结晶器振动全解
- 格式:ppt
- 大小:473.50 KB
- 文档页数:64
连铸结晶器振动工艺参数2023-11-20汇报人:CATALOGUE目录•结晶器振动工艺参数概述•振动频率•振幅•振动波形•结晶器与铸坯间的摩擦系数•实际生产中的结晶器振动工艺参数调整与优化01结晶器振动工艺参数概述CHAPTER减少摩擦和磨损改善润滑效果促进坯壳均匀生长030201结晶器振动的作用工艺参数对连铸坯质量的影响振动频率01振幅02振动波形03结晶器振动工艺参数的设定与调整CHAPTER振动频率02定义单位振动频率的定义与单位结晶组织裂纹和缺陷润滑和传热振动频率对铸坯表面质量的影响合适振动频率的选择与调整铸坯材质和规格实时监测和调整CHAPTER振幅03定义单位振幅的定义与单位结晶组织振幅过大可能导致铸坯内部气孔和夹杂物的形成,影响铸坯的质量。
气孔和夹杂裂纹振幅对铸坯内部组织的影响铸坯材质铸坯断面尺寸设备性能操作经验01020304合适振幅的选择与调整CHAPTER振动波形04正弦波、方波、三角波等常见波形介绍正弦波方波三角波表面质量不同的波形会对铸坯表面质量产生显著影响。
例如,正弦波能够显著减少铸坯表面裂纹的产生,而方波由于其强烈的振动冲击,可能会导致铸坯表面质量的下降。
内部结构波形也会影响铸坯的内部结构。
例如,三角波由于其稳定性和均匀性,能够促进铸坯形成均匀且稳定的组织结构。
不同波形对铸坯质量的影响选择原则调整策略合适波形的选择与调整05结晶器与铸坯间的摩擦系数CHAPTER通常采用试验测定法,通过模拟结晶器与铸坯的实际接触情况,测量出摩擦力与压力,并计算得到摩擦系数。
摩擦系数的定义与测量方法测量方法定义振动频率摩擦系数的大小直接影响到结晶器与铸坯之间的摩擦力,进而影响到振动频率的选择。
过高的摩擦系数要求更高的振动频率以克服摩擦力,确保铸坯的顺利下滑。
摩擦系数的变化会对振幅产生一定影响。
当摩擦系数增大时,为了保持铸坯在结晶器内的稳定性,可能需要适当增大振幅,以提供足够的振动力。
摩擦系数的不同可能导致振动波形的变化。
液压振动电控操作说明液压振动系统简介:一套液压振动系统主要包括二个振动单元。
每个振动单元由一个电液伺服阀和一个位移传感器组成它的执行环节和反馈环节;一套PLC电控系统负责控制二个单元按照工艺要求协调动作;画面人机接口系统方便操作人员监视和操控振动单元,同时也方便电气人员维护设备;其它还包括液压站,液压阀台,蓄能器等相关设备。
操作方式:液压振动电控主要有自动和手动控制方式。
自动联锁控制方式:这是它的主要工作方式,将振动台与开浇联锁,开浇的同时,启动液压振动。
常用于正常浇铸。
自动解锁控制方式:将振动台与开浇解锁。
常用于停浇后,随时让振动台工作。
手动升降控制方式:手动操作振动单元上升和下降。
常用于检修和调试时设置参数。
手动故障控制方式:振动台做上升和下降周期运动。
常用于在振动台位移传感器工作不正常时,又需要振动台短时工作一段时间。
这种控制方式不能保证振动台的偏摆精度,慎用此种控制方式。
应凌钢要求,此功能取消。
振动方式:液压振动台主要有正弦曲线振动方式和非正弦曲线振动方式。
它由非线性度参数As 决定。
当As=50%表明振动方式为正弦曲线;当As<50%表明振动方式为非正玄曲线,在一个振动周期时间内,上升快,下降慢。
当As>50%表明振动方式为非正弦曲线,在一个振动周期时间内,上升慢,下降快。
人机接口画面简介:图1-1如上图1-1所见,液压振动主画面由主体示意图,显示参数,控件组成。
主画面控件为:“液压油通断阀控制”:主要作用控制通断阀接通和切断。
点击此控件将弹出通断阀控制子画面如图1-2所示:点击控件“开”,此控件颜色变绿,表明通断阀接通;点击控件“关”,此控件颜色变红,表明通断阀切断;点击控件“返回”,此子画面消失,画面返回到主画面状态。
图1-2“振动器控制”:主要作用控制振动器的运行方式。
点击此控件将弹出振动器控制子画面如图1-3所示:点击控件“1#缸”,此控件颜色变绿,表明控制对象为1#缸;点击控件“2#缸”,此控件颜色变绿,表明控制对象为2#缸;点击控件“双缸”,此控件颜色变绿,表明控制对象为1#和2#缸;控件“自动”和操作台转换开关相关联,转换开关选择为“自动”,此控件显示自动,转换开关选择为“手动”,此控件显示手动。
