第二章 汽车的燃油经济性
- 格式:doc
- 大小:259.50 KB
- 文档页数:15
第一章汽车的动力性1.1 试说明轮胎滚动阻力的定义,产生机理和作用形式。
定义:汽车在水平道路上等速行驶时受到的道路在行驶方向上的分力称为滚动祖力。
2)产生机理:由于轮胎内部摩擦产生弹性轮胎在硬支律路面上行驶时加载变形曲线和卸载变形曲线不重合会有能全损失,即弹性物质的迟滞损失。
这种迟滞损失表现为一种阻力偶。
当车轮不滚动时,地面对丰轮的法向反作用力的分布是前后对称的;当车轮滚动时,由于弹性阻滞现象,处于压缩过程的前部点的地面法向反作用力就会大于处于压缩过程的后部点的地面法向反作用力,这样,地面法向反作用力的分布前后不对称,而使他们的合力F Z相对于法线前移一个距离a,它随弹性迟滞损失的增大变大。
即滚动时有滚动阻力偶T f = F Z.•a阻碍车轮滚动。
3]作用形式: T f = Wf,T f = T f/r1.2 滚动阻力系数与哪些因素有关?答:滚动阻力系数与路面的种类、行驶车速以及轮胎的构造、材料和气压有关。
1.3=494.312+0.13U a2由计算机作图有:1.4 空车、满载时汽车动力性有无变化?为什么?答:动力性会发生变化。
因为满载时汽车的质量会增大,重心的位置也会发生改变。
质量增大,滚动阻力、坡度阻力和加速阻力都会增大,加速时间会增加,最高车速降低。
重心位置的改变会影响车轮附着率,从而影响最大爬坡度。
1.5 如何选择汽车发动机功率?答:发动机功率的选择常先从保证汽车预期的最高车速来初步确定。
若给出了期望的最高车速,选择的发动机功率应大体等于,但不小于以最高车速行驶时的行驶阻力功率之和。
发动机的最大功率但也不宜过大,否则会因发动机负荷率偏低影响汽车的燃油经济性。
在实际工作中,还利用现有汽车统计数据初步估计汽车比功率来确定发动机应有功率。
不少国家还对车辆应有的最小比功率作出规定,以保证路上行驶车辆的动力性不低于一定水平,防止某些性能差的车辆阻碍车流。
1.6 超车时该不该换入低一挡的排挡?答:超车时排挡的选择,应该使车辆在最短的时间内加速到较高的车速,所以是否应该换入低一挡的排挡应该由汽车的加速度倒数曲线决定。
⏹预备知识:汽车传动系的功能、组成、构造及工作原理。
发动机的转速特性。
汽车的动力性。
⏹中心思想:介绍燃油经济性评价指标、计算方法、影响因素及新一代高效节能技术。
引言在保证动力性的条件下,汽车以尽量少的燃油消耗量经济行驶的能力,称作汽车的燃油经济性。
燃油经济性好,可以降低汽车的使用费用、减少同家对进口石油的依赖性、节省石油资源;同时降低了发动机产生的CO2(温室效应气体)的排放量,起到防止地球变暖的作用。
发动机的燃油消耗率与排放污染是有密切关系的,只能在保证排放达到有关法规要求的前提下来降低发动机的燃油消耗率,援高汽车的燃油经济性。
节约燃料、保护环境已成为全球关注的大事,汽车燃油经济性受到各国政府、汽车制造业与汽车使用者的重视。
第一节汽车燃油经济性的评价指标汽车的燃油经济性常用一定运行工况下汽车行驶百公里的燃加消耗量或一定燃油量能使汽车行驶的里程来衡量。
在我国及欧洲,燃油经济性指标的单位为L/100Km,即行驶100km所消耗的燃油升数。
其数值越大,汽车燃油经济性越差。
在美国,燃油经济性指标的单位为MPG或Mile/USgal,指的是每加仑燃油能行驶的英里数。
这个数字越大,汽车燃油经济性越好。
⏹等速行驶百公里燃油消耗量是常用的一种评价指标,指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高档在水平良好路面上等速行驶100km的燃油消耗量。
常测出每隔30km/h或20km/h速度间隔的等速百公里燃油消耗量,然后在图上连成曲线,称为等速百公里燃油消耗量曲线,用它来评价汽车的燃油经济性,如图2-1所示。
等速工况并没有全面反映汽车的实际运行情况,持别是在市区行驶中频繁出现的加速、减速、怠速停车等工况。
图2-2给出了联合国欧洲经济委员会、美国及我国法定的测定燃油经济性的循环行驶工况图。
欧洲经济委员会(ECE)规定,要测量车速为90km/h和120km/h的等速百公里燃油消耗里和按ECE-R.15循环工况的百公里燃油消耗量,并各取1/3相加作为混合百公里燃油消耗量来评定汽车燃油经济性。
