七年级下册-期末模拟卷
- 格式:doc
- 大小:388.50 KB
- 文档页数:8
2023-2024学年七年级数学下学期期末模拟卷01全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列选项中,可由如图2022年杭州亚运会会徽“潮涌”平移得到的是()A.B.C.D.【分析】根据平移的特征进行判断即可.【解】:由平移的特征可知,能够通过平移得到的是:故选:C.2.如图,已知直线a,b被直线c所截,那么∠1的内错角是()A.∠2B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【解】:∠1的内错角是∠3.故选:B.3.下列调查方式中正确的是()A.要了解一大批笔芯的使用寿命,采用全面调查的方式B.为了审核书稿中的错别字,采用抽样调查的方式C.为了解外地游客对湖州景点“原乡小镇”的满意程度,采用全面调查的方式D.要了解某班全体学生的视力情况,采用全面调查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解】:A、要了解一大批笔芯的使用寿命,适合采用抽样调查方式,故不符合题意;B、为了审核书稿中的错别字,适合采用全面调查的方式,故不符合题意;C、为了解外地游客对湖州景点“原乡小镇”的满意程度,适合采用抽样调查的方式,故不符合题意;D、要了解某班全体学生的视力情况,采用全面调查的方式,故符合题意.故选:D.4.已知,则下列式子一定正确的是()A.x=2,y=3B.2x=3y C.D.【分析】依据比例的基本性质以及等式的基本性质,即可得到成立的式子.【解】:A.由,可得3x=2y,故x=2,y=3不一定成立,本选项不合题意;B.由,可得3x=2y,故2x=3y不成立,本选项不合题意;C.由,可得﹣1=﹣1,即=﹣,故=不成立,本选项不合题意;D.由,可得+1=+1,故,本选项符合题意;故选:D.5.下列计算正确的是()A.(2x2y)2=4x4y2B.x3÷x=x3C.2x+3y=5xy D.(x+y)2=x2+y2【分析】直接利用积的乘方的运算法则、同底数幂的乘法法则、合并同类项法则、完全平方公式分别化简得出答案.【解】:A.(2x2y)2=4x4y2,原计算正确,故本选项符合题意;B.x3÷x=x2,原计算错误,故本选项不符合题意;C.2x与3y不是同类项,不能合并,原计算错误,故本选项不符合题意;D.(x+y)2=x2+2xy+y2,原计算错误,故本选项不符合题意;故选:A.6.若4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,则a+b的值为()A.﹣2B.﹣1C.0D.1【分析】根据二元一次方程的定义,得出a+b=1,3a+2b﹣4=1,解出a、b的值,然后把a、b的值代入a+b,计算即可得出结果.【解】:∵4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,∴,解得:,当a=3,b=﹣2时,a+b=3﹣2=1.故选:D.7.若关于x的分式方程﹣=1有增根,则a的值为()A.2B.﹣2C.4D.﹣4【分析】先求出分式方程的解,根据分式方程有增根,得到x=2,从而得到a的值.【解答】解:去分母得:x+x﹣a=x﹣2,∴x=a﹣2,∵分式方程有增根,∴x=2,∴a﹣2=2,∴a=4,故选:C.8.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱.问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.【分析】根据每人出8钱,则多出3钱,可得8x﹣3=y,根据每人出7钱,则还差4钱,可得7x+4=y,从而可以列出相应的方程组.【解答】解:由题意可得,,故选:B.9.如图所示,将两张相同的矩形纸片和三张不同的正方形纸片按如图方式不重叠地放置在矩形ABCD内若知道图中阴影部分的面积之和,则一定能求出()A.△AEH和△CFG的面积之差B.△DHG和△BEF的面积之和C.△BEF和△CFG的面积之和D.△AEH和△BEF的面积之和【分析】设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,由HI=FK,GH=EF,证明GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,则S△ADH=S△BCF =(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),可求得S阴影=2mn,可推导出S△AEH﹣S△CFG=0;S△DHG+S△BEF=mn=×2mn;S△BEF+S△CFG=mn﹣n2;S△AEH+S△BEF=mn﹣n2,可知B符合题意.【解答】解:如图,设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,∵HI=FK,GH=EF,∴HI+GH=FK+EF,∴GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,∵AJ=HI=FK=m﹣n,∴AB=CD=m+m﹣n=2m﹣n,∵AD=BC=2m+n,JE=GL=m,∴S△ADH=S△BCF=(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),∴S阴影=(2m﹣n)(2m+n)﹣2×(2m+n)(m﹣n)﹣2×m(2m﹣n),整理得S阴影=2mn,∵S△AEH﹣S△CFG=n(m﹣n)﹣n(m﹣n)=0,∴S△AEH﹣S△CFG的结果与S阴影值的大小无关,故A不符合题意;∵S△DHG+S△BEF=mn+mn=×2mn,∴△DHG和△BEF的面积之和可由S阴影的值求得,故B符合题意;∵S△BEF+S△CFG=mn+n(m﹣n)=mn﹣n2,∴△BEF和△CFG的面积之和不能由S阴影的值求得,故C不符合题意;∵S△AEH+S△BEF=n(m﹣n)+mn=mn﹣n2,∴△AEH和△BEF的面积之和不能由S阴影的值求得,故D不符合题意,故选:B.10.新定义:若两个分式A与B的差为n(n为正整数),则称A是B的“n分式”.例如:,则称分式是分式的“1分式”.根据以上定义,下列选项中说法错误的是()A.是的“3分式”B.若a的值为﹣3,则是的“2分式”C.若是的“1分式”,则a2=3b2D.若a与b互为倒数,则是的“5分式”【分析】根据新定义运算逐个验证正确与否即可.【解】:A、,A说法正确;B、,B说法正确;C、由已知条件得:,化简得:a2=2b2,C说法错误;D、由已知得:ab=1,,D说法正确.故选:C.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若分式a2a−1有意义,a的取值范围是.【分析】根据分式有意义的条件,进行判断即可.【解】:∵分式a2a−1有意义,∴2a﹣1≠0,解得:a≠1 2.故答案为:a≠1 2.12.分解因式:2a2﹣6ab=.【分析】根据题中的公因式是2a,用提取公因式的方法进行因式分解.【解】:2a2﹣6ab=2a(a﹣3b),故答案为:2a(a﹣3b).13.七(2)班第一组的12名同学身高(单位:cm)如下:162,157,161,164,154,153,156,168,153,152,165,158.那么身高在155~160的频数是.【分析】从中找出身高在155~160的个数即可得出答案.【解】:身高在155~160的有157,156,158,则频数是3;故答案为:3.14.关于x,y的二元一次方程组{x+y=3x−3y=k的解满足x﹣y=﹣1,则k的值是.【分析】将两式相加,得到2x﹣2y=k+3,然后得到x−y=k+32,据此即可求解.【解】:{x+y=3①x−3y=k②,由②+①得2x﹣2y=k+3,∴x−y=k+3 2,∵x﹣y=﹣1,∴k+32=−1,解得k=﹣5.故答案为:﹣5.15.我们在学习代数公式时,可以用几何图形来推理论证.受此启发,在学习因式分解之后,小明同学将图1一张边长的a的正方形纸片剪去2个长为a,宽为b的长方形以及3个边长为b的正方形之后,拼成了如图2所示的长方形.观察图1和图2的阴影部分,请从因式分解的角度,用一个含有a、b等式表示从图1到图2的变化过程.【分析】利用代数式分别表示图1,图2阴影部分面积即可解答.【解】:由题可知,图1阴影部分面积为a2﹣2ab﹣3b2,图2是长为a+b,宽为a﹣3b a+b)(a﹣3b),∵两个图形阴影部分面积相等,∴a2﹣2ab﹣3b2=(a+b)(a﹣3b),故答案为:a2﹣2ab﹣3b2=(a+b)(a﹣3b).16.