2.1.2系统抽样 (2)
- 格式:doc
- 大小:200.50 KB
- 文档页数:5
2.1.2系统抽样一、基础达标1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往后将65号,115号,165号,……发票上的销售金额组成一个调查样本.这种抽取样本的方法是() A.抽签法B.随机数表法C.系统抽样法D.其他的抽样法答案 C解析上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,以后各组抽15+50n(n为自然数)号,符合系统抽样的特点.2.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25 C.26 D.28答案 B解析 5 008除以200的整体数商为25,∴选B.3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为() A.5,10,15,20 B.2,6,10,14C.2,4,6,8 D.5,8,11,14答案 A解析将20分成4个组,每组5个号,间隔等距离为5.4.从2 004名学生中选取50名组成参观团,若采用下面的方法选取:先利用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的机会() A.不全相等B.均不相等C.都相等D.无法确定答案 C解析系统抽样是等可能的,每人入样的机率均为502 004.5.(2013.衡阳高一检测)将参加夏令营的600名学生编号为:001,002, (600)采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为() A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9答案 B解析由题意知间隔为60050=12,故抽到的号码为12k+3(k=0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.6.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.答案 1 211解析分段间隔是3 000150=20,由于第一组抽出号码为11,则第61组抽出号码为11+(61-1)×20=1 211.7.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程.解按1∶5的比例抽样.295÷5=59.第一步,把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第二组是编号为6~10的5名学生,依次类推,第59组是编号为291~295的5名学生.第二步,采用简单随机抽样,从第一组5名学生中随机抽取1名,不妨设其编号为k(1≤k≤5).第三步,从以后各段中依次抽取编号为k+5i(i=1,2,3,…,58)的学生,再加上从第一段中抽取的编号为k的学生,得到一个容量为59的样本.二、能力提升8.用系统抽样的方法从个体为1 003的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是()A.11 000 B.11 003 C.501 003 D.120答案 C解析根据系统抽样的方法可知,每个个体入样的可能性相同,均为nN,所以每个个体入样的可能性是501 003.9.(2013·陕西高考)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为() A.11 B.12 C.13 D.14答案 B解析根据系统抽样的方法结合不等式求解.抽样间隔为84042=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*.∴24120≤k+x020≤36.∵x020∈⎣⎢⎡⎦⎥⎤120,1,∴k=24,25,26,…35,∴k值共有35-24+1=12(个),即所求人数为12.10.一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.答案63解析由题意知第7组中的数为“60~69”10个数.由题意知m=6,k=7,故m+k=13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.11.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.解(1)将每个人随机编一个号由0001至2008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机编号0001至2000;(4)分段,取间隔k=2 00020=100,将总体平均分为20段,每段含100个学生;(5)从第一段即为0001号到0100号中随机抽取一个号l;(6)按编号将l,100+l,200+l,…,1 900+l共20个号码选出,这20个号码所对应的学生组成样本.三、探究与创新12.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?解(1)将1 001名普通工人用随机方式编号.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名职工重新编号(分别为0001,0002,…,1000),并平均分成40段,其中每一段包含1000 40=25个个体.(3)在第一段0001,0002,…,0025这25个编号中用简单随机抽样法抽出一个(如0003)作为起始号码.(4)将编号为0003,0028,0053,…,0978的个体抽出.(5)将20名高级工程师用随机方式编号为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的编号.(9)从总体中将与所抽号签的编号相一致的个体取出.以上得到的个体便是代表队成员.13.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12; 确定第一样本户:编码的后两位数为12的户为第一样本户; 确定第二样本户:12+40=52,52号为第二样本户; ……(1)该村委采用了何种抽样方法? (2)抽样过程中存在哪些问题,并修改. (3)何处是用简单随机抽样. 解 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;…. (3)确定随机数字用的是简单随机抽样. 取一张人民币,编码的后两位数为02.。