美国环境保护局(EPA)规定.要测量城市循环工况(UDDS)及公路循环工况(HWFET)的燃油经济性(单位为每加仑燃油汽车行驶英里数mile/gal),并按下式计算综合燃油经济性(单位:mile/gal)循环工况规定了车速—时间行驶规范,例如,何时换挡、何时制动以及行车的速度和加速度等数值。
因此,它在路上试验比较困难,一般多规定在室内汽车底盘测功机(转鼓试验台)上进行测试;而规定在路上进行试验的循环工况均很简单。
自1973年发生世界石油危机后,各国十分重视节约燃油,不少国家制定了控制燃油消耗的法规。
美国针对轿车制定了“公司平均燃油经济性标准”(简称为CAFÉ)。
CAFE是指一个公司全部销售轿车的平均燃油经济性。
若不能达到该标准,公司将被处以罚款。
图2-3是CAFE值随时间变化的曲线。
到1989年,要求CAFE值为27.5mile/USgal(相当于10.27L/100km)。
此后再没有明确的规定。
图中1990年以后的阴影部分是美国议会讨论中提出的数值范围。
我国原机械工业部于1984年发布了货车与客车燃油消耗量限值标准。
在1997年防止地球变暖京都会议上,欧盟主张发达国家在2010年时,温室气体排放量比1990年要减少15%。
这必然要求汽车燃油消耗应有相应的降低。
有资料表明,到2005年或2010年时,欧洲轿车CO2排放量已规定为120g/km,相当的燃油消耗量应为5.17L/100km(汽油机)和4.56L/100km(柴油机)。
现在世界各国正在研制21世纪新一代超经济型轿车,其油耗指标接近于3L/100km。
第二节汽车燃油经济性的计算在汽车设计与开发工作中,常需要根据发动机台架试验得到的万有特性因与汽车功率平衡图,对汽车燃油经济性进行估算。
本节将介绍燃油经济性循环行驶试验工况的各工况,如等速行驶、加速、减速和怠速停车等行驶工况的燃油消耗量计算方法。
图2-4给出了一汽油发动机的万有特性曲线。
在万有特性图上有等燃油消耗率曲线。
根据这些曲线,可以确定发动机在一定转速n、发出一定功率Pe时的燃油消耗率b。
为了便于进行计算,按照转速n和车速ua的转换关系在横坐标上画出汽车(最高档)的行驶车速比例尺。
此外,计算时还需要汽车在水平路面上等速行驶时,为克服滚动阻力与空气阻力,发动机应提供的功率。
根据等速行驶车速ua及阻力功率P,在万有特性图上(利用插值法)可确定相应的燃泊消耗率b,从而计算出以该车速等速行驶时单位时间内的燃油消耗量(mL/s)为1.等速行驶工况燃油消耗量的计算整个等速过程行经s(m)行程的燃油消耗量(mL)为折算成等速百公里燃泊消耗量(L/100km)为2.等加速行驶工况燃油消耗量的计算在汽车加速行驶时,发动机还要提供为克服加速阻力所消耗的功率。
下面计算由ua1以等加速度加速行驶至ua2的燃油消耗量,参看图2-5。
把加速过程分隔为着干区间。
例如按速度每增加1km/h为一个小区间,每个区间的燃油消耗量可根据其平均的单位时间燃油消耗量与行驶时间之积来求得。
各区间起始或终了车速对应时刻的单位时间燃油消耗量Q1(mL/s),可根据相应的发动机发出的功率与燃油消耗率求得汽车行驶速度每增加1km/h所需时间(s)为从行驶初速ua1加速至ua1+1km/h所需燃油量(mL)为由车速ua1+1km/h再增加1km/h所需的燃油量(mL)为依此,每个区间的燃油消耗量为整个加速过程的燃油消耗量(mL)为加速区段内汽车行驶的距离(m)为3.等减速行驶工况燃抽消耗量的计算减速行驶时,油门松开(关至最小位置)并进行轻微制动,发动机处于强制怠速状态,其油耗量即为正常怠速油耗。
所以,减速工况燃油消耗量等于减速行驶时间与怠速油耗的乘积。
减速时间(s)为减速过程燃油消耗量(mL)为减速区段内汽车行驶的距离(m)为4.怠速停车时的燃油消耗量若怠速停车时间为ts(s),则燃油消耗量(mL)为5.整个循环工况的百公里燃油消耗量对于由等速、等加速、等减速、怠速停车等行驶工况组成的循环,如ECE-R.15和我国货车六工况法,其整个试验循环的百公里燃油消耗量(L/100km)为式中, Q为所有过程油耗量之和(mL);s为整个循环的行驶距离(m)第三节影响汽车燃油经济性的因素汽车等速百公里燃油消耗量为由上式可知,等速百公里燃油消耗量正比于等速行驶时的行驶阻力与燃油消耗率,反比于传动效率。
