平稳线性ARMA模型AR模型
- 格式:ppt
- 大小:741.00 KB
- 文档页数:66
ARMA模型AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),AR模型-模型简介所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推,而插值是由两点(或少数几点)去推导多点,所以AR模型要比插值方法效果更好。
ARMA模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础"混合"构成。
在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
ARMA模型的基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。
一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,e为误差。
作为预测对象Yt受到自身变化的影响,其规律可由下式体现,模型原理误差项在不同时期具有依存关系,由下式表示,模型原理图由此,获得ARMA模型表达式模型原理图模型原理总图模型预测模型-常见预测模型预测是对未来作出的估计和推断,为了达到这一目的,往往要对现实世界(或称研究对象)进行模仿或抽象,这一过程称之为建模;用建模手段获得现实世界(对象)的一种表示和体现就称为模型。
一切客观存在的事物及其运动形态我们统称为现实;现实和未来是不一样的,但是通过对于现实的研究可以预见未来,这就是预测。
从信息运动的角度看,现实之中包含着未来,孕育着未来。
因此,一个"好"的模型不仅能表达现实而且应该能准确的反映现实的发展规律。
时至今日,预测模型已多达一百余种,常用的也有二三十种。
任何预测模型都有它自身的优缺点;至今,还没有一种既有极高的预测精度,又适用于任何现实问题(研究对象)的预测模型。
arma模型(自回归移动平均)数学公式ARMA模型是一种常用的时间序列分析方法,它结合了自回归(AR)和移动平均(MA)模型,用于描述时间序列数据的动态特征。
在ARMA模型中,每个观测值被认为是过去观测值的线性组合,其中包括自回归项和移动平均项。
ARMA模型的数学公式可以表示为:y_t = c + ϕ_1*y_(t-1) + ϕ_2*y_(t-2) + ... + ϕ_p*y_(t-p) + ε_t - θ_1*ε_(t-1) - θ_2*ε_(t-2) - ... - θ_q*ε_(t-q)其中,y_t表示时间序列的观测值,c为常数,ϕ_1, ϕ_2, ..., ϕ_p 为自回归系数,ε_t为满足白噪声条件的随机误差,θ_1, θ_2, ..., θ_q为移动平均系数。
ARMA模型的阶数分别为p和q,分别表示自回归项和移动平均项的阶数。
ARMA模型的核心思想是利用过去观测值的线性组合来预测未来观测值。
自回归项描述了当前观测值与过去观测值之间的线性关系,移动平均项描述了当前观测值与过去误差项之间的线性关系。
通过调整自回归系数和移动平均系数的取值,我们可以得到不同的ARMA模型,从而适应不同时间序列数据的特点。
ARMA模型的建立可以通过多种方法,其中一种常用的方法是最大似然估计。
该方法通过最大化观测数据出现的概率来确定模型的参数。
具体而言,我们需要估计自回归系数、移动平均系数和误差项的方差。
通过最大似然估计,我们可以得到最优的参数估计值,从而建立起准确的ARMA模型。
ARMA模型在时间序列分析中具有广泛的应用。
首先,ARMA模型可以用于时间序列数据的预测和预测不确定性的度量。
通过拟合ARMA模型,我们可以根据过去观测值来预测未来观测值,并得到相应的置信区间。
其次,ARMA模型可以用于时间序列数据的平滑和去除季节性因素。
通过去除ARMA模型的季节性分量,我们可以得到更平滑的时间序列数据,从而更好地分析其长期趋势。
arma模型原理
ARMA模型(AutoRegressive Moving Average Model)是一种时间序列分析模型,它结合了自回归模型(AR)和移动平均模型(MA)。
ARMA 模型的原理是,对于一个时间序列,在保持平稳性的前提下,通过自回归和移动平均两个方面来描述序列的特征。
具体来说,AR表示当前时间点的值与前面若干个时间点的值有关,而MA表示当前时间点的值与前面若干个时间点的噪声有关。
因此,ARMA模型可以很好地捕捉时间序列数据的趋势和周期性。
在实际应用中,ARMA模型通常用于预测未来的时间序列值和分析时间序列的特征。
在ARMA模型中,参数估计和模型检验是重要的步骤,需要一定的统计学知识和技能。
常用的估计方法包括最大似然估计和贝叶斯估计,而模型检验可以通过残差分析和模型诊断来进行。
总之,ARMA模型是一种经典的时间序列模型,它结合了自回归模型和移动平均模型,可以用于预测未来的时间序列值和分析时间序列的特征。
在实际应用中需要谨慎使用,需要考虑时间序列数据的特征和背景知识,以及参数估计和模型检验的可靠性。
ARMAARIMA模型介绍及案例分析AR、MA和ARIMA是时间序列分析中常见的模型,用于分析和预测时间序列数据的特征和趋势。
下面将对这三种模型进行介绍,并提供一个案例分析来展示它们的应用。
自回归模型(AR)是一种基于过去的观测值来预测未来观测值的模型。