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠EFC=α,将纸带沿EF折叠成图②(G为ED和BF的交点),再沿BF折叠成图③(H为EF和DG的交点),则图③中的∠HFC =.(结果用含α的代数式表示)【分析】在图①中,由∠EFC=α得∠DEF=180°﹣α,∠EFB=180°﹣α,在图②中,∠EFB=180°﹣α,由折叠的性质得∠FEG =∠DEF =180°﹣α,再由三角形的外角定理得∠DGF =∠FEG +∠EFB =360°﹣2α,在图③中,由折叠的性质得∠DGF =360°﹣2α,∠EFB =180°﹣α,由三角形的外角定理得∠DHF =∠DGF +∠EFB =540°﹣3α,根据DH ∥CF 得∠DHF +∠HFC =180°,据此可得∠HFC 的度数. 【解】:在图①中, ∵四边形ABCD 是长方形, ∴AD ∥BC ,∴∠DEF +∠EFC =180°, ∵∠EFC =α,∴∠DEF =180°﹣∠EFC =180°﹣α, ∴∠EFB =180°﹣∠EFC =180°﹣α, ∴图②中,∠EFB =180°﹣α,由折叠的性质得:图②中,∠FEG =∠DEF =180°﹣α, ∵∠DGF 是△EFG 的一个外角,∴∠DGF =∠FEG +∠EFB =180°﹣α+180°﹣α=360°﹣2α, 由折叠的性质得:图③中,∠DGF =360°﹣2α,∠EFB =180°﹣α, ∵∠DHF 四△HGF 的一个外角,∴∠DHF =∠DGF +∠EFB =360°﹣2α+180°﹣α=540°﹣3α, 在图③中,DH ∥CF , ∴∠DHF +∠HFC =180°,∴∠HFC =180°﹣∠DHF =180°﹣(540°﹣3α)=3α﹣360°.三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤) 17.解二元一次方程组.(1){3x −2y =9x +2y =3;(2){x +3y =14x−23−y−22=1.【分析】(1)利用加减消元法解得x =3,再用代入法求得y =0即可;(2)先将式子去分母,再用加减消元法解得x =6,再用代入法求得y =83即可.【解】:(1){3x −2y =9①x +2y =3②①+②,得4x =12, ∴x =3.把x =3代入②,得3+2y =3, 解得y =0所以原方程组的解为{x =3y =0;(2){x +3y =14①x−23−y−22=1②,②化简得:2(x ﹣2)﹣3(y ﹣2)=6,即2x ﹣3y =4③, ①+③得:3x =18,解得:x =6,将x =6代入①得:6+3y =14,解得:y =83,∴原方程组的解为:{x =6y =83. 18.先化简,再求值:(a ﹣3b )2﹣(a +b )(a ﹣b )+(4ab 2﹣2b 3)÷b ,其中a =12,b =−14.【分析】先根据完全平方公式、平方差公式和多项式除以单项式法则去掉括号,再合并同类项,然后把a ,b 的值代入化简后的式子,进行有理数的混合运算即可.【解】:原式=a 2﹣6ab +9b 2﹣a 2+b 2+4ab ﹣2b 2=a 2﹣a 2+9b 2+b 2﹣2b 2+4ab ﹣6ab =8b 2﹣2ab , 当a =12,b =−14时,原式=8×(−14)2−2×12×(−14)=8×116+14 =12+14 =34.19.如图:已知,∠HCO =∠∠BHC +∠BEF =180°. (1)求证:EF ∥BH ;(2)若BH 平分∠EBO ,EF ⊥AO 于F ,∠HCO =64°,求∠CHO 的度数.【分析】(1)要证明EF ∥BH ,可通过∠E 与∠EBH 互补求得,利用平行线的性质说明∠EBH =∠CHB 可得结论.(2)要求∠CHO 的度数,可通过平角和∠FHC 求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC 的度数即可.【解】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)解:∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB=12∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.20.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A.法律知识竞赛;B.国际象棋大赛;C.花样剪纸大赛;D.创意书签设计大赛.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场报告时间为60分钟.由下面的活动日程表可知,A 和C 两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排B ,D 二场报告,补全此次活动日程表,并说明理由.【分析】(1)根据喜欢B 类型的人数及其百分比求得总人数,用总人数减去其它类型的人数求出喜欢D 类型的人数即可补全条形统计图;(2)用360°乘以喜欢“创意书签设计大赛”的百分比即可; (3)分别求出喜欢B ,D 二场的人数,补全此次活动日程表即可. 【解】:(1)共调查的学生人数为15÷30%=50(人),D 类型的人数为50﹣(5+15+20)=10(人),补全条形统计图如下:(2)360°×1050×100%=72°,答:扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是72度; (3)喜欢B 类型的人数为500×30%=150(人), 喜欢D 类型的人数为500×1050×100%=100(人), 补全此次活动日程表如下:21.如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.22.去年全国根食产量再创新高,为推进乡村振兴奠定了坚实基础,某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.(1)该专业户去年原计划生产水稻、小麦各多少吨?(2)据了解,该专业户去年水稻种植面积是小麦种植面积的2倍,且水稻亩产量比小麦多120千克,求水稻种植面积是多少亩?【分析】(1)设该专业户去年原计划生产水稻x吨,小麦y吨,根据某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.列出二元一次方程组,解方程组即可; (2)设水稻种植面积是m 亩,则小麦种植面积为12m 亩,根据水稻亩产量比小麦多120千克,列出分式方程,解方程即可.【解】:(1)设该专业户去年原计划生产水稻x 吨,小麦y 吨, 由题意得:{x +y =14(1+8%)x +(1+5%)y =15,解得:{x =10y =4,答:该专业户去年原计划生产水稻10吨,小麦4吨;(2)该专业户去年实际生产水稻:(1+8%)×10=10.8(吨),生产小麦:(1+5%)×4=4.2(吨), 设水稻种植面积是m 亩,则小麦种植面积为12m 亩,由题意得:10.8m −4.212m=1201000,解得:m =20,经检验,m =20是原方程的解,且符合题意, 答:水稻种植面积是20亩.23.如图为某社区的一块方形空地,由四块长为a ,宽为b 的长方形空地与一块小正方形水池拼接而成,为创建生态社区、小明为空地设计了甲、乙两种绿化方案,其中阴影部分都用于绿化,已知S 甲、S 乙分别表示图甲、乙中绿化的面积.(1)S 甲= ,S 乙= (用a ,b 的代数式表示); (2)当S 甲−S 乙=14a 2时,求S 甲S乙的值. 【分析】(1)S 甲为四个直角三角形的面积和;S乙为大正方形的面积减四个小直角三角形的面积减小正方形的面积;(2)根据已知以及(1)的结论求得b =a2,代入S 甲S乙计算即可求解.【解】:(1)S 甲=4×12ab =2ab ;S 乙=(a +b)2−2×12ab −2×12(a +b)b −(a −b)2=a 2+2ab +b 2﹣ab ﹣ab ﹣b 2﹣a 2+2ab ﹣b 2=2ab ﹣b 2, 故答案为:2ab ;2ab ﹣b 2; (2)解:∵S 甲−S 乙=14a 2,∴2ab −(2ab −b 2)=14a 2,解得b =a2(负值已舍),∴S 甲S 乙=2ab 2ab−b 2=2a⋅a 22a⋅a2−(a2)2=a 2a 2−a 24=a 23a 24=43. 24.已知:点A 在直线DE 上,点B 、C 都在直线PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分∠CAD ,且∠ABC =∠BAC .(1)如图1,求证:DE ∥PQ ;(2)如图2,点K 为线段AB CK ,且始终满足2∠EAC ﹣∠BCK =90°.