分子轨道理论
- 格式:docx
- 大小:78.18 KB
- 文档页数:10
分子轨道理论简介一种理论,是原子轨道理论对分子的自然推广。
其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。
因此,分子轨道理论是一种以单电子近似为基础的化学键理论。
描写单电子行为的称轨道(或轨函),所对应的单电子能量称。
对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论那样讨论分子结构,并联系到分子性质的。
有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。
理论⒈原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。
在分子中电子的空间可用相应的分子轨道ψ(称为分子轨道)来描述。
分子轨道和原子轨道的主要区别在于:⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。
⑵原子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用σ、π、δ…符号表示。
⒉分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals,LCAO)而得到。
有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),如σ、π轨道(轴对称轨道);同时这些对称性匹配的两个原子轨道也会相减形成另一种分子轨道,结果是两核间电子的概率密度很小,其能量较原来的原子轨道能量高,不利于成键,称为反键分子轨道(antibondingmolecularorbital),如σ*、π*轨道(轨道,反键轨道的符号上常加"*"以与区别)。
分子轨道理论1 分子轨道理论分子轨道是由2个或多个原子核构成的多中心轨道。
分子轨道的波函数也是Schrödinger方程的解。
分子轨道分为成键分子轨道与反键分子轨道,前者是原子轨道同号重叠(波函数相加)形成,核间区域概率密度大,其能量比原子轨道低;后者是原子轨道异号重叠(波函数相减)形成的,核间区域概率密度小,两核间斥力大,系统能量提高,如图所示:2 同核双原子分子1).氢分子氢分子是最简单的同核双原子分子。
两个氢原子靠近时,两个1s原子轨道(AO),组成两个分子轨道(MO):一个叫成键轨道,另一个叫反键轨道。
氢分子的两个电子进入成键轨道电子构型或电子排布式为。
电子进入成键轨道,使系统能量降低,进入反键轨道将削弱或抵消成键作用。
2).分子轨道能级图与分子轨道形状第二周期元素原子组成分子时,用2s,2p 原子轨道组成的分子轨道,示于图9-3-2由图可见,分子轨道的数目等于用于组合原子轨道数目。
两个2s原子轨道组成两个分子轨道和,6个2p原子轨道组成6个分子轨道,其中两个是σ分子轨道(和)4个是π分子轨道(两个和两个)。
相应的原子轨道及分子轨道的形状如图下所示。
由图可见:●成键轨道中核间的概率密度大,而在反键轨道中,则核间的概率密度小。
●一对2p z 原子轨道以“头碰头”方式组合形成分子轨道,时,电子沿核间联线方向的周围集中;一对2p x(2p y)原子轨道以“肩并肩”方式组合形成分子轨道,时,电子分布在核间垂直联线的方向上。
3).氧分子O2共有16个电子,O2的电子构型:O2分子有两个自旋方式相同的未成对电子,这一事实成功地解释了O2的顺磁性。
O2中对成键有贡献的是(σ2p)2和(π2p)4这3 对电子,即是一个σ键和两个π键。
O2的两个π键是三电子π键,反键轨道中的一个电子削弱了键的强度,一个三电子π键相当于半个键,故O2的叁键实际上与双键差不多。
4).氮分子N2的分子轨道能级图与O2比较,只是在和的相互位置有区别。
什么是分子轨道理论