结晶器振动和振痕深度、保护渣耗量的关系分析2008-11-20 20:14:42 作者:炼钢人来源:制钢参考网浏览次数:142 文字大小:【大】【中】【小】关于结晶器振动参数对铸坯表面振痕深度的影响已经进行了许多研究,如唐山钢铁公司的张洪波对结晶器的振动问题进行了一系列的研究,所有研究表明,振痕深度是负滑脱时间的增函数,负滑脱时间越长,振痕深度越深,反之,负滑脱时间越短,振痕深度越浅,因此,提高振动频率可以有效降低振痕深度。
表1.1为英国某钢铁公司的部分实验统计结果,可以看到,当振动的频率增加,行程减小时,振痕深度减小。
日本住友金属和歌山厂研究得到铸坯表面振痕深度随结晶器振动频率的增加和振幅的减小而降低。
当振动频率增加到250cpm,振动行程减小到3.5mm时,振痕深度可以减小到0.2mm以下。
大量的文献已经对结晶器振动和保护渣耗量的关系进行了研究,结果表明,保护渣耗量在负滑脱时间率变化不大时,是负滑脱时间的增函数;在负滑脱时间率变化较大时,不能满足上述关系,而保护渣耗量在所有情况下则和正滑脱时间之间保持增函数的关系。
可见,振痕深度由负滑脱时间控制,保护渣耗量由正滑脱时间控制。
表1 英国钢铁公司部分实验数据有报道指出,根据实验结果显示,对于一定的钢种,保护渣耗量是振动频率的减函数,是波形偏斜率的增函数,是振幅的增函数,是保护渣粘度的减函数。
下面对结晶器振动对振痕深度和保护渣耗量的影响作以下总结:(1)t N增加,NSR同时增大,在这种情况下,振痕加深,保护渣耗量减少,此时既不利于表面质量的改善,又恶化结晶器的润滑状况,这是不可取的。
振幅增加便形成这种趋势,所以振幅应该小,这和目前宝钢结晶器振动采用小振幅是一致的。
(2)t N减少,NSR同时增大,在这种情况下,振痕减轻,保护渣耗量减少,此时利于表面质量的改善,但恶化结晶器的润滑状况。
如果控制振痕深度是主要目的,则采用这种振动方式。
提高振动频率可以达到这一目的。
摘要结晶器是连铸机的心脏部件。
它的主要作用就是对结晶器中的钢水提供快速而且均匀的冷却环境,促使坯壳的快速均匀生长,以形成质量良好的坯壳,保证连铸过程正常而稳定的进行。
在浇注钢水时,若结晶器静止不动,坯壳容易与结晶器内壁产生粘结,这就增大了拉坯时的阻力,导致出现坯壳“拉不动”或者钢水被拉漏事故发生,很难进行浇注。
而当结晶器以一定的规律振动时,这就能使其内壁获得比较良好的润滑条件,从而减少了摩擦阻力又能防止钢水和结晶器内壁的粘结,同时还可以改善铸坯的表面质量,因此结晶器振动装置具有重要的作用。
本文通过对连铸发展历史,以及结晶器振动技术的发展和结晶器振动方式的改进进行了阐述,提出了电液伺服装置驱动,并对其振动规律及工作原理做出了分析。
然后绘制了机械简图,并对其工艺参数和运动参数进行了分析计算,最终完成了本次设计。
本文主要的设计内容包括:1.结晶器振动正弦参数的确定通过负滑脱量、频率和周期、结晶器运动的速度和加速度以及负滑脱时间的计算,来确定铸坯的工艺参数。
2.结晶器振动装置机械计算设计校核了双摇杆机构的主要部分,并根据经验推出机架结构。
3.结晶器振动装置伺服系统的设计计算由系统所需动力选择恰当的液压缸及液压泵。
并对系统的辅助原件进行了计算和选择,同时提出了同步回路电液伺服系统。
4.结晶器振动装置的三维设计关键词:连铸;结晶器;振动装置;振动规律;电液伺服装置AbstractThe mould is the heart part of continuous casting machine. Its main role is to mould the steel in providing rapid and uniform cooling environment, promote the rapid and uniform shell growth, to form a good quality of billet shell, guarantee the normal and stable for continuous casting process. In pouring molten steel in crystallizer, motionless, shell and the mold wall