2020-2021学年人教A版数学必修3教师用书:第2章2.1 2.1.2系统抽样含解析2。
1.2系统抽样学习目标核心素养1.理解系统抽样的概念.(重点) 2.掌握系统抽样的方法与步骤,能用系统抽样从总体中抽取样本.(难点、易错点)1.通过系统抽样的学习,体现数学运算素养.2.借助系统抽样步骤的理解,养成数学建模素养.1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:思考:当总体中的个数较多时,为什么不宜用简单随机抽样.[提示]因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀",从而使样本的代表性不强.1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体C[根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.]2.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法B[由题意,中奖号码分别为0 068,0 168,0 268,…,9 968.显然这是将10 000个中奖号码平均分成100组,从第一组抽0 068号,其余号码是在此基础上加100的整数倍得到的,是系统抽样.]3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C .2,4,6,8D .5,8,11,14A [将20分成4组.每组5个号,间隔等距离为5.]4.为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k =________.40 [分段间隔k =N n =错误!=40。
2.1.2系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:思考:当总体中的个数较多时,为什么不宜用简单随机抽样.[提示]因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体C[根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.]2.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法B[由题意,中奖号码分别为0 068,0 168,0 268,…,9 968.显然这是将10 000个中奖号码平均分成100组,从第一组抽0 068号,其余号码是在此基础上加100的整数倍得到的,是系统抽样.]3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C.2,4,6,8 D.5,8,11,14A[将20分成4组.每组5个号,间隔等距离为5.]4.为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k=________.40[分段间隔k=Nn=1 20030=40.]系统抽样的概念【例1】下列抽样中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200名入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样C[根据系统抽样的定义和特点判断,A项中的总体有明显的层次区别,不适宜用系统抽样;B项中样本容量很小,适合随机数表法;D项中总体容量较小,适合抽签法.]系统抽样的判断方法(1)首先看是否在抽样前知道总体是由什么组成,多少个个体.(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样.(3)最后看是否等距抽样.1.下列抽样方法不是系统抽样的是()A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈C[A编号间隔相同,B时间间隔相同.D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.]们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为() A.7B.9C.10D.15思路点拨:求出第n组抽到的号码,然后解不等式即可.C[从960人中用系统抽样的方法抽取32人,则抽样间隔为k=96032=30.因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21.由451≤30n-21≤750,即151115≤n≤25710,所以n=16,17,…,25,共有25-16+1=10(人).]系统抽样计算问题的解法及技巧(1)若已知总体数,且样本容量已知,则采用系统抽样方法进行抽样时,如果要剔除一些个体,那么需要剔除的个体数为总体数除以样本容量所得的余数.(2)利用系统抽样的概念与等距特点,若在第一段抽取的编号为m,分段间隔为d,则在第k段中抽取的第k个编号为m+(k-1)d.