41比的基本性质和化简比
- 格式:ppt
- 大小:472.50 KB
- 文档页数:28
《比的基本性质和化简比》教案一、教学目标:知识与技能:1. 学生能理解比的基本性质,掌握化简比的方法。
2. 学生能够运用比的基本性质和化简比的方法解决实际问题。
过程与方法:1. 通过观察、思考、交流,培养学生分析问题、解决问题的能力。
2. 学生通过自主学习、合作学习,提高数学思维能力和团队协作能力。
情感态度与价值观:1. 培养学生对数学的兴趣和自信心。
2. 学生能够认识到数学在生活中的重要性,培养应用数学的意识。
二、教学重点与难点:重点:1. 比的基本性质的理解和运用。
2. 化简比的方法和步骤。
难点:1. 理解和掌握比的基本性质。
2. 灵活运用化简比的方法解决实际问题。
三、教学准备:教师准备:1. 教学课件或黑板。
2. 教学素材和实例。
学生准备:1. 课本和相关学习资料。
2. 笔记本和文具。
四、教学过程:1. 导入:教师通过一个实际问题引入比的概念,如“一辆汽车以60公里/小时的速度行驶,另一辆汽车以80公里/小时的速度行驶,两辆汽车的速度比是多少?”引导学生思考和解答。
2. 比的基本性质:教师引导学生观察和分析比的基本性质,如比的前项和后项乘或除以一个相同的数(0除外),比值不变。
学生通过举例和练习,理解和掌握比的基本性质。
3. 化简比:教师引导学生学习和掌握化简比的方法和步骤。
将比的前项和后项分别除以它们的最大公约数,得到最简比。
学生通过实例和练习,理解和掌握化简比的方法。
4. 巩固练习:教师给出一些化简比的练习题,学生独立完成,教师进行讲解和指导。
5. 总结与拓展:教师引导学生总结比的基本性质和化简比的方法,并提醒学生注意0的情况。
接着,教师给出一些实际问题,让学生运用比的基本性质和化简比的方法解决。
五、课后作业:教师布置一些化简比的练习题,让学生巩固所学知识。
鼓励学生寻找生活中的比,进行实际应用。
六、教学策略:1. 采用问题驱动法,引导学生通过观察、思考、交流,自主探索比的基本性质和化简比的方法。
六年级上第一讲比的意义比的基本性质化简比在六年级上册的数学学习中,我们迎来了一个重要的概念——比。
比的知识贯穿于数学的各个领域,对于我们理解数量关系、解决实际问题有着重要的作用。
这一讲,我们就来深入探讨比的意义、比的基本性质以及化简比。
首先,让我们来理解比的意义。
比,表示两个数相除。
比如,我们说 3∶5,就表示 3 除以 5。
可以把比看作一种关系,它反映了两个数量之间的相对大小。
在生活中,比的例子随处可见。
比如,调配饮料时,水和果汁的比例;建筑设计图中,实际长度与图纸上长度的比例;比赛中,两队得分的比例等等。
比通常用“∶”来表示,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
例如,在 6∶8 中,6 是前项,8 是后项。
那为什么要学习比呢?因为比能更清晰地表达两个数量之间的关系,帮助我们进行比较和分析。
接下来,我们了解比的基本性质。
比的基本性质是:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。
这个性质就像一把神奇的钥匙,可以帮助我们化简比。
比如,我们有一个比 12∶18。
要化简这个比,我们可以根据比的基本性质,先找出 12 和 18 的最大公因数 6,然后将前项和后项同时除以6,得到 2∶3。
再比如,对于比 4∶5,如果我们将前项和后项同时乘以 2,就变成了 8∶10,但比值仍然不变,还是 4/5。
比的基本性质在解决实际问题中非常有用。
比如,在按比例分配问题中,如果知道两个量的比和总量,就可以根据比的基本性质来求出每个量的具体数值。
那么,如何化简比呢?化简比有多种方法。
一种是整数比的化简。
先找出前项和后项的最大公因数,然后同时除以这个最大公因数。
例如,化简 24∶36。
我们先求出 24 和 36 的最大公因数是 12,然后将前项和后项同时除以 12,得到 2∶3。