to produce a cohesive, which increases the casting the resistance, led to the emergence of billet shell" sticks" or molten steel is breakout occurs, it is difficult to cast. When the mould in regular vibration, which can make the inner wall is obtained in comparison with good lubrication condition, thereby reducing the friction resistance and can prevent the molten steel and the inner wall of the crystallizer is bonded, but also can improve the surface quality of billet crystallizer vibration device, therefore has an important role.Based on the history and development of continuous casting crystallizer vibration technique, development and improvement of crystallizer vibration mode undertook elaborating, put forward to the electro-hydraulic servo device driver, and the vibration regularity and working principle are analyzed. Then draw the mechanical model, and the process parameters and motion parameters are analyzed and calculated, the final completion of the design.The main design content includes:1.crystallizer vibration sinusoidal parametersThrough the negative slip quantity, frequency and cycle, mold movement velocity and acceleration and negative strip time calculation, to determine the process parameters of casting billet.2.The device of vibration of crystallizer mechanical calculationDesign of the double rocker mechanism the main part, and according to the experience introduction of frame structure.3.The device of vibration of crystallizer of servo system designBy the system the power required by the proper selection of hydraulic cylinder and hydraulic pump. And the system of auxiliary components were calculated and selected, simultaneously proposed synchronous electro-hydraulic servo system.4.dimensional design of crystallizer vibration deviceKey words: continuous casting ;crystallizer ;vibration device; vibration; electro-hydraulic servo device目录摘要 (I)Abstract (II)第一章绪论 (1)1.1什么是连铸 (1)1.2国内连铸的重要性 (1)1.3中国连铸发展的主要成就 (2)1.4世界连铸技术的发展及我国存在的差距 (3)1.5连铸机振动系统应注意的部分问题 (4)第二章结晶器振动技术 (6)2.1结晶器振动技术发展的历史 (6)2.2连铸机结晶器振动简介 (6)2.3结晶器振动规律的演变 (7)2.4结晶器振动和润滑的关系 (10)第三章结晶器振动方案的选择 (14)3.1本课题研究的目的 (14)3.2课题研究内容 (14)3.3设备发展状况 (15)3.4周边设备简介 (15)3.5技术方案介绍 (15)3.6 振动机构的选择 (19)第四章结晶器正弦振动的参数分析 (22)4.1负滑脱量计算 (22)4.2频率与周期 (22)4.3结晶器的运动速度和加速度 (23)4.4负滑脱时间的确定 (24)第五章结晶器振动装置机械设计 (26)5.1受力分析 (26)5.2强度校核 (27)5.2.1轴Ⅰ的校核 (27)5.2.2轴Ⅱ的校核 (30)5.3轴承校核 (34)第六章结晶器振动装置伺服系统的设计 (35)6.1控制方案 (35)6.2设计计算 (36)6.3液压缸设计计算 (36)6.3.1油缸的设计原则 (36)6.3.2油缸的设计 (37)6.3.3油缸参数计算 (37)6.4泵的选择计算 (39)6.4.1泵的选择计算原则 (39)6.4.2系统流量计算 (39)6.4.3流量计算 (39)6.4.4泵的参数计算 (40)6.5阀的选择计算 (40)6.6辅助元件的选择计算 (42)6.6.1管路 (42)6.6.2蓄能器的选择 (44)6.7油箱的设计计算 (45)6.7.1油箱设计原则 (45)6.7.2油箱参数设计计算 (45)6.7.3油箱容量的计算 (46)6.7.4油箱内工作介质体积估算 (46)6.8系统发热功率计算 (46)6.8.1液压泵的功率损失 (46)6.8.2阀的损失功率 (46)6.8.3管路以及其它功率损失 (47)6.9过滤器的选择 (47)6.10液压工作介质的选取 (48)第七章三维建模 (49)7.1零部件三维设计 (49)7.1.1结晶器振动装置固定台 (49)7.1.2结晶器振动装置活动台 (49)7.1.3连杆1 (50)7.1.4连杆2 (50)7.1.5心轴 (51)7.1.6轴承 (51)7.1.7挡圈 (51)7.1.8轴承端盖 (52)7.1.9阻尼器气囊 (52)7.1.10进水管 (52)7.1.11阻尼器进气管道 (53)7.1.12环状活塞杆头 (53)7.1.13阻尼器支架 (54)7.1.14液压缸 (54)7.2总装配图 (55)总结 (56)致谢 (57)参考文献 (58)第一章绪论1.1什么是连铸连铸即为连续铸钢(英文,Continuous Steel Casting)的简称。
摘要结晶器是连铸机的关键设备之一,结晶器振动是影响连铸生产质量和产量的重要因素。
因此,对结晶器振动系统进行研究有着重要意义和实用价值。
本文介绍了结晶器振动技术的发展以及结晶器非正弦振动技术在国内外的研究与应用,并在了解国内外结晶器非正弦振动系统和分析结晶器非正弦振动规律以及工艺参数的基础上,结合某板坯连铸机采用的短杆式结晶器液压振动系统,着重于研究结晶器液压非正弦振动系统的动态特性以及结晶器四连杆振动机构的运动学、动力学特性,主要进行了以下几个方面的工作:1)在全面了解结晶器液压振动系统、液压伺服系统的建模方法和仿真的基础上,研究了结晶器液压振动系统的工作原理,建立了相应数学模型。
2)根据建立的数学模型,利用软件Matlab中的SIMULINK模块实现系统动态结构图,通过对液压振动系统进行动态仿真计算分析,得到了系统主要控制量的仿真曲线,研究了系统中主要参数的变化对结晶器液压非正弦振动系统性能的影响。
3)利用三维实体建模软件Pro/E和机械系统动力学分析软件ADAMS,建立了结晶器平行四连杆振动装置的三维虚拟样机模型,通过对平行四连杆振动机构的动力学仿真,得到了在不同振幅,不同振动频率条件下机构的运动学、动力学规律以及相关特性。