分子轨道理论(Molecular Orbital Theory,简称MO理论)是1932年由美国化学家马利肯(R.S.Mulliken)及德国物理学家洪特(F.Hund)提出的一种描述多原子分子中电子所处状态的方法。
该理论认为原子形成分子后,电子不再属于个别的原子轨道,而是属于整个分子的分子轨道,分子轨道是多中心的。
分子轨道由原子轨道组合而成,形成分子轨道时遵从能量近似原则、对称性一致(匹配)原则、最大重叠原则,即通常说的“成键三原则”。
在分子中电子填充分子轨道的原则也服从能量最低原理、泡利不相容原理和洪特规则。
以上信息仅供参考,建议查阅化学专业书籍文献或咨询化学专业人士获取更全面更准确的信息。
分子轨道理
分子轨道理论是一种解释分子化学性质的理论,主要应用于复杂化学物质的计算和设计。
该理论结合量子力学和分子对称性理论,通过对分子中原子轨道的组合和相互作用的分析,得出分子轨道能级和电子分布,进而预测分子性质及其反应活性。
其主要内容包括:
1. 原理:分子轨道理论的核心原理是“波函数线性组合原理”,即分子轨道是由原子轨道按照一定的线性组合方式组成的。
线性组合系数称为“分子轨道系数”。
2. 能级:分子轨道能级是由原子轨道相互作用而形成的,其数目等于参与组合的原子轨道数目。
能级顺序和大小与分子轨道系数及原子轨道能级之间的相互作用有关。
3. 分子轨道类型:根据分子轨道能级和分子轨道系数的不同,分子轨道可分为sigma(σ)轨道、pi(π)轨道、delta(δ)轨道等。
4. 分子轨道的对称性:分子对称性对分子轨道的能级和分子性质有很大影响。
相同对称性的原子轨道组合会形成对称性相同的分子轨道。
5. MO图解:MO图是分子轨道理论的重要表述方式,用于描述分子中电子的能级和分布情况。
其结构为横坐标为分子轨道能级,纵坐标为分子轨道系数的坐标轴。
6. 应用:分子轨道理论可应用于物理、化学、生物等领域,如
化学反应机理、分子光谱学、药物设计等。
7. 限制和局限:分子轨道理论适用于与原子轨道相似的分子,但对于复杂分子和高能态的描述有一定局限性。
分子轨道理论及基态与激发态分子轨道理论基本概念一、分子轨道:(molecular orbital) 描述分子中电子运动的波函数,指具有特定能量的某电子在相互键合的两个或多个原子核附近空间出现的概率最大的区域。
分子轨道由原子轨道线性组合而成。
二、成键三原则:能量相近、最大重叠、对称性匹配。
只有对称性相同的两个原子轨道才能组成分子轨道。
σ对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号不变。
如S,Px,d x2-y2为σ对称。
π对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号改变。
Py,Pz,d xy是π对称。
由σ对称的原子轨道组成的键——σ键由π对称的原子轨道组成的键——π键三、成键轨道与反键轨道分子轨道与原子轨道的联系:轨道守恒——2个原子轨道线性组合,产生2个分子轨道;能量守恒——2个分子轨道的总能量等于2个原子轨道的总能量;能量变化——每个分子轨道的能量不同于原子轨道的能量组合结果—定会出现能量高低不同的两个分子轨道。
——这是原子轨道线性组合的方式不同所致。
波函数同号的原子轨道相重叠,原子核间的电子云密度增大,形成的分子轨道的能量比各原子轨道能量都低,成为成键分子轨道。
波函数异号的原子轨道相重叠,原子核间的电子云密度减小,形成的分子轨道的能量比各原子轨道能量都高,成为反键分子轨道。
四、电子填入分子轨道时服从以下原则:1、能量最低原理:电子在原子或分子中将优先占据能量最低的轨道。
2、保利不相容原理:在同一原子或分子中、同一轨道上只能有两个电子,且自旋方向必须相反。
3、洪特规则:在能量相同的轨道中(简并轨道),电子将以自旋平行的方式、分占尽可能多的轨道基态与激发态当分子中的所有电子都遵从构造原理的这三个原则时,分子所处的最低能量状态——基态。
通常情况下,分子处于基态。
激发态:当分子获取能量后,分子中的电子排布不完全遵从构造原理,分子处于能量较高的状态——激发态,是原子或分子吸收一定的能量后,电子被激发到较高能级但尚未电离的状态。
