第一章 铸造
- 格式:ppt
- 大小:1.72 MB
- 文档页数:61
铸造技术数据手册第一章概述1.1 铸造技术概述铸造技术是一种制造金属、合金或其他材料零件的主要方法之一。
铸造工艺包括造型、浇注、冷却和处理等环节,通过在适当的条件下将液态金属或合金注入到模具中,形成所需的零件和构件。
铸造技术具有成本低、生产效率高、生产周期短等特点,在工业制造中得到了广泛应用。
1.2 铸造技术的分类铸造技术可分为压力铸造、砂型铸造、熔模铸造、金属型铸造等多种类型。
每种铸造技术都有其适用的材料、成形方法和特点,可以根据具体工程需求选择合适的铸造方法。
第二章材料与成型2.1 铸造材料铸造材料是指用于铸造制品的金属、合金以及非金属材料,常用的金属包括铁、铝、铜、锌等,常用的非金属材料包括砂、塑料等。
铸造材料的选择对于铸造制品的质量和性能有着重要的影响,需根据具体情况进行合理选择。
2.2 成型方法成型是铸造技术中的重要环节,常用的成型方法包括压铸成型、砂型成型、熔模成型、金属型成型等。
不同的成型方法有着各自的优缺点,需要根据具体情况进行选择。
第三章浇注与冷却3.1 铸造浇注铸造浇注是指将液态金属或合金注入到模具中,形成所需的铸造制品的过程。
浇注过程中需要注意浇注温度、浇注速度、浇注方式等参数,以保证铸件的质量。
3.2 铸造冷却铸造完成后,铸件需要进行冷却处理以凝固并获得所需的性能。
冷却处理的方法有多种,包括自然冷却、水冷却、气体冷却等,需要根据材料的特点和工程需求进行选择。
第四章铸造工艺控制4.1 模具设计模具设计是铸造工艺中的重要环节,好的模具设计可以保证铸件的形状和尺寸精度,减少浇注缺陷和提高生产效率。
4.2 工艺控制铸造工艺控制包括浇注参数控制、冷却处理控制、成型参数控制等,通过对各项工艺参数进行严格控制可以保证铸造制品的质量和性能。
第五章铸造质量检测与分析5.1 铸造缺陷与分析铸造制品可能出现各种缺陷,包括气孔、夹渣、裂纹等。
需要通过合适的检测方法对缺陷进行分析,并寻找改进工艺的方法。
第一章铸造工艺基础§1 液态合金的充型充型: 液态合金填充铸型的过程.充型能力: 液态合金充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力充型能力不足:易产生: 浇不足: 不能得到完整的零件.冷隔:没完整融合缝隙或凹坑, 机械性能下降.一合金的流动性液态金属本身的流动性----合金流动性1 流动性对铸件质量影响1) 流动性好,易于浇出轮廓清晰,薄而复杂的铸件.2) 流动性好,有利于液态金属中的非金属夹杂物和气体上浮,排除.3) 流动性好,易于对液态金属在凝固中产生的收缩进行补缩.2 测定流动性的方法:以螺旋形试件的长度来测定: 如灰口铁:浇铸温度1300℃试件长1800mm.铸钢: 1600℃100mm3 影响流动性的因素主要是化学成分:1) 纯金属流动性好:一定温度下结晶,凝固层表面平滑,对液流阻力小2) 共晶成分流动性好:恒温凝固,固体层表面光滑,且熔点低,过热度大.3) 非共晶成分流动性差: 结晶在一定温度范围内进行,初生数枝状晶阻碍液流二浇注条件1 浇注温度: t↑合金粘度下降,过热度高. 合金在铸件中保持流动的时间长,∴t↑提高充型能力. 但过高,易产生缩孔,粘砂,气孔等,故不宜过高2 充型压力: 液态合金在流动方向上所受的压力↑充型能力↑如砂形铸造---直浇道,静压力. 压力铸造,离心铸造等充型压力高.三铸型条件1 铸型结构: 若不合理,如壁厚小, 直浇口低, 浇口小等充↓2 铸型导热能力: 导热↑金属降温快,充↓如金属型3 铸型温度: t↑充↑如金属型预热4 铸型中气体: 排气能力↑充↑减少气体来源,提高透气性, 少量气体在铸型与金属液之间形成一层气膜,减少流动阻力,有利于充型.