对结晶器液压非正弦振动系统的动态特性仿真研究以及对结晶器四连杆振动机构的动态行为仿真研究,其计算结果为连铸机结晶器液压非正弦振动装置的设计、改进及维护提供了数据,也为结晶器液压非正弦振动装置实现高频、小振幅的振动条件提供了理论依据。
关键词:连铸结晶器;非正弦振动;液压振动系统;SIMULINK;ADAMS;动态仿真ABSTRACTThe mould is one of the key devices of continuous casting machine,and the yield and quality of continuous casting mainly depend on the vibration of mould.Therefor,it is quite significant to study mould vibration system.The development of mould vibration technology and the mould non-sine wave vibration technology at home and broad are introduced in the bined with short lever electro-hydraulic mould vibration system,the whole research on dynamic characteristics of mould hydraulic non-sine vibration system and kinematics and dynamics characteristics of mould four-link vibration mechine are based on both the acquirment of mould non-sine vibration system and analysis of mould non-sine vibration regularity. This study puts emphasis upon several parts:1) On basis of knowing about mould hydraulic vibration system and modeling methodologies and simulation and optimization of draulic servo system,study the structure of mould hydraulic vibration and build mathematic model.2) According to the mould hydraulic vibration mathematics model,analyzed the dynamic characteristic of the mould hydraulic vibration system with the MATLAB/Simulink module,figured out the simulation curve of main controlled variable.Effect of main parameters to the system performances is analyzed.3) Based on the 3D prototyping model of mould four-link vibration mechine with Pro/E and ADAMS and dynamic simulation ,study the kinematics and dynamics characteristics of mechine with different frequencies and amplitedes.Results of dynamic characteristic analysis will provide theoretic data for design and improvement to the continuous caster. It will provide