有机化学中的分子轨道理论在有机化学中,分子轨道理论是一种重要的理论工具,用于解释有机分子的化学性质和反应机理。
分子轨道理论基于量子力学的原理,通过计算和描述分子中电子的运动状态,从而揭示了分子中化学键的形成和断裂、化学反应的进行等重要现象。
本文将介绍有机化学中的分子轨道理论的基本概念、应用以及研究进展。
一、分子轨道理论的基本概念分子轨道理论是基于原子轨道的概念,原子轨道是描述单个原子中电子运动状态的函数。
在一个分子中,原子之间通过共价键形成连接。
根据量子力学的原理,分子中的电子不再局限于单个原子,而是在整个分子中运动。
因此,分子的电子状态需要用一组轨道来描述,这组轨道被称为分子轨道。
分子轨道可以通过线性组合原子轨道(Linear Combination ofAtomic Orbitals,简称LCAO)的方法得到。
LCAO方法假设分子中的分子轨道是由原子轨道线性组合而成的,即每个原子轨道会形成分子轨道的一部分。
通过线性组合的过程,得到的分子轨道既保留了原子轨道的主要特征,又反映了分子中电子的运动状态。
分子轨道可以分为成键轨道和反键轨道。
成键轨道是由原子轨道线性组合形成的,对分子中的共价键的形成起着积极的作用;而反键轨道则是在原子轨道的基础上得到的,它们对共价键的形成没有帮助,反而会削弱共价键。
在分子中,成键轨道和反键轨道总是呈成对存在,它们之间通过分子中的原子核进行相互作用,形成了稳定的分子。
二、分子轨道理论的应用分子轨道理论在有机化学中有着广泛的应用。
它可以通过分析分子轨道的能级和电子分布,预测有机分子的性质和反应行为。
1. 能级结构分子轨道理论可以帮助确定分子中的能级结构。
不同的分子轨道具有不同的能级,电子会填充在低能级的轨道中。
通过计算和实验,可以确定分子中各个分子轨道的能级顺序,从而预测有机分子的稳定性、光谱性质等重要特性。
2. 共价键的形成和断裂分子轨道理论解释了共价键的形成和断裂过程。
分子轨道理论简介一种化学键理论,是原子轨道理论对分子的自然推广。
其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。
因此,分子轨道理论是一种以单电子近似为基础的化学键理论。
描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。
对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。
有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。
理论1. 原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。
在分子中电子的空间运动状态可用相应的分子轨道波函数书(称为分子轨道)来描述。
分子轨道和原子轨道的主要区别在于:⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。
分子轨道理论⑵原子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用c、n、A…符号表示。
2. 分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals , LCAO而得到。
有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),女口c、n轨道(轴对称轨小,其能量较原来的原子轨道能量高,不利于成键,称为反键分子轨道(antibondingmolecularorbital),女口 a *、n *轨道(镜面对称轨道,反键轨道的符号上常加"*" 以与成键轨道区别)。
还有一种特殊的情况是由于组成分子轨道的原子轨道的空间对称性不匹配,原子轨道没有有效重叠,组合得到的分子轨道的能量跟组合前的原子轨道能量没有明显差别,所得的分子轨道叫做非键分子轨道。