①当CK ⊥AB 时,在直线DE 上取点F ,连接FK ,使得∠FKA =12∠AKC ,求此时∠AFK 的度数;②在点K 的运动过程中,∠AKC 与∠EAC 的度数之比是否为定值,若是,求出这个值;若不是,说明理由.【分析】(1)由角平分线的定义可得∠DAB =∠BAC ,再根据内错角相等,两直线平行可得结论; (2)①由垂直的定义可知∠AKC =90°,即可得∠FKA =45°,设∠EAC =x °,则可表示∠ABC 和∠BCK 的度数,然后利用三角形的内角和解题即可解题;②设∠EAC =x °,则可求出∠ABC 的值,然后表示∠AKC 的度数解题即可. 【解答】(1)证明:∵AB 平分∠CAD , ∴∠DAB =∠BAC , 又∵∠ABC =∠BAC , ∴∠DAB =∠ABC ,∴DE ∥PQ ; (2)解:①如图,∵CK ⊥AB , ∴∠AKC =90°, 又∵∠FKA =12∠AKC ,∴∠FKA =45°, 设∠EAC =x °,∵∠DAB =∠BAC =∠ABC , ∴∠ABC =180°−x°2=90°−12x°, 又∵2∠EAC ﹣∠BCK =90°, ∴∠BCK =2x °﹣90°, 在△BKC 中, ∠B +∠BCK =90°,即2x°−90°+90°−12x°=90°,解得:x =60,∴∠AFK =∠DAB −∠AKF =90°−12x°−45°=15°;同理,当F 点可以在A 点的左边,∠AFK =75°; ②∠AKC∠EAC =32,理由为: 如图,设∠EAC =x °, ∵∠DAB =∠BAC =∠ABC ,∴∠ABC=180°−x°2=90°−12x°,∵2∠EAC﹣∠BCK=90°,∴∠BCK=2x°﹣90°,在△BKC中,∴∠AKC=∠B+∠BCK=2x°−90°+90°−12x°=32x°,∴∠AKC∠EAC=32x°x°=32,。
浙教版数学七年级下册期末模拟卷(一)(满分:100分)一、选择题(每小题3分,共30分)1.如图所示为一张笑脸,该笑脸通过平移可得到的图形为(C)2.下列计算中,正确的是(D)A.a6÷a2=a3B.(a4)2=a6C.3a2-a2=2 D.a2·a3=a53.下列调查中,适合采用全面调查方式的是(D)A.了解电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生垃圾的数量D.了解某班同学“跳绳”的成绩4.已知某种新型感冒病毒的直径为0.000 000 823 m,0.000 000 823用科学记数法表示应为(B)A.8.23×10-6B.8.23×10-7C.8.23×106D.8.23×1075.把3x3-6x2y+3xy2分解因式,结果正确的是(D)A.x(3x+y)(x-3y) B.3x(x2-2xy+y2)C.x(3x-y)2D.3x(x-y)26.下列等式中,一定成立的是(D)A.-a-ba-b=-1 B.x-y(x+y)(x-y)=x+yC.x-yx2-y2=1x-yD.0.03-2y0.1y=3-200y10y7.若a2-ab=0(b≠0),则aa+b=(C)A.0 B.12C.0或12D.1或2【解析】∵a2-ab=0(b≠0),∴a (a -b )=0,∴a =0或a -b =0,即a =0或a =b , ∴a a +b =0或a a +b=12. 8.如图,从图1到图2的变化过程可以发现的代数结论是( A )第8题图A .(a +b )(a -b )=a 2-b 2B .a 2-b 2=(a +b )(a -b )C .(a +b )2=a 2+2ab +b 2D .a 2+2ab +b 2=(a +b )29.某校举行“停课不停学,名师陪你在家学”活动,计划投资8 000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4 000元.则原计划每间直播教室的建设费用是( C ) A .1 600元 B .1 800元 C .2 000元D .2 400元【解析】 设原计划每间直播教室的建设费用是x 元,则实际每间直播教室的建设费用是(1+20%)x 元.由题意,得8 000x +1=8 000+4 000(1+20%)x ,解得x =2 000.经检验,x =2 000是所列方程的解,且符合题意,∴原计划每间直播教室的建设费用是2 000元.10.已知关于x ,y 的二元一次方程组⎩⎨⎧x +2y =1-a ,x -ky =2a -5,给出下列结论:①当k =2时,此方程组无解;②若k =1,则代数式22x ·4y =14;③当a =0时,此方程组一定有8组整数解(k 为整数).其中正确的是( C ) A .①②B .①③C .②③D .①②③【解析】 当k =2时,原方程组可化为⎩⎨⎧x +2y =1-a ,x -2y =2a -5,解得⎩⎪⎨⎪⎧x =12a -2,y =-34a +32,故①错误;当k =1时,原方程组可化为⎩⎨⎧x +2y =1-a ,x -y =2a -5,解得⎩⎨⎧x =a -3,y =2-a ,∴x +y =a -3+2-a =-1,∴22x ·4y =4x ·4y =4x +y =4-1=14,故②正确; 当a =0时,原方程组可化为⎩⎨⎧x +2y =1,x -ky =-5,可得x =1-2y ,y =62+k .∵x ,y ,k 均为整数,∴k =-8或-5或-4或-3或-1或0或1或4, ∴对应方程组有8组整数解,故③正确. 故选C.二、填空题(每小题3分,共18分)11.分解因式:xy 2-4x =__x (y +2)(y -2)__. 12.计算:⎝ ⎛⎭⎪⎫ 1-1x -1÷x -2x 2-1=__x +1__.【解析】 原式=x -2x -1·(x +1)(x -1)x -2=x +1. 13.如图,m ∥n ,∠1=110°,∠2=100°,则∠3=__150__°.第13题图14.请阅读下面的诗句:“栖树一群鸦,鸦树不知数.三只栖一树,五只没去处.五只栖一树,闲了一棵树.请你仔细数,鸦树各几何.”诗句中谈到的鸦有__20__只,树有__5__棵. 13.已知方程组⎩⎨⎧x -2y =3,3x +5y =2,则代数式2x -4y -72+9x +15y -63的值为__-12__.【解析】 ∵x -2y =3,∴2x -4y =6. ∵3x +5y =2,∴9x +15y =6, ∴原式=6-72+6-63=-12.14.如图,l 1∥l 2,点A ,E ,D 在直线l 1上,点B ,C 在直线l 2上,满足BD 平分∠ABC ,BD⊥CD ,CE 平分∠DCB .若∠BAD =136°,则∠AEC =__146__°.15.16.第16题图【解析】 ∵l 1∥l 2,∴∠BAD +∠ABC =180°. 又∵∠BAD =136°,∴∠ABC =44°. ∵BD 平分∠ABC ,∴∠DBC =22°.∵BD ⊥CD ,∴∠BDC =90°,∴∠BCD =68°. ∵CE 平分∠DCB ,∴∠ECB =34°. ∵l 1∥l 2,∴∠AEC +∠ECB =180°, ∴∠AEC =146°. 三、解答题(共52分) 17.(6分)计算: (1)π0-⎝ ⎛⎭⎪⎫-12-2+(-3)2.解:原式=1-4+9=6. (2)2a 4-a ·a 3-(2a 3)2÷a 2.解:原式=2a 4-a 4-4a 6÷a 2=2a 4-a 4-4a 4=-3a 4. (3)⎝ ⎛⎭⎪⎫x -12y 2-⎝ ⎛⎭⎪⎫x -12y ⎝ ⎛⎭⎪⎫x +12y . 解:原式=x 2-xy +14y 2-x 2+14y 2=-xy +12y 2. 18.(6分)解方程(组):(1)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2.解:方程组整理,得⎩⎨⎧4x -y =5,①3x +2y =12,②①×2+②,得11x =22,解得x =2. 把x =2代入①,得y =3.∴原方程组的解为⎩⎨⎧x =2,y =3.(2)3x -1+4x 1-x 2=1x +1.解:去分母,得3x+3-4x=x-1,解得x=2.经检验,x=2是原分式方程的解.∴原分式方程的解为x=2.19.(6分)如图,已知DE∥BC,∠1=60°,∠2=120°.判断FH与DC是否平行,并说明理由.第19题图解:FH∥DC.理由如下:∵DE∥BC,∠1=60°,∴∠DCB=∠1=60°.又∵∠2=120°,∴∠2+∠DCB=180°,∴FH∥DC.20.(8分)为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A:剪纸、B:沙画、C:葫芦雕刻、D:泥塑、E:插花.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图所示的两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为__120__,统计图中的a=__12__,b=__36__.