§2 铸件的凝固和收缩铸件的凝固过程如果没有合理的控制,铸件易产生缩孔,缩松一铸件的凝固1 凝固方式:铸件凝固过程中,其断面上一般分为三个区: 1—固相区2—凝固区3—液相区对凝固区影响较大的是凝固区的宽窄,依此划分凝固方式.1) 逐层凝固:纯金属,共晶成分合金在凝固过程中没有凝固区,断面液,固两相由一条界限清楚分开,随温度下降,固相层不断增加,液相层不断减少,直达中心.2) 糊状凝固合金结晶温度范围很宽,在凝固某段时间内,铸件表面不存在固体层,凝固区贯穿整个断面,先糊状,后固化.3) 中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间.2 影响铸件凝固方式的因素1) 合金的结晶温度范围范围小: 凝固区窄,愈倾向于逐层凝固如: 砂型铸造, 低碳钢逐层凝固, 高碳钢糊状凝固2) 铸件的温度梯度合金结晶温度范围一定时,凝固区宽度取决于铸件内外层的温度梯度.温度梯度愈小,凝固区愈宽.(内外温差大,冷却快,凝固区窄)二合金的收缩液态合金从浇注温度至凝固冷却到室温的过程中,体积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松,裂纹,变形,残余应力)产生的基本原因.1 收缩的几个阶段1) 液态收缩: 从金属液浇入铸型到开始凝固之前. 液态收缩减少的体积与浇注温度质开始凝固的温度的温差成正比.2) 凝固收缩: 从凝固开始到凝固完毕. 同一类合金,凝固温度范围大者,凝固体积收缩率大.如: 35钢,体积收缩率3.0%, 45钢 4.3%3) 固态收缩: 凝固以后到常温. 固态收缩影响铸件尺寸,故用线收缩表示.2 影响收缩的因素1) 化学成分: 铸铁中促进石墨形成的元素增加,收缩减少. 如: 灰口铁C, Si↑,收↓,S↑收↑.因石墨比容大,体积膨胀,抵销部分凝固收缩.2) 浇注温度: 温度↑液态收缩↑3) 铸件结构与铸型条件铸件在铸型中收缩会受铸型和型芯的阻碍.实际收缩小于自由收缩.∴铸型要有好的退让性.3 缩孔形成在铸件最后凝固的地方出现一些空洞,集中—缩孔. 纯金属,共晶成分易产生缩孔*产生缩孔的基本原因: 铸件在凝固冷却期间,金属的液态及凝固受缩之和远远大于固态收缩.4 影响缩孔容积的因素(补充)1) 液态收缩,凝固收缩↑缩孔容积↑2) 凝固期间,固态收缩↑,缩孔容积↓3) 浇注速度↓缩孔容积↓4) 浇注速度↑液态收缩↑易产生缩孔5 缩松的形成由于铸件最后凝固区域的收缩未能得到补足,或者,因合金呈糊状凝固,被树枝状晶体分隔开的小液体区难以得到补缩所至.1) 宏观缩松肉眼可见,往往出现在缩孔附近,或铸件截面的中心.非共晶成分,结晶范围愈宽,愈易形成缩松.2) 微观缩松凝固过程中,晶粒之间形成微小孔洞---凝固区,先形成的枝晶把金属液分割成许多微小孤立部分,冷凝时收缩,形成晶间微小孔洞. 凝固区愈宽,愈易形成微观缩松,对铸件危害不大,故不列为缺陷,但对气密性,机械性能等要求较高的铸件,则必须设法减少.(先凝固的收缩比后凝固的小,因后凝固的有液,凝,固三个收缩,先凝固的有凝,固二个收缩区----这也是形成微观缩松的基本原因.与缩孔形成基本原因类似)6 缩孔,缩松的防止办法基本原则: 制定合理工艺—补缩, 缩松转化成缩孔.顺序凝固: 冒口—补缩同时凝固: 冷铁—厚处. 减小热应力,但心部缩松,故用于收缩小的合金.l 安置冒口,实行顺序凝固,可有效的防止缩孔,但冒口浪费金属,浪费工时,是铸件成本增加.而且,铸件内应力加大,易于产生变形和裂纹.∴主要用于凝固收缩大,结晶间隔小的合金.l 非共晶成分合金,先结晶树枝晶,阻碍金属流动,冒口作用甚小.l 对于结晶温度范围甚宽的合金,由于倾向于糊状凝固,结晶开始之后,发达的树枝状骨状布满整个截面,使冒口补缩道路受阻,因而难避免显微缩松的产生.显然,选用近共晶成分和结晶范围较窄的合金生产铸件是适宜的.§3 铸造内应力,变形和裂纹凝固之后的继续冷却过程中,其固态收缩若受到阻碍,铸件内部就发生内应力,内应力是铸件产生变形和裂纹的基本原因.(有时相变膨胀受阻,负收缩)一内应力形成1 热应力: 铸件厚度不均,冷速不同,收缩不一致产生.塑性状态: 金属在高于再结晶温度以上的固态冷却阶段,受力变形,产生加工硬化,同时发生的再结晶降硬化抵消,内应力自行消失.(简单说,处于屈服状态,受力—变形无应力)弹性状态: 低于再结晶温度,外力作用下,金属发生弹性变形,变形后应力继续存在.举例: a) 凝固开始,粗细处都为塑性状态,无内应力∵两杆冷速不同,细杆快,收缩大,∵受粗杆限制,不能自由收缩,相对被拉长,粗杆相对被压缩,结果两杆等量收缩.b) 细杆冷速大,先进如弹性阶段,而粗杆仍为塑性阶段,随细杆收缩发生塑性收缩,无应力.c) 细杆收缩先停止,粗杆继续收缩,压迫细杆,而细杆又阻止粗杆的收缩,至室温, 粗杆受拉应力(+),(-) 由此可见,各部分的温差越大,热应力也越大,冷却较慢的部分形成拉应力,冷却较快的部分形成压应力.预防方法: 1 壁厚均匀2 同时凝固—薄处设浇口,厚处放冷铁优点: 省冒口,省工,省料缺点: 心部易出现缩孔或缩松,应用于灰铁锡青铜,因灰铁缩孔、缩松倾向小,锡青铜糊状凝固,用顺序凝固也难以有效地消除其显微缩松。