发功机的燃油消耗率,一方面取决于发动机的种类、设计制造水平;另一方面又与汽车行驶时发动机的负荷率有关。
从万有特性图上可知.发动机负荷率低时,b值显著增大。
当然,总的汽车燃油消耗还与加速、减速、制动、怠速停车等工况以及汽车附件(如空调)的使用有关。
图2-6是一美国中型轿车在EPA城市和EPA公路循环工况中的燃油化学能与汽车各处消耗能量的平衡图。
由图可以看出:汽车燃泊消耗除与行驶阻力(滚动阻力与空气阻力)、发动机燃油消耗率以及传动系效率有关之外,还与停车怠速油耗、汽车附件(空调等)消耗及制动能量损耗有关。
在城市循环工况中,后三个因素的影响相当大,它们消耗的能量总计达燃油化学能的25.2%。
但传统结构的汽车在这些方面尚未找到突破性的提高燃油经济性的措施。
一、使用方面1.行驶车速由图2-1可以看出,汽车在接近于低速的中等车速时燃油消耗量Qs最低,高速时随车速增加Qs迅速加大。
这是因为在高速行驶时,虽然发动机的负荷率较高,但汽车的行驶阻力增加很多而导致百公里油耗增加的缘故。
2.挡位选择在一定道路上,汽车用不同排挡行驶,燃油消耗量是不一样的。
显然,在同一道路条件与车速下,虽然发动机发出的功率相同,但挡位越低,后备功率越大,发动机的负荷率越低,燃油消耗率越高,百公里燃油消耗量就越大,而使用高挡时的情况则相反。
3.挂车的应用可提高运输生产率和降低成本(如降低燃油消耗量)。
CA10B汽车经常拖挂4.5、5t挂车,行驶于坡度小于8%、最大坡度小于11%的道路上,生产率可提高30%-50%,油耗可降低20%-30%(以100t·km计)。
拖带挂车后,虽然汽车总的燃油消耗量增加了,但以100t·km计的油耗却下降了,即分摊到每吨货物上的油耗下降了。
拖带挂车,节省燃油的原因有两个,一是带挂车后阻力增加,发动机的负荷率增加,使燃油消耗率b下降;另一个原因是汽车列车的质量利用系数(即装载质量与整车整备质量之比)较大。
4.正确地保养与调整汽车的调整与保养会影响到发动机的性能与汽车行驶阻力,所以对百公里油耗有相当影响。
一般驾驶员常用滑行距离来检查底盘的技术状况。
当汽车的前轮定位正确,制动器摩擦片与制动鼓有正常的间隙,轮胎气压正常,各相对运动零部件滑磨表面光洁、间隙恰当并有充分的润滑油时,底盘的行驶阻力减小,滑行距离便大大增加。
阻力较小的装载质量为2.5t的汽车,在良好水平道路上以30km/h的车速开始摘挡滑行,滑行距离应达200—250m。
当滑行距离由200m增至250m时,油耗可降低7%。
二、汽车结构方面1.缩减轿车总尺寸和减轻质量大型轿车费油的原因是大幅度地增加了滚动阻力、空气阻力、坡度阻力和加速阻力。
为了保证高动力性而装用的大排量发动机,行驶中负荷率低也是原因之一。
为了减轻质量,轿车选用材料中的铝与复合材料的比例日益增加。
2.发动机发动机的热损失与机械损耗占燃油化学能的65%左右。
(1)提高现有汽油发动机的热效率与机械效率。
(2)扩大柴油发动机的应用范围。
(3)增压化(目前常提供选用的增压汽油机,采用增压的柴油机已很普遍)。
(4)广泛采用电子计算机控制技术(目前各国电喷式汽油机的产量已达世界汽油机总产量的90%左右)。
3.传动系传动系的挡位增多后,增加了选用合适挡位使发动机处于经济工作状况的机会。
因此,近年来轿车手动变速器巳基本上采用5挡,也有采用6挡的。
大型货车有采用更多挡位的趋势,如装载质量为4t的五十铃货车装用了7挡变速器。
由专职驾驶员驾驶的重型汽车和牵引车,为了改善动力性和燃油经济性,变速器的挡位可多至10—16个。
但不能为了提高性能而过多地增加有级式变速器的挡数,因为这将使传动系过于复杂,而且也不便于操作选用。
挡数无限的无级变速器,在任何条件下都提供了使发动机在最经济工况下工作的可能性;苦无级变速器始终能维持较高的机械效率,则汽车的燃油经济性将显著提高。
4.汽车外形与轮胎第四节新一代高效率节能汽车的研究1.原因近年来,防止地球变暖、节约燃油、严格控制排气污染,已成为国际社会极为关心的热点议题。
有资料表明,查明的石油储藏,按现在的开采速度,只够世界使用50-60年;而有的环境学者则认为,当务之急是减少CO2的排放量,防止地球变暖。