(2)通过计算补全条形统计图.(3)若该校共有2 500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.第20题图第20题答图解:(2)E类别的人数为120-18-12-30-36=24(人).补全条形统计图如答图中斜纹所示.(3)30120×2 500=625(人).答:估计全校喜爱“葫芦雕刻”的学生人数为625人.21.(8分)(1)当a为何值时,方程xx-3=2+ax-3会产生增根?解:去分母,得x=2(x-3)+a,化简,得a=6-x.∵x=3是分式方程的增根,∴把x=3代入a=6-x,得a=3,∴当a=3时,原分式方程会产生增根.(2)已知1m+1n=5,求2m-3mn+2nm+2mn+n的值.解:∵1m+1n=5,∴m+nmn=5,∴m+n=5mn,∴2m-3mn+2nm+2mn+n=2×5mn-3mn5mn+2mn=7mn7mn=1.22.(8分)【阅读材料】某市地铁公司规定:普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(如图).地铁出行消费累计金额月底清零,次月重新累计.每个自然月内,普通成人持储值卡乘坐地铁:消费累积金额≤150元,9.5折;150元<消费累积金额≤200元,9折; 200元<消费累积金额≤300元,8折; 消费累积金额>300元,7,5折.第22题图例如:李老师2月无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人2月无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙2月乘坐地铁的消费金额各是多少元?解:设甲2月乘坐地铁的消费金额是x 元,乙2月乘坐地铁的消费金额是y 元.由题意,得 ⎩⎨⎧x +y =300,150×0.95+0.9(x -150)+0.95y =283.5,解得⎩⎨⎧x =180,y =120.答:甲2月乘坐地铁的消费金额是180元,乙2月乘坐地铁的消费金额是120元. 23.(10分)已知∠MON =56°,OE 平分∠MON ,点A 在射线OM 上,B ,C 分别是射线OE ,ON 上的动点(点B ,C 不与点O 重合),连结AC 交射线OE 于点D .设∠OAC =x . (1)如图1,若AB ∥ON ,则: ①∠ABO =__28__°.②当∠BAD =∠BDA 时,x =__48__°.(2)如图2,若AB ⊥OM ,垂足为A ,是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值.若不存在,请说明理由.第23题图解:(1)①∵∠MON =56°,OE 平分∠MON , ∴∠BON =12∠MON =28°.∵AB ∥ON ,∴∠ABO =∠BON =28°. ②∵∠BAD =∠ADB , ∴∠BAD =12(180°-28°)=76°.∵AB∥ON,∴∠MAB=∠MON=56°,∴∠OAC=180°-∠MAB-∠BAD=180°-56°-76°=48°,即x=48°.图1图2第23题答图(2)存在这样的x的值.当点D在线段OB上时,如答图1.∵AB⊥OM,∴∠OAB=90°.∵∠AOB=12∠MON=28°,∴∠ABD=62°.当∠BAD=∠ABD=62°时,x=∠OAC=90°-62°=28°;当∠BAD=∠ADB时,∠BAD=∠ADB=180°-62°2=59°,x=90°-59°=31°;当∠ADB=∠ABD=62°时,∠BAD=180°-2×62°=56°,x=90°-56°=34°.当点D在OB的延长线上时,如答图2.易知∠ABD=180°-62°=118°,∴只有∠ADB=∠BAD=180°-118°2=31°,此时x=90°+31°=121°.综上所述,满足条件的x的值为28°,31°,34°或121°.。
2023年人教版七年级下册《生物》期末模拟考试(及参考答案) 考试说明:本试卷五个大题,满分100分,时间90分钟。
题序一二三四五总分得分一、选择题(共25个小题,每题2分,共50分)1、园林工人给移栽后的绿化树“挂吊瓶”,补充水和无机盐,以提高成活率,“挂吊瓶”的针头应插入到茎的()A.分生组织B.机械组织C.导管D.筛管2、请你从生物学角度分析,一些南方树种在北方的成活率低主要是受以下哪种因素的影响?()A.温度B.空气C.水分D.阳光3、两栖动物不能成为真正的陆生脊椎动物的原因是A.用皮肤呼吸B.肺不够发达C.生殖发育离不开水环境D.体温不恒定4、下列不具有细胞结构的生物是()A.向日葵B.海马C.香菇D.烟草花叶病毒5、下列现象中的物体属于生物是()A.机器人弹钢琴B.火山爆发时岩浆喷出C.钟乳石在慢慢长大D.馒头上长出“白毛”6、中医常通过“切脉”来推知体内各器官的健康状况;病人在医院打吊瓶时,针头插入的是手臂上的一条“青筋”.这里所说的“切脉”的“脉”和“青筋”分别是指()A.动脉和神经B.静脉和动脉C.动脉和静脉D.动脉和毛细血管7、关于生物的生殖和发育,下列叙述正确的是()A.马铃薯用块茎繁殖属于有性生殖B.蝴蝶是由“毛毛虫”变成的,“毛毛虫”处于发育过程中的幼虫阶段C.蝌蚪是由雌蛙将受精卵产在水中发育而来D.鸡卵中的卵黄将发育成雏鸡8、动物的结构总是与其功能相适应,下列叙述错误的是()A.蛔虫体表包裹着一层角质层,起到保护作用B.家鸽的肺和气囊相通,增大了气体交换的面积C.蝗虫体表有坚韧的外骨骼,能防止体内水分蒸发D.家兔有门齿和臼齿的分化,提高了摄取食物的能力9、小明这几天刷牙时,牙龈常常出血,你建议他应当多吃一些()A.米饭、馒头B.鱼、肉、奶、蛋C.新鲜蔬菜水果D.奶油、巧克力10、下列是使用显微镜观察细胞结构时的部分操作,错误的是()A.显微镜的放大倍数是目镜和物镜放大倍数乘积B.低倍镜观察时视野较大,容易发现观察目标C.在调节粗准焦螺旋使物镜下降时,要从一侧注视其下降位置D.欲将视野左下方的物像移至视野中央,需向右上方移动装片11、呼吸作用的实质是()A.合成有机物,储存能量 B.分解有机物,储存能量C.合成有机物,释放能量 D.分解有机物,释放能量12、用光学显微镜的一个目镜分别与物镜甲、乙进行组合,来观察口腔上皮细胞装片(如图)。
部编版七年级语文下册期末模拟试卷(附答案及解析)(满分120分时间150分钟)一、积累与运用(27分)1.补出下列句子中的空缺部分。
(8分)①________________,惟解漫天作雪飞。
(韩愈《晚春》)②可怜夜半虚前席________________。
(李商隐《贾生》)③当你遭遇困境时,千万不要放弃,因为困境中往往蕴藏着希望,正如陆游《游山西村》所说,“________________,________________”。
④唐朝杜牧在《泊秦淮》中借月亮创设了一种朦胧凄清的意境,这两句诗是________________,________________。
⑤王安石《登飞来峰》中表达了锐意进取的精神和高瞻远瞩的气概的句子是:________________,________________。
【答案】杨花榆荚无才思不问苍生问鬼神山重水复疑无路柳暗花明又一村烟笼寒水月笼沙夜泊秦淮近酒家不畏浮云遮望眼自缘身在最高层【解析】此题考查的是名句的默写。
需要注意“杨”“苍”“笼”“沙”“近”的书写,理解型默写③抓关键词“困境中往往蕴藏着希望”,④的关键词是“朦胧凄清的意境”,⑤题抓关键词“锐意进取的精神和高瞻远瞩的气概”。
2.给下列句中加点的字注音,根据拼音写上相应的汉字。
(2分)(1)我似乎遇着了一个霹雳,全体都震悚( )了起来。
(2)我出于对他的尊敬,想不直接动笔,只提一些商酌( )性的意见。
(3)船舱鼓鼓的,又像一个忍俊不jīn( )的笑容,就要绽开似的。
(4)他们可以坐在挺huò( )亮的屋子里,泡上一壶茶,守住一个小火炉……【答案】 sǒng zhuó禁豁【解析】(1)震悚:sǒng,身体因为恐惧或者过度兴奋而颤动。
(2)商酌:zhuó,商量斟酌。
(3)忍俊不jīn:忍俊不禁,忍不住要发笑。
注意下半部分不要写错。
(4)huò亮:豁亮,宽敞明亮。
书写时注意右半部分。
2022-2023学年第二学期七年级期末模拟试卷语文(适用于安徽省)注意事项:1.满分150分(其中卷面书写占5分),答题时间为150分钟。
2.请将各题答案填写在答题卡上。
一、语文积累与运用(35分)1.默写。
(10分)(1)古诗文往往以物明志,周敦颐《爱莲说》中“,”两句借高洁的莲花表明作者不同流合污,也不孤高自许的处事态度;龚自珍《己亥杂诗》(其五)中“,”两句以无私的落花表明诗人虽然辞官,仍会关心国家的命运和前途;杜甫《望岳》中“,”两句借高大的泰山抒发诗人敢于攀登,俯视一切的雄心和气概。
(2)宋诗重理。
王安石《登飞来峰》中“,”蕴含着“站得高才能望得远”的道理,陆游《游山西村》中“,”蕴含着困境时不放弃希望,往往会发现一片新天地的人生哲理。