第一篇金属材料的基本知识第一章金属材料的重要性能金属材料的力学性能又称机械性能, 是金属材料在力的作用所表现出来的性能。
零件的受力情况有静载荷, 动载荷和交变载荷之分。
用于衡量在静载荷作用下的力学性能指标有强度, 塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。
金属材料的强度和塑性是通过拉伸实验测定的。
P6低碳钢的拉伸曲线图1,强度强度是金属材料在力的作用下, 抵抗塑性变形和断裂的能力。
强度有多种指标, 工程上以屈服点和强度最为常用。
屈服点: δs是拉伸产生屈服时的应力。
产生屈服时的应力=屈服时所承受的最大载荷/原始截面积对于没有明显屈服现象的金属材料, 工程上规定以席位产生0.2%变形时的应力, 作为该材料的屈服点。
抗拉强度: δb是指金属材料在拉断前所能承受的最大应力。
拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积2,塑性塑性是金属材料在力的作用下, 产生不可逆永久变形的能力。
常用的塑性指标是伸长率和断面收缩率。
伸长率: δ试样拉断后, 其标距的伸长与原始标距的比例称为伸长率。
伸长率=(原始标距长度-拉断后的标距长度)÷拉断后的标距长度×100%伸长率的数值与试样尺寸有关, 因而实验时应对所选定的试样尺寸作出规定, 以便进行比较。
同一种材料的δ5 比δ10要大一些。
断面收缩率:试样拉断后, 缩颈处截面积的最大缩减量与原始横截面积的比例称为断面收缩率, 以ψ表达。
收缩率=(原始横截面积-断口处横截面积)÷原始横截面积×100%3,伸长率和断面收缩率的数值愈大, 表达材料的塑性愈好。
4,硬度金属材料表面抵抗局部变形(特别是塑性变形、压痕、划痕)的能力称为硬度。
金属材料的硬度是在硬度计上测出的。
常用的有布氏硬度法和洛氏硬度法。
1,布氏硬度(HB)2,是以直径为D的淬火钢球HBS或硬质合金球HBW为压头, 在载荷的静压力下, 将压头压入被测材料的表面, 停留若干秒后卸去载荷, 然后采用带刻度的专用放大镜测出压痕直径d, 并依据d的数值从专门的表格中查出相应的HB值。
现代科学技术的发展,要求金属铸件具有高的力学性能、尺寸精度和低的表面粗糙度值;要求具有某些特殊性能,如耐热、耐蚀、耐磨等,同时还要求生产周期短,成本低。因此,铸件在生产之前,首先应进行铸造工艺设计,使铸件的整个工艺过程都能实现科学操作,才能有效地控制铸件的形成过程,达到优质高产的效果。
铸造工艺设计就是根据铸造零件的结构特点、技术要求、生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程。铸造工艺设计的有关文件,是生产准备、管理和铸件验收的依据,并用于直接指导生产操作。因此,铸造工艺设计的好坏,对铸件品质、生产率和成本起着重要作用。
专门的分析表明,铸件的工艺出品率还不能充分表明保温冒口的经济效益,应该用铸件成品率来考核。铸件成品率的定义是铸件质量除以投入熔炉中的金属原料质量,,以百分数表示。它和铸件工艺出品率的差别是计入了熔炼和浇注的损耗。对铸钢来说,这种损耗约占6%。用普通砂型冒口的铸钢件成品率约为43%;而用保温冒口的铸钢件成品率约为68%。相应地,利润率也由原来的5.37%增加为14.16%。
由此可见,铸造工艺设计时,采用不同的工艺,对铸造车间或工厂的金属成本、熔炼金属量、能源消耗、铸件工艺出品率和成品率、工时费用、铸件成本和利润率等,都有显著的影响。