另一种是分数比的化简。
把比的前项和后项同时乘它们分母的最小公倍数,变成整数比,再进行化简。
比如,化简 3/4∶5/8,先将前项和后项同时乘 8,得到 6∶5。
《比的基本性质与化简比》教学内容:青岛版六年级数学上册第三单元人体的奥秘——比。
比的基本性质与化简比第2课时第41-44页教学目标:1.在解决实际问题的过程中,运用商不变的性质和分数的基本性质,概括并理解比的基本性质并会运用比的基本性质化简比。
2.经历比的基本性质的探索过程,提高比较、类推能力体验化归的数学方法。
3.在解决化简比的实际问题中,感受比在生活中的应用,体验数学与生活的密切相关性。
教学重难点教学重点:正确理解并掌握比的基本性质。
教学难点:运用比的基本性质把比化成最简单的整数比。
教具、学具教具:多媒体课件教学过程一、创设情境,引入课题(用时约5分钟)1.出示情境图引入复习师:赵凡想用自己身体高度中的一些数据考考你,敢接受挑战吗?(敢)(1)什么叫做比?比的各部分名称是什么?(2)比与除法、分数之间是什么关系?2.课件出示问题:举例说明除法中商不变的规律(分数的基本性质)是什么?(1) 除法中商不变的规律。
12÷8=(12÷4)÷(8÷4)=3÷2=1.51.2÷0.6=(1.2×10)÷(0.6×10)学生回答后课件出示总结:商不变性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数(0除外)商不变。
(2) 分数的基本性质。
(略)3.引入课题.师:在除法中有商不变的性质,在分数中有分数的基本性质,那么比有没有类似的性质呢?如果有会是什么呢?这就是这节课我们要探究学习的一个内容。
板书课题:比的基本性质【设计意图:比与分数、除法有着密切的关系,通过复习建造了由已知知识向新知的学习迁移过渡,培养学生的迁移能力】二、自主学习,小组探究(用时约7分钟)1.猜测比的基本性质。
学生猜测,并相互补充,把这条性质说完整。
预设:(1)我觉得比也应该有自己的性质。
(2)我猜想是比的前项和后项同时乘或除以同一个数(0除外),比值不变。
如何正确“化简比” 和“求比值”“求比值”和“化简比”是小学数学中的重要内容,同时这两个内容的掌握对于同学们今后的学习起着至关重要的作用。
如何区分“求比值”和“化简比”,并且正确的进行“求比值”和“化简比”呢?你看了老师的技巧讲解,你就会明白:一、化简比和求比值的区别:1、在计算依据和方法上的区别。
化简比依据的是比的基本性质,即将比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
求比值依据的是比的意义,计算方法是用比的前项除以后项。
2、在计算结果上的区别。
化简比最终的结果是一个最简的整数比;求比值的结果是一个数,可以是分数、小数或整数。
二、化简比的技巧:1、整数比的化简:方法一:同时缩小法。
根据比的基本性质,把比的前项、后项同时除以它们的最大公约数,使比化简。
例如: 14∶21=(14÷7)∶(21÷7)=2∶3 方法二:约分化简法。
先把比改写成分数的形式,然后根据分数的基本性质把这个分数进行约分,最后写成比的形式,从而化简。
例如:14∶21=2∶32、分数比的化简;方法一:把比的前、后项同时乘它们分母的最小公倍数。
方法二:用比的前项除以比的后项,计算结果写成比的形式。
3、小数比的化简:方法一:先把小数比的前、后项同时乘10、100、100……把小数化成整数比,然后再按整数比的化简方法进行化简。
例如:0.2∶0.7=(0.2×10)∶(0.7×10)=2∶7方法二:比的前后项中有0.5、0.25、0.125的,可以把比的前后项同时乘2、4、8,直接把小数比化简。
例如:0.25∶7=(0.25×4)∶(7×4)=1∶28方法三:约分化简法。
先把小数比改写成分数的形式,然后根据分数的基本性质把这个分数进行的分子和分母变成整数,再约分,最后写成比的形式。