2.请运用所积累的知识,完成(1)~(4)题。
(13分)在一shùn间,我以为那个不幸被章鱼缠住的人可能从它那强大的吸盘上救下来。
八只胳膊有七只都被砍下了。
剩下的一只把那个人像一支笔般挥动,在空中转来转去,但当A 和他的副手扑到它身上去的时候,这个东西喷出一道黑色的液体,这是从它肚子中的一个口袋分泌.出来的黑水。
我们的眼睛都被弄得昏花看不见了。
当这团浓黑雾气消散的时候,枪乌贼不见了,跟它一起,我的不幸的同胞.也不见了!(1)给加点的字注音,根据拼音写出相应的汉字。
(3分)shùn()间分泌.()同胞.()(2)下列词语的感情色彩与“不幸”相同的一项是()(3分)A.可怜B.华丽C.丑陋D.伟大(3)文中提到的“章鱼”是一种可怕的生物。
下列成语中不是表达“处境危险”的一项是()(3分)A.千钧一发B.十万火急C.命悬一线D.大发雷霆(4)以上文段节选自《》,作者是(人名)。
文中的“A”是,具有的性格特征。
(4分)3.2023年是辛亥革命爆发112周年。
为此学校开展了以“弘扬辛亥革命精神”为主题的综合实践活动,请你参与。
(12分)(1)请你认真阅读下面的文字,完成后面两道题。
天津市2023-2024学年七年级下册语文期末模拟测试卷考试时间120分钟,满分120分第Ⅰ卷一、(本大题共11小题,共29分。
1-4小题,每题2分;5-11小题,每题3分)(一)积累与运用1.(22-23七年级下·天津西青·期末)下面各组词语中加点字的读音,不完全正确的一项是()A.炽热(chì)污秽(huì)鲜为人知(xiān)B.殷红(yān)笨拙(zhuō)深恶痛疾(wù)C.教诲(huì)驿路(yì)吹毛求疵(cī)D.修葺(qì)枯槐(huái)销声匿迹(nì)【答案】A【解析】本题考查字音。
A.鲜为人知(xiān)——xiǎn;故选A。
2.(22-23九年级下·天津和平·七)依次填入下面一段文字横线处的词语,最恰当的一项是()口袋公园是丰富城市绿化景观的重要方式。
近年来,随着城市化___________加快,人民生活水平日益提升,“推窗可见绿、出门即入园”成为市民的普遍____________。
作为面向公众开放、形状多样、具有一定游憩功能的公园绿化活动场地,口袋公园因其小巧多样、环境友好、方便使用等特点,也被不少人称为“袖珍公园”。
尽管“口袋”不大,但胜在星罗棋布、绿意盎然,满足着人们对宜居宜业的要求,在___________的城市中勾勒出一片片休憩的空间。
A.过程愿望川流不息B.进程渴望车水马龙C.进程愿望车水马龙D.过程渴望川流不息【答案】C【解析】本题考查词义辨析。
过程:指事情进行或事物发展所经过的程序。
进程:事物发展变化或进行的过程。
选段中表示的是城市化发展变化或进行的过程,故应选填“进程”;渴望:迫切地希望。
愿望:原心的期望。
选段中表示的是市民期望“推窗可见绿、出门即入园”,故应选填“愿望”;车水马龙:车如流水,马如游龙一般,形容热闹繁华的景象。
川流不息:事物像水流一样连续不断。
七年级下册期末模拟数学质量检测试卷含答案学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列运算正确的是( )A .a 2·a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a 2.如图,∠1和∠2不是同位角的是( )A .B .C .D .3.已知1x =是不等式20x b -<的解,b 的值可以是( )A .4B .2C .0D .2-4.若a b >,则下列不等式中不成立的是( )A .a 3b 3->-B .3a 3b ->-C .33a b >D .a b -<-5.如果关于x 的不等式组2243(2)x m x x -⎧⎪⎨⎪-≤-⎩的解集为1≥x ,且关于x 的方程1233m x x --=-有正整数解,则所有符合条件的整数m 的值有几个( )A .0个B .1个C .2个D .3个 6.给出下列四个命题,①多边形的外角和小于内角和;②如果a >b ,那么(a +b )(a -b )>0;③两直线平行,同位角相等;④如果a ,b 是实数,那么0()1a b +=,其中真命题的个数为( )A .1B .2C .3D .47.我们知道不存在一个实数的平方等于1-,即在实数范围内不存在x 满足21x =-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ).并且进一步规定:一切实数可以与新数进行四附运算,且原有运算律和运算法则仍然成立,于是有123243,1,(1),1x i i i i i i i i i i i i ==-=⋅=-⋅=-=⋅=-⋅=.那么23420222023i i i i i i ++++⋅⋅⋅++的值为( )A .0B .1-C .1D .i8.如图,某小区规划在边长为xm 的正方形场地上,修建两条宽为2m 的通道,其余部分种草,以下各选项所列式子不是计算通道所占面积的为( )A .2x+2x ﹣22B .x 2﹣(x ﹣2)2C .2(x+x ﹣2)D .x 2﹣2x ﹣2x+22二、填空题9.计算:﹣3x •2xy = .10.命题“如果a b =,那么22a b =”是______命题.(填“真”或“假”)11.一个多边形每个内角的大小都是其相邻外角大小的2倍,则这个多边形的边数是_____________.12.若x 2﹣ax ﹣1可以分解为(x ﹣2)(x +b ),则a =_____,b =_____.13.如果二元一次方程组13223ax by ax by -=⎧⎨+=⎩的解是54x y =⎧⎨=⎩,则a ﹣b =___ 14.如图,等腰△ABC 中,AB =AC =10,BC =12,点P 是底边BC 上一点,则AP 的最小值是________15.将正三角形、正方形、正五边形,按如图所示的位置摆放,且每一个图形的一个顶点都在另一个图形的一条边上,则123∠+∠+∠=__________度.16.如图,在△ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分∠CAD ,交BC 于点E .过点E 作EF ∥AC 分别交,AB AD 于点,F G ,则下列结论:①90BAC ∠=︒;②∠AEF =∠BEF ;③∠BAE =∠BEA ;④2B AEF ∠=∠;⑤∠CAD =2∠AEC ﹣180°.其中正确的有 ___.三、解答题17.计算:(1)()012320203π-+-+-. (2)()2243632a a a a ⋅+-. (3)()()()371x x x x +---.18.因式分解:(1)43269a b a b a b -+(2)n 2(m ﹣2)+4(2﹣m )19.解方程组:(1)3281x y y x +=⎧⎨=-⎩. (2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩. 20.解不等式组:()30317x x x -<⎧⎨-≥-⎩,并把解集在数轴上表示出来.21.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠.(1)求证://AB CD ;(2)若80,30EHF D ∠=︒∠=︒,求BEM ∠的度数.22.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1) 求a 、b 的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案.23.(发现问题)已知32426x y x y +=⎧⎨-=⎩①②,求45x y +的值. 方法一:先解方程组,得出x ,y 的值,再代入,求出45x y +的值.方法二:将①2⨯-②,求出45x y +的值.(提出问题)怎样才能得到方法二呢?(分析问题)为了得到方法二,可以将①m ⨯+②n ⨯,可得(32)(2)46m n x m n y m n ++-=+.令等式左边(32)(2)45m n x m n y x y ++-=+,比较系数可得32425m n m n +=⎧⎨-=⎩,求得21m n =⎧⎨=-⎩. (解决问题)(1)请你选择一种方法,求45x y +的值;(2)对于方程组32426x y x y +=⎧⎨-=⎩利用方法二的思路,求77x y -的值; (迁移应用)(3)已知1224327x y x y ≤+≤⎧⎨≤+≤⎩,求3x y -的范围. 24.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数; (3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .① 求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【详解】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.【点睛】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.2.D解析:D【分析】根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可.【详解】解:A 、∠1和∠2是同位角,故此选项不符合题意;B 、∠1和∠2是同位角,故此选项不符合题意;C 、∠1和∠2是同位角,故此选项不符合题意;D 、∠1和∠2不是同位角,故此选项符合题意;故选:D .【点睛】此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.3.A解析:A【分析】把x 的值代入不等式,求出b 的取值范围即可得解.【详解】解:∵1x =是不等式20x b -<的解,∴20b -<,解得,2b >所以,选项A 符合题意,故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 4.B解析:B【详解】分析:根据不等式的性质,逐一判断即可.详解:根据不等式的性质1,不等式的两边同时减去-3,不等号的方向不变,故正确; 根据不等式的性质3,不等式的两边同乘以-3,不等号的方向改变,故不正确; 根据不等式的性质2,不等式的两边同时除以3,不等号的方向不变,故正确; 根据不等式的性质3,不等式的两边同乘以-1,不等号的方向改变,故正确.故选B.点睛:此题主要考查了不等式的性质,关键是熟记不等式的三条性质.不等式的性质1,不等式的两边同时加上或减去同一个数(式子),不等号的方向不变; 不等式的性质2,不等式的两边同乘以或除以同一个正数,不等号的方向不变;不等式的性质3,不等式的两边同乘以或除以同一个负数,不等号的方向改变.5.B解析:B【分析】表示出不等式组的解集,由已知解集确定出m 的范围,表示出方程的解,由方程的解为正整数,确定出整数m 的值即可.【详解】解:不等式组整理得:41≥+⎧⎨≥⎩x m x , 由不等式组的解集为x ≥1,得到m +4≤1,即m ≤-3,方程去分母得:m -1+x =3x -6, 解得:5+2=m x , 由方程有正整数解,故50+>m ,且5+m 能被2整除,∴m =-3,则符合条件的整数m 的值有1个.故选:B .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键. 6.A解析:A【分析】根据多边形的内角和、不等式的性质、平行线的性质和零指数幂判断即可.【详解】解:①多边形的外角和不一定小于内角和,四边形的内角和等于外角和,原命题是假命题; ②如果0>a >b ,那么(a +b )(a -b )<0,原命题是假命题;③两直线平行,同位角相等,是真命题;④如果a ,b 是实数,且a +b ≠0,那么(a +b )0=1,原命题是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和、不等式的性质、平行线的性质和零指数幂,难度较小.7.B解析:B【分析】把i+i2+i3+i4+…+i2022+i2023分成506组,根据i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1得到每组的和为0,从而得到原式的值.【详解】解:∵i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1,∴i+i2+i3+i4+…+i2022+i2023=i+(-1)+(-i)+1+…+i+(-1)+(-i)=-1.故选:B.【点睛】本题考查了实数的运算:利用实数的运算法则解决新数运算.8.D解析:D【解析】试题分析:根据图示,可知通道所占面积是:2x+2x﹣22=4x﹣4.A、是表示通道所占面积,选项错误;B、x2﹣(x﹣2)2=x2﹣x2+4x﹣4=4x﹣4,故是表示通道所占面积,选项错误;C、2(x+x﹣2)=4x﹣4,是表示通道所占面积,选项错误;D、x2﹣2x﹣2x+22=4﹣4x≠4x﹣4,不是表示通道的面积,选项正确.故选D.二、填空题9.﹣6x2y【分析】根据单项式乘以单项式的法则即可求出答案.【详解】解:﹣3x•2xy=﹣3×2•(x•x)y=﹣6x2y.故答案为:﹣6x2y.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.真【分析】根据真假命题的概念直接进行解答即可.【详解】由a b =,则有22a b =,所以命题“如果a b =,那么22a b =”是真命题;故答案为:真.【点睛】本题主要考查命题,正确理解真假命题是解题的关键.11.6【详解】【考点】多边形的外角和公式、多边形的一个内角与其相邻外角的关系.【分析】先根据多边形的一个内角与其相邻外角互补以及一个多边形每个内角的大小都是其相邻外角大小的2倍,求出多边形的每一个外角都等于1180603︒︒⨯= .再根据多边形的外角和等于360°,可以求出多边形的边数是360606÷= .【解答】解:∵多边形的一个内角与其相邻外角互补以及一个多边形每个内角的大小都是其相邻外角大小的2倍,∴多边形的每一个外角都等于1180603︒︒⨯=, 多边形的外角和等于360°,∴这个多边形的边数是360606÷=故答案为:6.12.3212【分析】 根据因式分解的意义,把一个多项式转化成几个整式积的形式,可得答案.【详解】解:∵x 2﹣ax ﹣1=(x ﹣2)(x +b )=x 2+(b ﹣2)x ﹣2b ,∴﹣2b =﹣1,b ﹣2=﹣a ,b =12,a =32, 故答案为:32,12. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.13.0【分析】将x 和y 的值代入二元一次方程组,再解方程组即可得出答案.【详解】解:将54x y =⎧⎨=⎩代入方程组得:54115823a b a b -=⎧⎨+=⎩①②, 把②+①×2得2525a =,解得1a =把1a =代入① 解得1b =∴110a b -=-=故答案为:0.【点睛】本题考查的是二元一次方程组的解,将解代入方程组解方程组即可得出答案.14.B解析:8【分析】根据等腰三角形三线合一性质及垂线段最短性质,可得当点P 是底边BC 的中点时,AP 的值最小,在利用勾股定理解题即可.【详解】解:等腰△ABC 中,AB =AC =10,根据垂线段最短得,当点P 是底边BC 的中点时,AP 的值最小根据三线合一性质得, 1112622BP BC ==⨯= AP BP ⊥22221068AP AB BP ∴=-=-=故答案为:8.【点睛】本题考查等腰三角形、三线合一性质、垂线段最短、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.102°【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为6解析:102°【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】 解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为60°,所以2418010872∠+∠=︒-︒=︒,3618060120∠+∠=︒-︒=︒,151809090∠+∠=︒-︒=︒, 因为54+6180∠+∠∠=︒,所以可得1+2372+120+90180102∠∠+∠=︒︒︒-︒=︒. 故答案为102°.【点睛】本题主要考查三角形内角和、正多边形的内角,关键是根据图形得到角之间的等量关系,然后利用三角形内角和进行求解即可.16.①③④⑤【分析】证明即可判断①,根据平行线的性质,可得,判断与的大小关系即可判断②,根据三角形的外角性质可以判断③,根据平行线的性质以及角度的和差关系,证明即可判断④,根据三角形的外角性质可判断解析:①③④⑤【分析】证明90CAD BAD ∠+∠=︒即可判断①,根据平行线的性质,可得,AEF CAE FEB ACB ∠=∠∠=∠,判断CAE ∠与ACB ∠的大小关系即可判断②,根据三角形的外角性质可以判断③,根据平行线的性质以及角度的和差关系,证明CAD B ∠=∠即可判断④,根据三角形的外角性质可判断⑤.