3. 原子轨道线性组合的原则(分子轨道是由原子轨道线性组合而得的):⑴对称性匹配原则只有对称性匹配的原子轨道才能组合成分子轨道,这称为对称性匹配原则。
原子轨道有s、p、d等各种类型,从它们的角度分布函数的几何图形可以看出,它们对于某些点、线、面等有着不同的空间对称性。
对称性是否匹配,可根据两个原子轨道的角度分布图中波瓣的正、负号对于键轴(设为x轴)或对于含键轴的某一平面的对称性决定。
⑵能量近似原则在对称性匹配的原子轨道中,只有能量相近的原子轨道才能组合成有效的分子轨道,而且能量愈相近愈好,这称为能量近似原则。
⑶轨道最大重叠原则对称性匹配的两个原子轨道进行线性组合时,其重叠程度愈大,则组合成的分子轨道的能量愈低,所形成的化学键愈牢固,这称为轨道最大重叠原则。
在上述三条原则中,对称性匹配原则是首要的,它决定原子轨道有无组合成分子轨道的可能性。
能量近似原则和轨道最大重叠原则是在符合对称性匹配原则的前提下,决定分子轨道组合效率的问题。
4. 电子在分子轨道中的排布也遵守原子轨道电子排布的同样原则,即Pauli不相容原理、能量最低原理和Hund规则。
具体排布时,应先知道分子轨道的能级顺序。
当前这个顺序主要借助于分子光谱实验来确定。
5. 在分子轨道理论中,用键级(bondorder)表示键的牢固程度。
键级的定义是:键级=(成键轨道上的电子数-反键轨道上的电子数)/2键级也可以是分数。
一般说来,键级愈高,键愈稳定;键级为零,则表明原子不可能结合成分子,键级越小(反键数越多),键长越大。
6. 键能:在绝对零度下,将处于基态的双分子A B拆开也处于基态的A原子和B原子时,所需要的能量叫AB分子的键离解能,常用符号D(A-B)来表示。
轨道正如在原子轨道理论中,氢原子的严格解提供了进一步发展的理论模式,氢分子离子H2+中,单个电子在固定核间距R的双质子场中的波动方程解,是分子轨道理论进程中的基石。
H2啲分子轨道用符号c、n、…表征,对应于精确解中的量子数m=0,± 1 ,± 2,…,它描述相对于核间距R的轨道对称行为。
此外,还需用g和u表征相对于分子中心反演的对称行为。
综合起来,H2+的分子轨道用 a g、c u、n g、n u、…等符号表征,借助精确求解固定核间距R的波动方程获得。
图1给出两个最低轨道l ag和1 au的能量E随R的变化曲线。
1 ag能级有一极小值-1.20 Ry(里德伯能量),出现在R=2a0处(a0为玻尔半径,图2),代表基态;当R增大以至无穷时,1ag能量趋近-1.0 Ry。
两者差值0.20 Ry就是H娚的离解能。
1 au的行为不同,能量随R 减小而单调上升,显示排斥态的本质。
1 ag和1 au也被称作成键轨道和反键轨道。
1 ag均取正值,1 au则在中心两端发生符号变化,但极值均出现在质子所在处,且伴随R变小;1 ag在核间区数值增大,描写了电子在分子中的转移。
随着R的增大,1 ag和1 au的函数值渐近于式⑴~⑵:图3给出R=2a0时,1 ag和1 au轨道的精确值和按式⑴与⑵的近似值的比较,说明式⑴与⑵的近似程度是很好的。
式⑴和⑵表示,分子轨道可以近似地当作原子轨道的线性组合,简写为LCAO见量子化学计算方法)。
当R很大时,结果是准确的,即使R达到分子核间距大小时,也给出不错的结果。
这一点启发了对复杂分子也可采用LCAC方法去寻找图3近似分子轨道。
这是因为在分子中,靠近一个核的电子主要受到该核的势场的作用;而受到其余核的联合作用,则小得多,因此在近核处,分子轨道必定近似于该核的原子轨道。
对于整个空间的任何一点,可以设想分子轨道由有关的原子轨道线性组合而成。
一般的形式是:式中书代表分子轨道或轨函;© v是属于各组成原子的原子轨道;c v是待定系数,由变分法确定还应指出,LCAO是一种可行的近似方式,但不是唯一的近似方式。
任意双原子分子的分子轨道用原子轨道线性组合法LCAO近似来讨论任意双原子分子中,分属两个原子的一对原子轨道形成分子轨道的最优条件。