(3)若求落入区间[a,b]的样本个数,则可通过列出不等式a≤m+(k-1)d≤b,解出满足条件的k的取值范围.再根据k∈N*,求出其范围内的正整数个数即可.2.某单位有200名职工,现要从中抽取40名职工作为样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.37[由系统抽样的知识可知,将总体分成均等的若干部分是将总体分段,且分段间隔为5.因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.]1.用系统抽样抽取样本时,每段各取一个号码,其中第一段的个体编号怎样抽取?[提示]使用简单随机抽样方法抽取.2.用系统抽样抽取样本时,当Nn不是整数时,随机剔除了多余的个体,这样还公平吗?[提示]因为剔除多余个体是用简单随机抽样的方法进行的,每一个个体被剔除的机会都一样,所以是公平的.3.用系统抽样抽取样本时,第1段是随机取出的号码,其余各段都是由计算式算出来的,并没有抽签,这样公平吗?[提示]虽然除第1段外,后面的样本都是通过计算抽取的,但由于第1段号码确定是随机的,故后面各段号码的确定均是随机的,是公平的.【例3】某工厂有工人1 007名,现从中抽取100人进行体检,试写出抽样方案.思路点拨:样本容量为100,总体容量为1 007,不能被100整除,因此首先需要剔除7个个体,然后确定分段间隔为1 000100=10,利用系统抽样即可.[解]用系统抽样的方法抽取样本.第一步,编号.将1 007名工人编号,号码为0001,0002, (1007)第二步,利用随机数表法抽取7个号码,将对应编号的工人剔除.第三步,将剩余的1 000名工人重新编号,号码为0001,0002, (1000)第四步,确定分段间隔k=1 000100=10,将总体分成100段,每段10名工人.第五步,在第1段中,利用抽签法或者随机数表法抽取一个号码m.第六步,利用分段间隔,将m,m+10,m+20,…,m+990共100个号码抽出.1.(变条件)某工厂有102名工人,现从中抽取10人进行体检,请写出抽样方案.[解]根据条件,可采用抽签法抽取样本.第一步:编号,把102名工人编号为1,2,3, (102)第二步:制签,做好大小、形状完全相同的号签,分别写上这102个数.第三步:搅拌,将这些号签放入暗箱,充分摇匀.第四步:入样,每次从中抽一个号签,不放回地连续抽10次,从而得到容量为10的入选样本.2.(变结论)某工厂有1007名工人,现从中抽取100人进行调查工资收入情况,能否用系统抽样方法抽取样本?为什么?[解]不能用系统抽样抽取,因为工人的工资状况与其年龄、工种等因素有关,总体中个体有明显的分层.系统抽样设计中的注意点(1)当总体容量不能被样本容量整除时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.(2)被剔除的部分个体可采用简单随机抽样法抽取.(3)剔除部分个体后应重新编号.(4)每个个体被抽到的机会均等,被剔除的机会也均等.1.系统抽样的实质是“分组”抽样,适用于总体中的个体数较大的情况.2.解决系统抽样问题的两个关键步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)用系统抽样法抽取样本,当Nn不为整数时,取k=⎣⎢⎡⎦⎥⎤Nn,即先从总体中用简单随机抽样的方法剔除N-nk个个体,且剔除多余的个体不影响抽样的公平性.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)总体个数较多时可以用系统抽样.()(2)系统抽样的过程中,每个个体被抽到的概率不相等.()(3)用系统抽样从N个个体中抽取一个容量为n的样本,要平均分成n段,每段各有Nn个号码.()[答案](1)√(2)×(3)×2.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为() A.2B.3 C.4 D.5A[1 252=50×25+2,故应从总体中随机剔除2个个体.]3.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为()A.24 B.25C.26 D.28B[5 008=200×25+8,故每组容量为25.]4.从2 003名学生中抽取一个容量为40的样本,应如何抽取?[解]先将2 003名学生按0 001到2 003编号,利用随机数表法从中剔除3名学生,再对剩余的2 000名学生重新从0001到2 000编号,按编号顺序分成40组,每组50人,先在第一组中用抽签法抽出某一号,如0 006,依次在其他组抽取0 056,0 106,…,1 956,这样就得到了一个容量为40的样本.课时分层作业(十)系统抽样(建议用时:60分钟)[基础达标练]一、选择题1.下列问题中,最适合用系统抽样法抽样的是()A.从某厂生产的30个零件中随机抽取6个入样B.一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家.为了掌握各超市的营业情况,要从中抽取一个容量为21的样本C.从参加竞赛的1 500名初中生中随机抽取100人分析试题作答情况D.从参加期末考试的2 400名高中生中随机抽取10人了解某些情况C[A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次,不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D总体容量较大,样本容量较小,可用随机数表法.故选C.] 2.采用系统抽样的方法从2 005个个体中抽取一个容量为50的样本,则抽样间隔和随机剔除的个体数分别为()A.40,5B.50,5C.5,40 D.5,50A[因为2 005÷50=40余5,所以用系统抽样的方法从2 005个个体中抽取一个容量为50的样本,抽样间隔是40,且应随机剔除的个体数为5.] 