【详解】 ①AD 是BC 边上的高,90ADC ADB ∴∠=∠=︒90ACB CAD ∴∠+∠=︒,ACB BAD ∠=∠,90CAD BAD ∴∠+∠=︒即90BAC ∠=︒故①正确;②//AC EF,AEF CAE FEB ACB ∴∠=∠∠=∠CAE ∠与ACB ∠无法判断大小,故②不正确; ③ AE 平分∠CAD ,CAE DAE ∴∠=∠,ACB BAD ∠=∠,BAE BAD DAE ACB CAE ∴∠=∠+∠=∠+∠,BEA ACE CAE ∠=∠+∠,BAE BEA ∴∠∠=,④//AC EF ,CAE AEF ,2CAD CAE ∠=∠,2CAD AEF ∴∠=∠,90BAC ∠=︒,90ADC ∠=︒,9090CAD C B ∠=︒-∠=︒-∠,CAD B ∴∠=∠,∴2B AEF ∠=∠,故④正确; ⑤1902AEC EAD ADC CAD ∠=∠+∠=∠+︒, 2180AEC CAD ∴∠=∠+︒,即2180CAD AEC ∠=∠-︒,故⑤正确.综上所述,正确的有①③④⑤.故答案为:①③④⑤.【点睛】本题考查了平行线的性质,三角形外角性质,角平分线的定义,灵活运用以上知识是解题的关键.三、解答题17.(1)2;(2);(3)【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可; (3)先计算多项式乘以多项式,单项解析:(1)2;(2)630a -;(3)213x --【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可;(3)先计算多项式乘以多项式,单项式乘以多项式,然后合并同类项即可.【详解】解:(1)()012320203π-+-+- 12133=++ 2=;(2)()2243632a a a a ⋅+- 66632a a a =+-630a =-;(3)()()()371x x x x +---223721x x x x x =+---+213x =--.【点睛】本题主要考查了负整数指数幂,零指数幂,绝对值,整式的混合运算,同底数幂的乘法,幂的乘方和合并同类项,解题的关键在于能够熟练掌握相关知识进行求解.18.(1)(2)【分析】(1)先提取公因式 ,然后再利用完全平方公式进行分解即可;(2)先提取公因式 ,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m ﹣2)+4解析:(1)22(3)a b a -(2)(2)(2)(2)m n n --+【分析】(1)先提取公因式2a b ,然后再利用完全平方公式进行分解即可;(2)先提取公因式()2m - ,然后再利用平方差公式进行分解即可【详解】解:(1)43269a b a b a b -+=22(69)a b a a -+,=22(3)a b a -.(2)n 2(m ﹣2)+4(2﹣m ),=2(2)(4)m n --,=(2)(2)(2)m n n --+.【点睛】本题考查了因式分解,解题关键是掌握因式分解的顺序和方法,注意:因式分解要彻底. 19.(1);(2)【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)把②代入①得:,解得:,把代入②得:,∴原方解析:(1)21x y =⎧⎨=⎩;(2)71x y =⎧⎨=⎩【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)3281x y y x +=⎧⎨=-⎩①②把②代入①得:3228x x +-=,解得:2x =,把2x =代入②得:1y =,∴原方程组的解为21x y =⎧⎨=⎩; (2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩ 方程组化简得:53692x y x y +=⎧⎨-+=⎩①②②×5+①得:4646y =,解得:1y =,把1y =代入②得:7x =,∴原方程组的解为71x y =⎧⎨=⎩. 【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键. 20.,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:,解不等式①,得:,解不等式②,得:,则不等解析:23x -≤<,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:()30317x x x -<⎧⎪⎨-≥-⎪⎩①②,x<,解不等式①,得:3x≥-,解不等式②,得:2则不等式组的解集为23-≤<,x将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(1)见解析;(2)70°【分析】(1)根据同位角相等,两直线平行可得CE∥GF,再根据平行线的性质可得∠C =∠DGF,再等量代换可得∠DGF=∠EFG,进而证明AB∥CD;(2)结合(1)根解析:(1)见解析;(2)70°【分析】(1)根据同位角相等,两直线平行可得CE∥GF,再根据平行线的性质可得∠C=∠DGF,再等量代换可得∠DGF=∠EFG,进而证明AB∥CD;(2)结合(1)根据∠EHF=70°,∠D=30°,利用三角形内角和定理和平行线的性质即可求∠BEM的度数.【详解】(1)证明:∵∠CED=∠GHD,∴CE//GF,∴∠C=∠DGF,又∵∠C=∠EFG,∴∠DGF=∠EFG,AB CD;∴//(2)解:∵∠CED=∠GHD,∠GHD=∠EHF=80°,∴∠CED=80°,在CDE中,∠CED=80°,∠D=30°,∴∠C=180°﹣80°﹣30°=70°,∵AB∥CD,∴∠BEM=∠C=70°,答:∠BEM的度数为70°.【点睛】本题考查了平行线的判定与性质以及三角形的内角和,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.22.(1);(2)有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买2 台甲种机器,8 台乙解析:(1)3018 ab=⎧⎨=⎩;(2)有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买2 台甲种机器,8 台乙种机器.【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12 236 a ba b-=⎧⎨-=⎩,解得,3018ab=⎧⎨=⎩;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x)≥1890 解得:x≥1.5∴1.5≤x≤ 3∴整数 x =2 或 3当 x =2 时购买费用=30×2+18×8=204(元)当 x =3 时购买费用=30×3+18×7=216(元)∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.23.(1)2;(2)26;(3)【分析】(1)利用方法二来求的值;由题意可知;(2)先根据方法二的基本步骤求出,即可得;(3)通过方法二得出,再利用不等式的性质进行求解.【详解】解:(1)利解析:(1)2;(2)26;(3)3836x y -≤-≤-【分析】(1)利用方法二来求45x y +的值;由题意可知4524162x y +=⨯-⨯=;(2)先根据方法二的基本步骤求出15m n =-⎧⎨=⎩,即可得77(32)5(2)x y x y x y -=-++-; (3)通过方法二得出311(2)7(32)x y x y x y -=+-+,再利用不等式的性质进行求解.【详解】解:(1)利用方法二来求45x y +的值;由题意可知:2(32)(2)64245x y x y x y x y x y +--=+-+=+,即4524162x y +=⨯-⨯=;(2)对于方程组32426x y x y +=⎧⎨-=⎩①②, 由①m ⨯+②n ⨯可得:(32)(2)77m n x m n y x y ++-=-,则32727m n m n +=⎧⎨-=-⎩③④, 由③+2⨯④可得:77m =-,1m ∴=-,将1m =-代入④可得5n =,15m n =-⎧∴⎨=⎩, 则77(32)5(2)145626x y x y x y -=-++-=-⨯+⨯=;(3)已知1224327x y x y ≤+≤⎧⎨≤+≤⎩, 通过方法二计算得:311(2)7(32)x y x y x y -=+-+,又()()1111222,4973228x y x y ≤+≤-≤-+≤-,3836x y ∴-≤-≤-.【点睛】本题考查了二元一次方程的求解、代数式的求值、不等式的性质,解题的关键是理解材料中的方法二中的基本操作步骤.24.(1);(2);(3).【分析】(1)过点作,利用平行线的性质可得,,由,经过等量代换可得结论; (2)过作,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设,,则,,设交于.证明解析:(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论;(2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.。