theoretic support for the oscillating mechanism using high frequency and short stroke oscillation parameters.Key Words:Contunuous casting mould;Non-sine vibration;Hydraulic vibration system;SIMULINK;ADAMS;Dynamic simulation目录第一章绪论 (1)1.1 连铸及结晶器简介 (1)1.2 结晶器振动技术的发展 (2)1.3 连铸结晶器非正弦振动技术在国内外的研究与应用 (4)1.4 课题来源及研究意义 (6)1.5 课题主要研究内容 (6)第二章连铸结晶器非正弦振动理论分析 (8)2.1 结晶器非正弦振动产生机理 (8)2.1.1 结晶器润滑机理 (8)2.1.2 结晶器最佳振动波形产生机理 (9)2.2 结晶器非正弦振动波形及数学表达式 (11)2.2.1 三角形振动波形 (11)2.2.2 普通非正弦波 (13)2.2.3 复合正弦波 (15)2.3 结晶器非正弦振动参数分析 (16)2.3.1 非正弦振动工艺参数分析 (16)2.3.2 非正弦振动工艺参数的确定 (17)2.3.3 非正弦振动基本参数的确定 (18)第三章连铸结晶器液压振动系统研究 (20)3.1 结晶器液压振动系统组成及原理 (20)3.2 结晶器液压振动系统的技术要求 (21)3.3 结晶器液压振动系统建模 (22)3.3.1 液压系统常用建模方法 (22)3.3.2 结晶器液压振动系统简化 (24)3.3.3 结晶器液压伺服系统数学模型 (24)3.4 系统参数的确定 (27)3.4.1 系统基本参数 (27)3.4.2 参数的计算说明 (28)第四章连铸结晶器液压振动系统仿真分析 (29)4.1 仿真软件的选用及模型实现 (29)4.2 仿真结果及动态特性分析 (32)4.2.1 不同输入信号下动态特性分析 (32)4.2.2 不同系统参数下动态特性分析 (34)第五章连铸结晶器四连杆振动机构动态仿真 (36)5.1 三维虚拟样机模型的建立 (36)5.1.1 建模及仿真软件简介 (36)5.1.2 机构中零部件三维造型及装配 (37)5.1.3 机构间运动副、约束力及运动激励的施加 (38)5.2 四连杆振动机构运动学分析 (39)5.2.1 杆件角速度及角加速度仿真结果分析 (40)5.2.2 结晶器速度及加速度仿真结果分析 (42)5.3 四连杆振动机构动力学分析 (43)5.3.1 各构件动支反力仿真结果 (44)5.3.2 构件动支反力变化规律分析 (45)第六章结论 (47)参考文献 (48)致谢 (51)个人简历及在学发表论文 (52)第一章绪论1.1 连铸及结晶器简介连铸即连续铸钢技术,是指将高温钢液连续的浇铸到一个或多个强制水冷的金属型腔内。
1)结晶器振动的正弦速度曲线的数学表达式为:V=(πfS/1000)sim((2πf/60)t);式中V( m/min)为结晶器运动速度、S=2A( mm)为振程即2倍于振幅A、f( 1/min)为振动频率。
2)当V=Vc时:负滑动(脱)时间=下降的速度大于拉速的下降时间tn=60/(πfd)arccos(1000Vc/s/π/fd)。
3)设:Z=S/Vc( mm*min/m);则tn=60/(πfd)arccos(1000/s/π/fd/Z)。
A为振幅,单位mm,Vc为拉速,单位m/min,f为频率,单位1/min。
取不同的Z值可画出负滑动时间随振动频率变化的曲线,称为负滑动曲线( tn——f)。
4)据有关资料和厂家的数据,负滑动时间取值范围在0.1~0.25s,认为对于不同的钢种最佳负滑动时间为0.1s左右。
且一般对于底碳钢负滑动时间不小于0.1s,而中碳钢负滑动时间应不小于0.07~0.1s。
1)负滑动率NS=(Vc-Vm)/Vc×100%,式中:Vc为拉坯速度( m/min),Vm为结晶器振动平均速度(Vm=2Vmax/π=2fS/1000;m/min),Vmax为结晶器振动最大速度(Vmax=πfS/1000; m/min)。
正弦NS:20~-240%;非正弦NS:-53.4~-108.8%(有关文献报道的日本钢管公司福山厂5号连铸机)。