它基于一个假设:未来的观测值可以由过去的观测值的线性组合来表示。
AR模型的一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项。
AR模型的关键是确定自回归阶数p和自回归系数ϕ。
移动平均模型(MA)是一种基于过去的误差项来预测未来观测值的模型。
它基于一个假设:未来的观测值的误差项可以由过去的误差项的线性组合来表示。
MA模型的一般形式可以表示为:y_t=c+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。
MA模型的关键是确定移动平均阶数q和移动平均系数θ。
自回归移动平均模型(ARIMA)结合了AR和MA模型的特点,同时考虑了时间序列数据的趋势性。
ARIMA模型一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。
ARIMA模型的关键是确定自回归阶数p、移动平均阶数q和相关系数ϕ和θ。
下面举一个电力消耗预测的案例来展示AR、MA和ARIMA模型的应用:假设有一段时间内的电力消耗数据,我们想要用AR、MA和ARIMA模型来预测未来一段时间内的电力消耗。
ARMA 模型(一)模型的引进AR :011t t k t k t Y Y Y βββε--=++++ (注意:如果假设t Y 的均值为零,0β可以不写)如果序列在其均值附近波动:t 可用: 12...TT Y Y Y F Y T+++==来预测1T F +,1211 (1)T T Y Y Y F T +++++=+来预测2T F +,等等。
事实上,新的信息更能反映未来,远离现在的数据对未来的影响应该变小。
所以,按照这样一种想法,改用移动平均)。
121212111111 (11)()()TT T T T T T T T Y Y Y F Y T Y Y F Y T F Y Y F Y F T T+++++++++++==++===+-≈+- 那么,1T Y +是实际值,1T F +是上一期的预测值,所以11()T T Y F ++-是误差,即1T e +。
可见,下一期的预测值是用前一期的预测值的基础上,加上修正误差。
实际上它是跟踪数据的变化,这就是移动平均提供的一个非常好的思想!当然,也有问题,就是滞后,前后两期的误差是否一样是需要考虑的。
以此类推,继续将1T F +写成T 时刻的预测值和T 时刻的误差修正之和,如此递推下去,就可将t Y 用不同滞后期的误差项表示:即MA :11t t t k t k Y e e e μαα--=++++ (一定平稳!)。
而ARMA 模型为:01111t t p t p t t q t q Y Y Y e e e βββαα----=+++++++对时间序列的分析的一种重要工具——自相关。
注意:移动平均可平滑数据,消除周期变动和不规则变动的影响,使长期趋势显示出来。
(二)方法性工具自相关系数只是序列逐项之间的一种简单相关,它和x 和y 之间的简单相关系数实际上是一样的。
1.自相关函数:k γ当序列t Y 完全随机时,它的自相关系数理论上为零,没有任何自相关,但是我们不可能穷尽这个总体,所以,我们只能用它的样本数据来算,当使用样本数据来算的时候可能不是零,比如说0.008、0.007或者负的0.008、0.007。
ARMA模型介绍ARMA模型(Autoregressive Moving Average model)是时间序列分析中常用的一种模型,用于描述和预测随时间变化的数据。
ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,可以较好地描述时间序列数据的变化趋势。
ARMA模型的核心思想是:当前时刻的观测值可以通过历史观测值和随机误差的线性组合来表示。
具体地说,AR部分考虑了当前时刻和过去几个时刻的观测值之间的关系,而MA部分则考虑了当前时刻和过去几个时刻的随机误差之间的关系。
在AR模型中,当前时刻的观测值与过去几个时刻的观测值之间存在线性关系。
AR模型的阶数(p)表示过去几个时刻的观测值被考虑进来。
对于AR(p)模型,数学表达式如下:yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et其中,yt表示当前时刻的观测值,c表示常数项,φ1, φ2, ... ,φp表示对应的回归系数,et表示当前时刻的随机误差。
在MA模型中,当前时刻的观测值与过去几个时刻的随机误差之间存在线性关系。
MA模型的阶数(q)表示过去几个时刻的随机误差被考虑进来。
对于MA(q)模型,数学表达式如下:yt = c + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-q其中,yt表示当前时刻的观测值,c表示常数项,θ1, θ2, ... ,θq表示对应的回归系数,et表示当前时刻的随机误差。
yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-qARMA模型可以用于时间序列的拟合和预测。
通过将模型与已有数据进行拟合,可以得到模型的参数估计值。
然后,利用这些参数估计值,可以预测未来的观测值。
ARMA模型适用于没有明显趋势和季节性的时间序列数据。