这时,式⑶采取以下简单形式:ip= c1 © a+c2 © b ⑷代入波动方程H书二E^,得到近似能级E:式中H aa和H bb分别是原子轨道© a和© b的库仑积分,可看作© a和©b的能量,即H aa=E a, Hbb=E b;H ab=B称共振积分,与©a和© b的重叠情况有关,一般取负值,S ab称重叠积分,可当作零处理,而不影响定性结论。
最优条件由E取极值确定,即上式给出一组c l、c2的齐次方程组,由系数组成的久期方程(见休克尔分子轨道法)得到:设E a<E b,则式⑺的含意可用图4表示。
由此看出,有效的成键作用决定于B值的大小,后者又与原子轨道能量差|E a-E b|以及重叠情况B有关,从而可归纳为三个条件:①能量近似条件:指| E a- E b|越小越好,当| E a- E b|=0时,B最大,等于| B |B9 4双底子分子中分于轨逹和原子轨遺的鉅豪关系图4②最大重叠条件:© a与© b的重叠越大(图5), B的绝对值也可能越大。
③对称性条件:有时© a与© b虽然重叠,但B=0,例如当核间距R ab选作z轴(表1), © a=s, © b=py,这是因为s轨道相对xz平面为对称的,而py为反对称的。
图5不同对称性的机与0b的童叠因将式⑺用于同核双原子分子,© a和©b可以是分属两原子的同一原子轨道,这时有:书I 对分子中心为对称,属于g;书口为反对称,属于u。
其次,若© a= © b=s(或=pz),书I和书H均对核间距(z 轴)为轴对称,属于 m =0的a 态;但对© a=© b=py (或px ),则存在通过 R 的节面,属 于n= ±1的n 态能量决定于组成原子轨道的类型和原子轨道间的重叠,例如 a g1s 和a u1s 比a g2s 低得多,这是 由于原子轨道1s 的能量比2s 的低得多。
同理,因为除 氢原子外,2s 能量显着低于2p 的能量, 故a g2s 比a g2p 能量低。
另外,只要核间距不很小,两个2s 轨道或两个2pz 轨道之间的重叠 比两个2py 或2px 之间的重叠大得多,因此成键和反键 n 轨道间的能量差比对应的 a 轨道的 差小。
根据这种论述,表 2中所列分子轨道次序可预料为:a g1s < a u1s <; a g2s <; a u2s <; a g2p <; n g2p <; n u2pv ; a u2p (9)上式是一种最粗糙的轨道近似,更好的近似是包含更多的 原子轨道,这些原子轨道符合有效成 键作用的三条件。
例如,代替单纯的 2s 以及2pz 的LCAC 所形成的a 型分子轨道应为:一 L ■ 2 : J ⑽C l 、C 2、C 3、C 4确定后的四个 a 轨道比原来的 a g2s 、a u2s 、a g2p和a u2p 更接近实际,其中 a g2s 、a u2s 将降低,a g2p 及a u2p 则升高。
加上当核间距变小 时,n u2p 要降低,导致式⑼中,a g2p 与n u2p 次序的可能颠倒:n u2p <; a g2p (ll )N2分子就属于这一类型。
有了式⑼与⑽的能级次序,就可按能量最低原理和泡利原理来预言同核双原子分子的基态 (表 3)。
表中的符号 艺、口、…意义与 a 、n 、…相同,具有沿核间距方向角动量的含义,标志完整分 子的态,由各个单电子轨道确定;右上角的+、-号指对平分两核的镜面反映为对称或反对称而言。
多原子分子 的分子轨道以上基于单电子波动方程近似解的轨道概念和方法,方向的角动量量子数 m =0, ± 1,…等来表征轨道或态;但对多原子分子,找不到象 H 娚那样简单K IG [附血那『 <N; tBhKE#g<2r *N> c0: t&r 」Dfelp )*ON",d ・ ■■Ot < F ・ E&ktV<3pHii^p.*>*:pr 1自然地向复杂的 多原子分子 推广。
对双原子分子,存在沿核间距Ji ;咋“ 1曲(叫1存 IIbf (气曲〉 1ILh 1<^・艸6.1>户 0Li, 尸 »賦厳敢0• 4 tnnccfir 于 n ■応而典型的分子,不能精确求解,给问题的讨论造成了麻烦。