2)NS=1-(2Vmax/πVc);当Vc=Vmax时,结晶器中的坯壳处于受拉和受压的临界状态。
此时NS=36.34%为负滑动率的极限值,当Vc>Vmax时,即NS>36.34%时,结晶器对坯壳不产生负滑动;NS<36.34%时产生负滑动。
通过采用数值法上计算机可求得:当NS=2.4%时负滑动时间取得最大值。
3)tn=60/(πfd)arccos(2/π(1-NS));在NS值给定的情况下,tn与f成反比双曲线关系;该曲线称为负滑动率等值曲线。
结晶器振动技术简述发布时间:2006-11-29 10:34:19 【小中大字体】【评论】浏览:134次概述1 振动的结晶器使连续铸钢实现工业化回顾连续铸钢的发展历史,连续浇铸的生产方式首先是从有色金属开始的。
铸机采用的是垂直固定的结晶器,拉坯过程中,坯壳极易与结晶器壁发生粘结,从而导致拉不动或拉漏事故。
因此浇铸速度很低,铸坯的液相心长度一般不超过结晶器长度。
据有关文献记载,于1913年瑞典人皮尔逊(A·H·Pehrson)曾提出结晶器应按照一定的振幅和频率做往复运动的想法,但真正将这一想法付诸实施的却是德国人容汉斯(S·Junghans)。
容汉斯开发的结晶器振动装置于1933年成功的应用于有色金属黄铜的连铸。
1949年容汉斯的合作者美国人艾尔文·罗西(Irving·Rossi)获得了容汉斯振动结晶器的使用权,并在美国的阿·勒德隆钢公司(Allegheng Ludlum Steel Corporation)的Watervliet 厂的一台方坯试验连铸机上采用了振动结晶器。
与此同时,容汉斯振动结晶器又被应用于德国曼内斯曼(Mannesmann)公司胡金根厂(Huckiugen)的一台连续铸钢试验连铸机。
容汉斯振动结晶器在这两台连铸机上的成功应用,使其在钢连铸中迅速得到了推广。
从此,结晶器振动便成了连铸生产的标准操作。
可以看出是振动的结晶器使连续铸钢生产实现了工业化。
2 结晶器振动技术的每一次进步都使连铸生产再上一个新台阶结晶器振动技术主要包括结晶器振动规律和振动装置两个方面:1)结晶器振动规律的发展结晶器由静止变为振动,引起了连铸工作者的广泛关注和兴趣,人们纷纷进行试验研究工作,对粘结性漏钢机理进行了研究,发展了各种结晶器振动规律。
最早出现的是矩形速度振动规律,基于“拉裂——焊合”理论,其特点是结晶器在下降时与铸坯做同步运动,然后以3倍的拉坯速度上升,即所谓的3:1型振动方式。
结晶器正弦振动的一种结构摘要:在结晶器(水冷金属型)的一端连续浇入金属液,金属在结晶器型腔内连续向另一端移动和凝固成型,在结晶器另一端连续拉出铸件,这种方法称为铸造法。
在铸造过程中,结晶器振动的目的在于改善铸锭的表面质量。
而振动可以分为很多种形式,本文分析了几种常见的结晶器振动形式,并提供了一种便于实现结晶器正弦振动的结构。
关键词:结晶器;振动;正弦振动;振幅;频率;偏心套在有色金属或合金的铸锭生产过程中,金属液体通过电炉溶解,进入到铸造机的结晶器中,通过结晶器水腔中的水对铸造金属进行冷却,冷却后的铸锭通过引锭平台引出。
一般而言,金属型铸件的表面尺寸精度、几何形状和粗糙度要靠正确的设计与制造金属型模来保证,而铸件的内部质量则主要靠拟定和贯彻正确的工艺规范来保证。
实验证明,结晶器内的金属液面、铸造速度以及结晶器冷却强度和振动频率、振幅均对铸件内部质量有着可观的影响。
1.几种常见的振动形式:1.1.标准的容汉斯振动形式:结晶器上下振动的时间比是1:3,结晶器下振速度与铸造速度同步。
此刻,由于结晶器壁与铸锭之间没有相对运动,因此热交换效果比较好,所以它更是个需要强化一次冷却的铸造场合。
1.2.有滑动的容汉斯振动形式:结晶器上下振动的时间比是1:3,结晶器下振速度是铸造速度的3~5倍。
1.3.正弦振动形式:结晶器上下振动的时间比是1:1,结晶器下振速度是铸造速度的3~7倍。
b和c两种振动方式都有滑动,这是避免铸锭表面拉裂和避免铸锭表面有夹渣的一种有利条件。
相对来说,正弦振动形式中的凸轮容易加工,振动过程中冲击力小且速度变化平稳,负滑动率大实际采用比较多。
2.振动的振幅和频率:是正弦振动的速度曲线,示出了正弦振动的位移及速度曲线。
