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.[解] (1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n , 所以数列{a n }的通项公式为a n =3n -1,n ∈N +.(2)设b n =|3n -1-n -2|,n ∈N +,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3, 当n ≥3时,T n =3+91-3n -21-3-n +7n -22=3n -n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112, n ≥2,n ∈N +.裂项相消法求和若A n 和B n 分别表示数列{a n }和{b n }的前n 项的和,对任意正整数n ,a n =2(n +1),3A n -B n =4n .(1)求数列{b n }的通项公式; (2)记c n =2A n +B n,求{c n }的前n 项和S n . 【导学号:】 [解] (1)由于a n =2(n +1),∴{a n }为等差数列,且a 1=4. ∴A n =n a 1+a n2=n 4+2n +22=n 2+3n ,∴B n =3A n -4n =3(n 2+3n )-4n =3n 2+5n , 当n =1时,b 1=B 1=8,当n ≥2时,b n =B n -B n -1=3n 2+5n -[3(n -1)2+5(n -1)]=6n +2.由于b 1=8适合上式,∴b n =6n +2.(2)由(1)知c n =2A n +B n =24n 2+8n=14⎝ ⎛⎭⎪⎫1n -1n +2, ∴S n =14⎣⎢⎡⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+=14⎝⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.[规律方法] 1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项,从而达到求和的目的.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.[变式训练2] S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.[解] (1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n ==n32n +3.错位相减法求和n n {b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =a n +1n +1b n +2n,求数列{c n }的前n 项和T n .[解] (1)由题意知当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5. 设数列{b n }的公差为d .由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,解得⎩⎪⎨⎪⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =6n +6n +13n +3n=3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+41-2n1-2-n +1×2n +2 =-3n ·2n +2,所以T n =3n ·2n +2.[规律方法] 1.如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,若{b n }的公比为参数,应分公比等于1和不等于1两种情况讨论.2.在书写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,即公比q 的同次幂项相减,转化为等比数列求和.[变式训练3] 已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15. (1)求{a n }的通项公式;(2)设b n =a n2a n ,求数列{b n }的前n 项和T n . 【导学号:】 [解] (1)设等差数列{a n }的公差为d ,首项为a 1. ∵S 3=6,S 5=15, ∴⎩⎪⎨⎪⎧3a 1+12×3×3-1d =6,5a 1+12×5×5-1d =15,即⎩⎪⎨⎪⎧a 1+d =2,a 1+2d =3,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n . (2)由(1)得b n =a n 2a n =n2n , ∴T n =12+222+323+…+n -12n -1+n2n ,①①式两边同乘12, 得12T n =122+223+324+…+n -12n +n2n +1,② ①-②得12T n =12+122+123+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,∴T n =2-12n -1-n2n .[思想与方法]解决非等差、等比数列的求和,主要有两种思路:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的数列,往往通过裂项相消法、倒序相加法等来求和. [易错与防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.利用裂项相消法求和的注意事项:(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差与系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 课时分层训练(三十六)A 组 基础达标 (建议用时:30分钟)一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.n 2+1-12n [该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+ (12)=n 2+1-12n .]2.在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n +1}的前10项和为________.120 [{a n +a n +1}的前10项和为a 1+a 2+a 2+a 3+…+a 10+a 11=2(a 1+a 2+…+a 10)+a 11-a 1=2S 10+10×2=120.]3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了________里.96 [由题意,知每天所走路程形成以a 1为首项,公比为12的等比数列,则a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=96,即第二天走了96里.]4.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于________.【导学号:】7 [根据题意这个数列的前8项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.] 5.已知函数f (x )=x a的图象过点(4,2),令a n =1f n +1+f n,n ∈N +,记数列{a n }的前n 项和为S n ,则S 2 017=________.2 018-1 [由f (4)=2得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n +1+f n=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)= 2 018-1.]6.设数列{a n }的前n 项和为S n ,且a n =sin n π2,n ∈N +,则S 2 016=__________.0 [a n =sinn π2,n ∈N +,显然每连续四项的和为0.S 2 016=S 4×504=0.]7.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =__________.【导学号:】2n +1-2 [∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.]8.