为了保护环境和维护工人身体健康,在铸造工艺设计中要避免选用有毒害和高粉尘的工艺方法,或者应采用相应对策,以确保安全和不污染环境。例如,当采用冷芯盒制芯工艺时,对于硬化气体中的二甲基乙胺、三乙胺、SO2等应进行严格的控制,经过有效地吸收、净化后,才可以排放入大气。对于浇注、落砂等造成的烟气和高粉尘空气,也应净化后排放。
目录 第一章 铸造工艺方案的确定 第二章 砂芯设计及铸造工艺设计参数 第三章 浇注系统设计 第四章 冒口、冷铁和铸肋 第五章 参考文献 第一章 铸造工艺方案的确定 一、造型方法与铸造种类的选择。 造型方法有手工造型或机器造型,本材料因工厂大规模生产,故选用机器造型。根据工艺需要湿型铸造,因为湿型铸造的生产灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现生产过程的机械化和自动化;材料成本低;节省了烘干设备、燃料、电力及车间生产面积;延长了砂箱使用寿命等。
铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。
1、铸造的实质利用了液体的流动形成。
2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。
力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。
1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。
通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。
它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。
生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。
(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。
适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。
第一章(p11)1.什么是应力?什么是应变?答:应力是试样单位横截面的拉力;应变是试样在应力作用下单位长度的伸长量2.缩颈现象在拉伸实验中当载荷超过拉断前所承受的最大载荷时,试样上有部分开始变细,出现了“缩颈”。
缩颈发生在拉伸曲线上bk段。
不是,塑性变形在产生缩颈现象前就已经发生,如果没有出现缩颈现象也不表示没有出现塑性变形。
4.布氏硬度法和洛氏硬度法各有什么优缺点?下列材料或零件通常采用哪种方法检查其硬度?库存钢材硬质合金刀头锻件台虎钳钳口洛氏硬度法测试简便,缺点是测量费时,且压痕较大,不适于成品检验。
布氏硬度法测试值较稳定,准确度较洛氏法高。
;迅速,因压痕小,不损伤零件,可用于成品检验。
其缺点是测得的硬度值重复性较差,需在不同部位测量数次。
硬质合金刀头,台虎钳钳口用洛氏硬度法检验。
库存钢材和锻件用布氏硬度法检验。
5.下列符号所表示的力学性能指标名称和含义是什么?σb抗拉强度它是指金属材料在拉断前所能承受的最大应力.σs屈服点它是指拉伸试样产生屈服时的应力。
σ2.0规定残余拉伸强度σ1-疲劳强度它是指金属材料在应力可经受无数次应力循环不发生疲劳断裂,此应力称为材料的疲劳强度。
σ应力它指试样单位横截面的拉力。
a K冲击韧度它是指金属材料断裂前吸收的变形能量的能力韧性。
HRC 洛氏硬度它是指将金刚石圆锥体施以100N的初始压力,使得压头与试样始终保持紧密接触,然后,向压头施加主载荷,保持数秒后卸除主载荷。
以残余压痕深度计算其硬度值。
HBS 布氏硬度它是指用钢球直径为10mm,载荷为3000N为压头测试出的金属的布氏硬度。
HBW 布氏硬度它是指以硬质合金球为压头的新型布氏度计。
第二章(p23)(1)什么是“过冷现象”?过冷度指什么?答:实际结晶温度低于理论结晶温度(平衡结晶温度),这种线性称为“过冷”。
理论结晶温度与实际结晶温度之差,称为过冷度。
(2)金属的晶粒粗细对其力学性能有什么影响?细化晶粒的途径有哪些?答:金属的晶粒粗细对其力学性能有很大影响。