由图可见,结晶器振动时的运动速度随时间的变化呈一条正弦曲线。
其特点是:结晶器在整个振动过程中速度一直是变化的,即铸坯与结晶器时刻都存在相对运动。
在结晶器下降过程中有一段负滑动,能防止和消除粘结,具有脱模作用;另外,由于结晶器的运动速度是按正弦规律变化的,加速度必然按余弦规律变化,所以过度比较平稳,冲击力也较小。
内蒙古科技大学实习论文题目:结晶器振动技术姓名学号:班级日期:目录内蒙古科技大学煤炭学院 (1)目录 (2)一、摘要 (3)二、前言 (3)三、结晶器振动技术 (5)3.1正弦振动 (5)3.2非正弦振动 (6)3.4结晶器振动参数设置 (9)3.5振动伺服阀 (10)3.6结论 (10)一、摘要连铸连轧结晶器振动技术的发展历史和现状,简单分析了结晶器正弦振动和非正弦振动形式,并讨论了结晶器振动和润滑的关系。
关键词:结晶器;振动;润滑;振动参数;振动伺服阀;二、前言结晶器振动是连铸技术的一个基本特征。
连铸过程中,结晶器和坯壳间的相互作用影响着坯壳的生长和脱膜,其控制因素是结晶器的振动和润滑。
连铸在采用固定结晶器浇注时,连铸直接从结晶器向下拉出,由于缺乏润滑,易与结晶器发生粘结,从而导致出现拉不动或者拉漏事故,很难进行浇注。
结晶器振动对于改善铸坯和结晶器界面间的润滑是非常有效的,振动结晶器的发明引进,工业上大规模应用连铸技术才得以实现。
可以说,结晶器振动是浇注成功的先决条件,十年来发展的重要里程碑。
近年来,冶金工业的迅速发展,要求连铸提高拉速和增加连铸机的生产能力,人们对结晶器振动的认识也在不断深入和发展。
连铸机结晶器振动的目的是防止拉坯时坯壳与结晶器黏结,同时获得良好的铸坯表面。
结晶器向上运动时,减少新生坯壳与铜壁产生黏着,以防止坯壳受到较大的应力,使铸坯表面出现裂纹;而当结晶器向下运动时,借助摩擦,在坯壳上施加一定的压力,愈合结晶器上升时拉出的裂痕,要求向下运动的速度大于拉坯速度,形成负滑脱。
结晶器壁与运动坯壳之间存在摩擦力,此摩擦力被认为是撕裂坯壳进而限制浇注速度的基本因素。
在初生坯壳与结晶器壁之间存在液体渣膜,此处的摩擦为黏滞摩擦,即摩擦力大小正比于相对运动速度,渣膜黏度,反比于渣膜厚度。
在结晶器振动正滑脱期间摩擦力及其引起的对坯壳的拉应力就较大,可能将初生坯壳拉裂,为此开发了采用负滑脱的非正弦振动技术来减小这一摩擦力。
结晶器液压振动功能说明书1 计算值和技术规格•根据拉速计算振频和振幅并定期发送到振动控制系统。
更新时间<1秒钟。
•通过人工方式从HMI获取波形曲线(正弦曲线/非正弦曲线曲线等)。
•控制系统对属于参数表中所列波形的伺服参数(根据系统存储器中存储的公式)连续更新,以便使结晶器振动系统的波形输出值能迅速将拉速的微小变化计入在内。
•从一种波形成到另一种波形的转换可以从通过网络利用HMI进行。
•当拉速改变时,根据HMI上设定的曲线在振幅和振频方面改变波形2 操作要求•波形:正弦、非对称正弦波形。
•振频:50~350次/分钟。
(允许范围50~250次/分钟)•振幅:0~+/-7mm。
(允许范围0~+/-4.0mm)•非对称性:根据波形曲线,其范围为0.0~0.4。
3波形定义•由于液压振动控制的灵活性,可利用不同的波形(正弦或余弦)来优化振动操作。
•也可在浇铸过程中改变波形,但为了操作安全,建议在系统未振动时(即开浇前)改变波形,当然,最好在结晶器中没有钢水时先行进行检测。
•在浇注过程中也可改变非对称性系数,但为了操作安全,建议在开浇前对其进行改变或先行试运行。
1. 操作员站-+C1LC801~+C1LC808“1~8流结晶器操作箱”-L1-HMI “主操作室”2. 操作方式-从+C1LC801~+C1LC808手动开始/停机-从L1-HMI 手动开始/停机-从L1-HMI手动设定调节设定值-从L1-HMI 手动开始校准-自动开始/停机-选择一级参数表-从L1-HMI 上进行一级参数调整3.操作3.1 手动开始/停机前提:-选择“关断”方式、“准备好”、“浇铸”方式或“拉尾坯”方式-液压缸校准完毕-振动液压系统就绪-振动系统状态良好-阀门通电-位置传感器无故障功能:通过按+C1LC801~+C1LC808上的灯光按钮“结晶器振动:开始”启动结晶器。
通过按+C1LC801~+C1LC808上的灯光按钮“结晶器振动:停止”停止结晶器。