3.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,32B [根据题意从50枚中抽取5枚,故分段间隔k =505=10,故只有B 符合.]4.总体容量为524,若采用系统抽样,下列的抽取间隔不需要剔除个体的是( )A .3B .4C .5D .6B [因为只有5244=131,没有余数,所以当间隔为4时,不需要剔除个体.]5.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按抽签方法确定的号码是( )A .7B .5C .4D .3B [由公式125=l +(16-1)×16020,解得l =5.]二、填空题6.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是________.20 [由系统抽样原理知,抽样间隔k =524=13,故抽取样本的编号分别为7、7+13、7+13×2、7+13×3.故还有一位同学的编号应是20.]7.某公司有52名员工,要从中抽取10名员工参加国庆联欢活动,若采用系统抽样,则该公司每个员工被抽到的机会是________.526 [采用系统抽样,需先剔除2名员工,确定间隔k =5,但每名员工被剔除的机会相等,即每名员工被抽到的机会也相等,故虽然剔除了2名员工,但这52名员工中每名员工被抽到的机会仍相等,且均为1052=526.]8.已知标有1~20号的小球20个,若我们的目的是估计总体号码的平均值,即20个小球号码的平均数.试验者从中抽取4个小球,以这4个小球号码的平均数估计总体号码的平均值,按下面方法抽样(按小号到大号排序):(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________.(1)9.5(2)10.5[20个小球分4组,每组5个.(1)若以2号为起点,则另外三个球的编号依次为7,12,17,4球编号的平均值为2+7+12+174=9.5.(2)若以3号为起点,则另外三球编号为8,13,18,平均值为3+8+13+184=10.5.]三、解答题9.在下列问题中,各采用什么抽样方法抽取样本较为合适?(1)从8台彩电中抽取2台进行质量检验;(2)一个礼堂有32排座位,每排有40个座位(座位号为1~40).一次报告会坐满了听众,会后为听取意见留下32名听众进行座谈.[解](1)总体容量为8,样本容量为2,因此适合利用抽签法进行样本的抽取.(2)总体容量为32×40=1 280,样本容量为32,由于座位数已经分为32排,因此选择系统抽样更合适.10.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?[解](1)将1 001名普通工人用随机方式编号.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名职工重新编号(分别为0 001,0 002,…,1 000),并平均分成40段,其中每一段包含1 000 40=25个个体.(3)在第一段0 001,0 002,…,0 025这25个编号中用简单随机抽样法抽出一个(如0 003)作为起始号码.(4)将编号为0 003,0 028,0 053,…,0 978的个体抽出.(5)将20名高级工程师用随机方式编号为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的编号.(9)从总体中将与所抽号签的编号相一致的个体取出.以上得到的个体便是代表队成员.[能力提升练]1.从2 019名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 019人中剔除19人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 019人中,每个人入选的机会()A.都相等,且为502 019B.不全相等C.均不相等D.都相等,且为1 40A[因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除19人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为50 2019.]2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9B[依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17.从而第Ⅲ营区被抽中的人数是50-42=8.]3.某单位有职工72人,现需用系统抽样法从中抽取一个样本,若样本容量为n,则不需要剔除个体,若样本容量为n+1,则需剔除2个个体,则n=________.4或6或9[由题意知n为72的约数,n+1为70的约数,其中72的约数有1,2,3,4,6,8,9,12,18,24,36,72,其中70能被加1整除的有1,4,6,9,其中n=1不符合题意,故n=4或6或9.]4.一个总体中的80个个体的编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,用错位系统抽样的方法抽取一个容量为8的样本,即规定先在第0组随机抽取一个号码,记为i,依次错位地得到后面各组的号码,即在第k组中抽取个位数字为i+k(当i+k<10时)或i+k-10(当i+k≥10时)的号码.当i=6时,所抽到的8个号码是________.6,17,28,39,40,51,62,73[由题意得,在第1组抽取的号码的个位数字是6+1=7,故应选17;在第2组抽取的号码的个位数字是6+2=8,故应选28;依此类推,应选39,40,51,62,73.]5.