例如:2.7∶2.1== ======9∶74、前后项不是同一类数:要先进行小数、分数的互化,再化简比。
如何正确“化简比” 和“求比值”“求比值”和“化简比”是小学数学中的重要内容,同时这两个内容的掌握对于同学们今后的学习起着至关重要的作用。
如何区分“求比值”和“化简比”,并且正确的进行“求比值”和“化简比”呢?你看了老师的技巧讲解,你就会明白:一、化简比和求比值的区别:1、在计算依据和方法上的区别。
化简比依据的是比的基本性质,即将比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
求比值依据的是比的意义,计算方法是用比的前项除以后项。
2、在计算结果上的区别。
化简比最终的结果是一个最简的整数比;求比值的结果是一个数,可以是分数、小数或整数。
二、化简比的技巧:1、整数比的化简:方法一:同时缩小法。
根据比的基本性质,把比的前项、后项同时除以它们的最大公约数,使比化简。
(课本上这样讲)例如:14∶21=(14÷7)∶(21÷7)=2∶3方法二:约分化简法。
先把比改写成分数的形式,然后根据分数的基本性质把这个分数进行约分,最后写成比的形式,从而化简。
例如:14∶21=2114=32=2∶3 2、分数比的化简;方法一:把比的前、后项同时乘它们分母的最小公倍数。
(课本上这样讲) 例如:53∶78=(53×35)∶(78×35)=21∶40 方法二:用比的前项除以比的后项,计算结果写成比的形式。
例如:53∶78=53÷78=53×87=21∶40 3、小数比的化简:方法一:先把小数比的前、后项同时乘10、100、100……把小数化成整数比,然后再按整数比的化简方法进行化简。
(课本上这样讲)例如:0.2∶0.7=(0.2×10)∶(0.7×10)=2∶7方法二:比的前后项中有0.5、0.25、0.125的,可以把比的前后项同时乘2、4、8,直接把小数比化简。
例如:0.25∶7=(0.25×4)∶(7×4)=1∶28方法三:约分化简法。
如何正确“化简比” 和“求比值”“求比值”和“化简比”是小学数学中的重要内容,同时这两个内容的掌握对于同学们今后的学习起着至关重要的作用。
如何区分“求比值”和“化简比”,并且正确的进行“求比值”和“化简比”呢?你看了老师的技巧讲解,你就会明白:一、化简比和求比值的区别:1、在计算依据和方法上的区别。
化简比依据的是比的基本性质,即将比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
求比值依据的是比的意义,计算方法是用比的前项除以后项。
2、在计算结果上的区别。
化简比最终的结果是一个最简的整数比;求比值的结果是一个数,可以是分数、小数或整数。
二、化简比的技巧:1、整数比的化简:方法一:同时缩小法。
根据比的基本性质,把比的前项、后项同时除以它们的最大公约数,使比化简。
例如: 14∶21=(14÷7)∶(21÷7)=2∶3 方法二:约分化简法。
先把比改写成分数的形式,然后根据分数的基本性质把这个分数进行约分,最后写成比的形式,从而化简。
例如:14∶21=2∶32、分数比的化简;方法一:把比的前、后项同时乘它们分母的最小公倍数。
方法二:用比的前项除以比的后项,计算结果写成比的形式。
3、小数比的化简:方法一:先把小数比的前、后项同时乘10、100、100……把小数化成整数比,然后再按整数比的化简方法进行化简。
例如:0.2∶0.7=(0.2×10)∶(0.7×10)=2∶7方法二:比的前后项中有0.5、0.25、0.125的,可以把比的前后项同时乘2、4、8,直接把小数比化简。
例如:0.25∶7=(0.25×4)∶(7×4)=1∶28方法三:约分化简法。
先把小数比改写成分数的形式,然后根据分数的基本性质把这个分数进行的分子和分母变成整数,再约分,最后写成比的形式。
例如:2.7∶2.1== ======9∶74、前后项不是同一类数:要先进行小数、分数的互化,再化简比。