设数列{a n }的前n 项和为S n ,若a 2=12,S n =kn 2-1(n ∈N +),则数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为__________.n2n +1[令n =1得a 1=S 1=k -1,令n =2得S 2=4k -1=a 1+a 2=k -1+12,解得k =4,所以S n =4n 2-1,1S n =14n 2-1=12n +12n -1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,则数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为12⎝ ⎛⎭⎪⎫11-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.] 9.(2017·南通三模)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N +),则∑k =1100(a k a k+1)的值为________.100101[∵(1-a n +1)(1+a n )=1, ∴a n -a n +1=a n a n +1, ∴1a n +1-1a n=1.又a 1=1,∴1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为1的等差数列,∴1a n=1+(n -1)×1=n .∴a n =1n.∴a k ·a k +1=1kk +1=1k -1k +1, ∴∑k =1100(a k a k +1)=a 1a 2+a 2a 3+…+a 100a 101=1-12+12-13+…+1100-1101=1-1101=100101.] 10.(2017·苏州模拟)已知{a n }是等差数列,a 5=15,a 10=-10,记数列{a n }的第n 项到第n +5项的和为T n ,则|T n |取得最小值时的n 的值为________.5或6 [由a 5=15,a 10=-10,得d =a 10-a 510-5=-10-1510-5=-5,则a n =a 5+(n -5)×(-5)=40-5n , ∴a n +5=40-5(n +5)=15-5n , ∴T n =640-5n +15-5n2=165-30n .当|T n |=0时,n =112,又n ∈N +故当n =5或6时,|T n |取得最小值.]二、解答题11.已知数列{a n }满足a 1=1,(n +1)a n =(n -1)a n -1(n ≥2,n ∈N +). (1)求数列{a n }的通项公式a n ;(2)设数列{a n }的前n 项和为S n ,证明:S n <2. 【导学号:】 [解] (1)∵当n ≥2时,由(n +1)a n =(n -1)a n -1, 得a n a n -1=n -1n +1,a n -1a n -2=n -2n ,…,a 2a 1=13. 将上述式子相乘得a n a 1=2n n +1.又a 1=21×1+1=1,∴a n =2nn +1. (2)证明:∵a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=2⎝⎛⎭⎪⎫1-1n +1=2-2n +1, ∴S n <2.12.(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.[解] (1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.B 组 能力提升 (建议用时:15分钟)1.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 1 289 [由a 1=2,a 2n =a n +1,a 2n +1=n -a n , 得a 2n +a 2n +1=n +1,∴a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99) =2+2+3+…+50=1 276, ∵a 100=1+a 50=1+(1+a 25) =2+(12-a 12)=14-(1+a 6) =13-(1+a 3)=12-(1-a 1)=13, ∴a 1+a 2+…+a 100=1 276+13=1 289.]2.已知等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,则数列lg a 1,2lg a 2,22lga 3,23lg a 4,…,2n -1lg a n ,…的前n 项和S n =________.(n -1)·2n+1 [∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n ,∴a 2n =102n ,即a n =10n,∴2n -1lg a n =2n -1lg 10n =n ·2n -1,∴S n =1+2×2+3×22+…+n ·2n -1,①2S n =1×2+2×22+3×23+…+n ·2n,② ∴①-②得-S n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )·2n-1,∴S n =(n-1)·2n+1.]3.设S n 是数列{a n }的前n 项和,已知a 1=3,a n +1=2S n +3(n ∈N +). (1)求数列{a n }的通项公式;(2)令b n =(2n -1)a n ,求数列{b n }的前n 项和T n . [解] (1)当n ≥2时,由a n +1=2S n +3得a n =2S n -1+3, 两式相减,得a n +1-a n =2S n -2S n -1=2a n , ∴a n +1=3a n ,∴a n +1a n=3. 当n =1时,a 1=3,a 2=2S 1+3=2a 1+3=9,则a 2a 1=3.∴数列{a n }是以a 1=3为首项,公比为3的等比数列. ∴a n =3×3n -1=3n.(2)法一:由(1)得b n =(2n -1)a n =(2n -1)·3n, ∴T n =1×3+3×32+5×33+…+(2n -1)·3n,① 3T n =1×32+3×33+5×34+…+(2n -1)·3n +1,②①-②得-2T n =1×3+2×32+2×33+…+2×3n-(2n -1)·3n +1=3+2×(32+33+…+3n )-(2n -1)·3n +1=3+2×321-3n -11-3-(2n -1)·3n +1=-6-(2n -2)·3n +1.∴T n =(n -1)·3n +1+3.法二:由(1)得b n =(2n -1)a n =(2n -1)·3n. ∵(2n -1)·3n =(n -1)·3n +1-(n -2)·3n,∴T n =b 1+b 2+b 3+…+b n=(0+3)+(33+0)+(2×34-33)+…+[(n -1)·3n +1-(n -2)·3n]=(n -1)·3n +1+3.4.(2017·无锡期中)已知数列{a n },{b n }是正项数列,{a n }为等差数列,{b n }为等比数列,{b n }的前n 项和为S n (n ∈N +),且a 1=b 1=1,a 2=b 2+1,a 3=b 3-2.(1)求数列{a n },{b n }的通项公式; (2)令c n =b n +1S n ·S n +1,求数列{c n }的前n 项和S n ;(3)设d n =a 2nb n +1,若d n ≤m 恒成立,求实数m 的取值范围.[解] (1)设公差为d ,公比为q ,由已知得a 1=b 1=1,d =q,2d =q 2-3, 解之得:d =q =3,a n =3n -2.又因b n >0,故b n =3n -1.(2)S n =b 11-q n 1-q =1-3n 1-3=3n-12,所以c n =4·3n3n -13n +1-1=2⎝ ⎛⎭⎪⎫13n -1-13n +1-1, T n =2⎝ ⎛⎭⎪⎫12-18+18-126+…+13n-1-13n +1-1=2⎝ ⎛⎭⎪⎫12-13n +1-1. (3)d n =a 2nb n +1=3n -223n, d n +1-d n =3n +123n +1-3n -223n =-18n 2+42n -113n +1. 当n =1,2时,d n <d n +1,当n ≥3,n ∈N +时,d n >d n +1,又因为d 1=13,d 2=169,d 3=4927,d 4=10081,所以m 的取值范围为⎣⎢⎡⎭⎪⎫4927,+∞.。