下面给出某村委会调查本村各户收入情况作的抽样,阅读并回答问题.本村人口:1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 200/30=40;确定随机数字:取一张人民币,其编号后两位数为12;确定第一样本户:编号12的住户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改;(3)何处用了简单随机抽样?[解](1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔应为300/30=10,其他步骤相应改为确定随机数字:取一张人民币,其编号末位数为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户……(3)确定随机数字:取一张人民币,取其末位数2.。
2.1.1-2简单随机抽样、系统抽样班级:姓名:编者:高台一中王旭刚问题引航什么是简单随机抽样?简单随机抽样有哪两种?它们各自的特点是什么?(2)什么是系统抽样?它的优点和缺点是什么?自主探究N个个体,从中地抽取n个个体作为(n≤N),如果每次抽取时总体内的各个个体,就把这种抽样方法叫做。
(1)抽签法:一般地,抽签法就是把总体中的N个个体,把号码写在上,将号签放在一个容器中,,每次从中抽取一个号签, n次就得到一个容量为n的样本。
(2)随机数法:利用或计算机产生的随机数进行抽样,叫随机数表法.二、系统抽样:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体,然后按照,从每一部分抽取,得到所需要的样本,这种抽样的方法叫做。
总结简单随机抽样和系统抽样的优缺点:提出疑惑特点:(1)简单随机抽样要求被抽取的样本的总体个数N是(2)简单随机样本是从总体中逐个抽取的(3)简单随机抽样的每个个体入样的可能性均为步骤:抽签法的一般步骤:随机数法的一般步骤:1. 1.2. 2.3.二.系统抽样的特点?步骤?特点:(1)当时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=.(3)预先制定的规则指的是:在第1段内采用确定一个,在此编号基础上加上分段间隔的整倍数即为抽样编号.系统抽样的一般步骤:1.2.3.4.互动探究例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作为样本;(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;(3)某班45名同学,指定个子最高的5人参加某活动;(4)从20个零件中一次性抽出3个进行质量检测.例2、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
必修三综合测试题
1.某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本记作①;某校高一年级有12名女排球运动员,要从中选出3人调查学习负担情况,记作②;那么,完成上述2项调查应采用的抽样方法是()
A.①用随机抽样法,②用系统抽样法
B.①用分层抽样法,②用随机抽样法
C.①用系统抽样法,②用分层抽样法
D.①用分层抽样法,②用系统抽样法
2.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A.5,10,15,20,25,30 B.3,13,23,33,43,53
C.1,2,3,4,5,6 D.2,4,8,16,32,48
3.数据70,71,72,73的标准差是()
A.2 B.5
4
C
D
.
2
4.数据a1,a2,a3,…,a n的方差为σ2,则数据2a1,2a2,2a3,…,2a n的方差为()
A.
2
2
B.σ2 C.2σ2D.4σ2
5.右面的伪代码输出的结果是()
A.3 B.5 C.9 D .13
6.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4;则样本在[25,25.9)上的频率为()
A.3
20
B.
1
10
C.
1
2
D.
1
4
7.设有一个直线回归方程为y=2-1.5x,则变量x增加一个单位时()
A.y平均增加1.5个单位B.y平均增加2个单位
C.y平均减少1.5个单位D.y平均减少2个单位
8.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是
()
A.4
9
B.
2
9
C.2
3
D.
1
3
9.某班30名同学,一年按365天计算,至少有两人生日在同一天的概率是()
A .30365
30
1365A -
B .
30365
30
365A C .30
11365-
D .
30
1365
10.甲乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲乙下成和棋的概率为( ) A .60% B .30% C .10% D .50%
11.将数字1、2、3填入标号为1,2,3的三个方格里,每格填上一个数字,则方格的标号与所填的数字有相同的概率是( )
A .61
B .31
C .21
D .32 12. 3名老师随机从3男3女共6人中各带2名学生进行实验,其中每名老师各带1名男生和1名女生的概率为( )
A .52
B .53
C .54
D .109
13.掷两颗骰子,出现点数之和等于8的概率等于__________.
14.为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 .
①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等.