比的基本性质设计理念比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的性质和分数的基本性质的基础上进行教学的。
本课时在教学设计上有以下几个特点:1.自主探究,猜测验证在教学比的基本性质的环节上,充分体现以学生为主的原则,鼓励学生按照自己的思维规律,大胆猜想并通过举例、论证等方法进行验证,使学生经历“大胆猜想——小心验证——得出结论”的全过程,充分体验到成功的快乐。
2.巧妙点拔,层层深入在应用比的基本性质化简比时,尽量让学生自主学习,步步深入,充分发挥教师在关键处的点拨作用,使学生理解化简比的意义,掌握化简比的方法,同时能正确区分化简比和求比值的不同之处。
教材分析比的基本性质是在学生学习了比的意义,比与分数和除法的关系商不变的性质和分数的基本性质的基础上进行教学的。
教材联系学生学过的除法中商不变的性质和分数的基本性质,通过想一想启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。
知识要点1.探究比的基本性质2.化简整数比的方法3.求比值和化简比的区别学情分析在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。
分数之间的关系。
从语言学的角度说,分数、比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标1.知识与技能理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.过程与方法通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3.情感态度和价值观渗透“事物是相互联系、发展变化”的辩证唯物主义观点。
教学重难点重点:理解比的基本性质,掌握化简比的方法。
难点:利用比的基本性质化简比,并能熟练地化简整数、分数、小数比。
比的基本性质精品教案(大赛一等奖作品)本课讲解比的基本性质,包括正确应用和化简比。
首先回顾了比的意义和商不变的性质以及分数的基本性质,理清比与分数、除法的关系,为探究比的基本性质做好铺垫。
然后通过探究三个相等的分数,引出了比的基本性质的探究。
探究了比的前项和后项同时乘或除以相同的数,比值不变的规律,并归纳总结了比的基本性质。
讨论:是否可以同时乘或除以相同的数?为什么?(不可以,因为除以0没有意义)归纳总结比的基本性质:比的前项和后项同时乘或除以相同的数(除0外),比值不变。
这个问题的提出旨在调动学生的思考能力,让他们建立知识点之间的联系,培养比较完善的思维惯。
应用比的基本性质:1.探究整数比的化简方法。
我们以“XXX”五号搭载的联合国旗为例,来讲解整数比的化简方法。
最简单的整数比是指前项和后项是互质数(只有公因数1)的比。
化简整数比的方法是把比的前项和后项同时除以它们的最大公因数。
2.探究分数比和小数比的化简方法。
我们以0.75∶2为例,来讲解分数比和小数比的化简方法。
对于分数比,我们需要根据比的基本性质,把它的前项和后项同时乘以它们分母的最小公倍数,然后再除以它们的最大公因数,才能化成最简单的整数比。
对于小数比,我们需要把它的前项和后项同时乘以相同的数,使它们转化成整数比。
如果这时还不是最简单的整数比,要再除以前项和后项的最大公因数,化成最简单的整数比。
总结:化简比的依据是比的基本性质,化简比的方法不是唯一的,要注意的是,化简后仍是比的形式。
1、填空3,5,7,9,11,13,15;6,10,14,18,22,26,30;2,4,8,16,32,64,128;1,4,9,16,25,36,49;1,8,27,64,125,216;1,3,6,10,15,21,28;2,4,7,11,16,22,29;1)(2)(3)(4)无法确定,需要给出更多信息。
3、请你根据例1结论算一算1+3+5+7+5+3+1=251+3+5+7+9+11+13+11+9+7+5+3+1=49。