15. 某公司有1000名员工,其中:高层管理人员占5%,中层管理人员占15%,一般员工占80%,为了了解该公司的某种情况,现用分层抽样的方法抽取120名进行调查,则一般员工应抽取 人.
16. 从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n 种,在这些取法
中,以取出的三条线段为边可组成的三角形的个数为m ,则m
n
等于 .
17.某同学在高考报志愿时,报了4所符合自己分数和意向的高校,若每一所学校录取的
概率为1
2
,则这位同学被其中一所学校录取的概率为 .
18.我国古代数学发展一直处于世界领先水平,特别是宋、元时期的“算法”,其中可以同欧几里德辗转相除法相媲美的是 .
试求全校初二男生俯卧撑的平均成绩.
20.为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名
(1)求出表中的a,m 的值. (2)画出频率直方图.
21.某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是
12
.棋盘上标有第0站、
第1站、第2站、……、第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n 站的概率为Pn .
(I)求P 0,P l ,P 2;(II)求证:1121
()2
n n n n P P P P ----=--; (Ⅲ)求玩该游戏获胜的概率.
22.目前高中毕业会考中,成绩在85~100为“A”,70~84为“B”,60~69为“C”,60分以下为“D”.编制程序,输入学生的考试成绩(百分制,若有小数则四舍五入),输出相应的等级.
23.甲、乙两艘轮船都要停靠同一个泊位,它们可以在一昼夜的任意时刻到达,设甲、乙两艘轮船停靠泊位的时间分别是3小时和5小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.
1.B;
2.B;
3.D;
4.D;
5.C;
6.C;
7.C;
8.A;
9.A; 10.D; 11.D; 12.A; 13.
6
1
; 14. ④⑥; 15. 96; 16. 14; 17. 1516
; 18. 更相减损术; 19.7.2次. 20.(1)m=6;a=0.45.(2)
P 0=1 P1=
21 2
1
21212⨯+=P (II)依题意,棋子跳到第n 站(2≤n≤99)有两种可能:第一种,棋子先到第n-2站,又掷出反
面,其概率为22
1
-n P ;第二种,棋子先到第n-1站,又掷出正面,其概率为121-n P
∴212
1
21--+=n n n P P P
∴21121121
212121------+-=-+=-n n n n n n n P P P P P P P
即)992)(2
1
21(211≤≤--=----n P P P P n n n n …….9分
(III)由(II)可知数列{1--n n P P }(1≤n≤99)是首项为2
1
1-=-P P 公比为2
1
的等比数列,
于是有
因此,玩该游戏获胜的概率为])
2
1(1[32100
.
22.I=1
WHILE I=1
INPUT “shu ru xue sheng cheng ji a=”;a IF a<60 THEN PRINT “D ” ELSE
IF a<70 THEN PRINT “C ” ELSE
IF a<85 THEN PRINT “B ” ELSE
PRINT “A ” END IF END IF END IF
INPUT “INPUT 1,INPUT 2”;I WEND END
23.解:以甲船到达泊位的时刻x ,乙船到达泊位的时刻y 分别为坐标轴,则由题意知 0≤x ,y ≤24
设事件A={有一艘轮船停靠泊位时必须等待一段时间},事件B={甲船停靠泊位时必须等待一段时间},事件C={乙船停靠泊位时必须等待一段时间}
则A= B ∪C ,并且事件B 与事件C 是互斥事件 ∴P(A)= P(B ∪C)= P(B)+ P(C)
而甲船停靠泊位时必须等待一段时间需满足的条件是0<x-y ≤5,乙船停靠泊位时必须等待一段时间需满足的条件是0<y-x ≤3,
在如图所示的平面直角坐标系下,点(x ,y )的
所有可能结果是边长为24的正方形,事件A 的可能
结果由图中的阴影部分表示,则S 正方形=242=576
S 阴影=242-21×(24-5)2-2
1×(24-3)2
=175 ∴由几何概率公式得P(A)=
576
175
∴有一艘轮船停靠泊位时必须等待一段时间的概率是576
175
.。