2023年人教版七年级语文下册期末模拟考试【附答案】满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列词语中加点字注音完全正确的一组是()A.酝酿.(liánɡ)黄晕.(yùn)发髻.(jì)静谧.(mì)B.唱和.(hé)肥硕.(shuò)鳊.鱼(biān﴿乌桕.﴾jiù﴿C.寥.阔(liáo)枯涸.(ɡù)清冽.(liè)梦寐.(mèi)D.澹澹..(dàn)耸.峙(sǒnɡ)栖.息(qī)高邈.(miǎo)2、选出词语书写有错误的一项()A.烘托陶冶束手无策呼朋引伴B.燎亮风彩花枝招展抖擞精神C.和谐荟萃名副其实咄咄逼人D.水藻朦胧繁花嫩叶迫不及待3、下列各句中,加点成语使用正确的一项是()A.一拿到语文试卷,小明忍不住笑了,拿起笔开始答题,信心满满,手不释卷....。
B.危机时刻最能看出人的胆识,勇者首当其冲....,怯者畏缩不前,我们当做前者。
C.时光的淬炼、岁月的磨砺让他日渐成熟,处理事情变得优柔寡断....,毫不迟疑。
D.我们应做“文明有礼二十四条”的践行者,不能让它在我们手中成为一纸空...文.。
4、下列句子中没有语病的一项是()A.通过这次培训,大家懂得了责任重于泰山的道理,受益匪浅。
B.为了杜绝不出安全隐患,当地政府采取了很多有效的措施。
C.小勇说他被骗的原因是由于轻信骗子,错输验证码造成的。
D.相关专家呼吁尽快建立防控校园欺凌的有效机制,以便及早干预、发现和制止欺凌行为。
5、下列句子中没有运用比喻修辞手法的一项是()A.霎时间,东西长安街成了喧腾的大海。
B.我那坚如磐石的信念被震开了一道细微的裂痕。
C.看着身边熟悉的风景,我仿佛回到了久违的故乡。
D.骤雨过后,荷叶上留下一颗颗珍珠。
6、下列句子组成语段顺序排列正确的一项是:()①它像一面光辉四射的银盘似的,从那平静的大海里湧了出来。
2022-2023学年人教版七年级下学期数学期末模拟卷班级姓名一、选择题(本题共36分,每小题3分)1若式子在实数范围内有意义,则a的取值范围是()A.a>3B.a≥3C.a<3D.a≤32.下列调查中,最适合采用全面调查(普查)方式的是()A.对绵阳市辖区内涪江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对绵阳电视台“天天800”栏目收视率的调查3、如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.第3题第4题第8题4、如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°5.若a>b,则下列不等式正确的是()1A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1D.6.已知点P(2﹣4m,m﹣4)在第三象限,且满足横、纵坐标均为整数的点P有()A.1个B.2个C.3个D.4个7、已知有理数a,b满足5﹣a=2b+﹣a,则a+b=()A.2B.C.D.11 68、如图,已知AD∥EF ∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有()A.4个B.5个C.6个D.7个9.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆10、已知x和y的方程组的解是,则x和y的方程组的解是()A.B.C.D.11、关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<112.已知AB∥CD,点E为直线AB、CD所确定的平面内一点.点F在BA的延长线上,连接BE、EF,若CE⊥CD,EF平分∠AEC,∠B=∠AEB,过点F作∠BFG=∠BFE交EC的延长线于点G,连接DF,作∠DFG的平分线交CD于点H,当FD∥BE时,求∠CHF的度数是().23A .76°B .67°C .67.5°D .76.5°第12题 第14题 第15题二、填空题(本题共18分,每小题3分)13、关于x ,y 的二元一次方程ax +by =c (a ,b ,c 是常数),b =a +1,c =b +1. 当时,则c 的值= .14、如图所示,l 1∥l 2,点A ,E ,D 在直线l 1上,点B ,C 在直线l 2上,满足BD 平分∠ABC ,BD ⊥CD ,CE 平分∠DCB ,若∠BAD =136°,那么∠AEC = .15、为纪念辛亥革命100周年,某校八年级(1)班全体学生举行了“首义精神耀千秋”的知识竞赛.根据竞赛成绩(得分为整数,满分为100分)绘制了频数分布直方图(如图所示),若成绩不少于80分为优秀,且该班有3名学成绩为80分,则学生成绩的优秀率是________.16、某工厂计划m 天生产2160元个零件,若安排15名工人每人每天加工a 个零件(a 为整数)恰好完成.实际开工x 天后,其中3人外出培训,剩下的工人每人每天多加工2个零件,不能按期完成这次任务, a 的值至少为__________17、在平面直角坐标系中,A(a,5),B(1,4-2a),C(1,b),且2a+b=10,并且13316≤+≤a b .则ABC ∆的面积的最大值为________.18、若不等式>﹣x ﹣的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是三、解答题(本题共46分,)19、(7分)计算:.20、(7分)解不等式组,并把解集在数轴上表示出来.21.(8分)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O 之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.22、(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数4A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<10014(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,该市共有学生120万人,那么该市学生中能获得“优秀”的有多少人?23、(8分)某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将m张标准板材用裁法一裁剪,n张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙横式无盖礼品盒.①两种裁法共产生A型板材张,B型板材张(用m、n的代数式表示);②当30≤m≤40时,所裁得的A型板材和B型板材恰好用完,做成的横式无盖礼品盒的个数可能有几种情况.524.(8分)如图AB∥CD,点E在AB上,点M在CD上,点F在直线AB,CD之间,连接EF,FM.EF⊥FM,∠CMF=140°.(1)直接写出∠AEF的度数为;(2)如图2,延长FM到G,点H在FG的下方,连接GH,CH,若∠FGH=∠H+90°,求∠MCH的度数;(3)如图3,作直线AC,延长EF交CD于点Q,P为直线AC上一动点,探究∠PEQ,∠PQC和∠EPQ的数量关系,请直接给出结论.(题中所有角都是大于0°小于180°的角)6。
2023-2024学年人教版七年级数学下册期末模拟试题一、单选题1)AB .C .3D .2.如图,若直线,165a b ∠=︒∥,那么2∠的度数是( )A .60︒B .65︒C .70︒D .125︒3.如果x y <,那么下列不等式正确的是( )A .33x y <B .x y -<-C .11x y -+>--D .11x y +>+ 4)A .3±B .3C .9±D .95.在平面直角坐标系中,点()2,3M -在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在一次有1万名八年级学生参加的数学质量监测中,随机抽取2000名学生的数学成绩进行分析,以下说法正确的是( )A .2000名考生是总体的一个样本B .2000名学生是样本容量C .每位考生的数学成绩是个体D .1万名考生是总体7.如图,这是小军同学在体育课上跳远留下的痕迹,其中①号线的长度作为他的跳远成绩,这样测量的数学道理是( )A .平行线之间的距离处处相等B .垂线段最短C .两点确定一条直线D .两点之间,线段最短8.估计 1的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间9.已知,点()26,2P m m -+在y 轴上,则点P 的坐标为( )A .()0,5B .()5,0C .()0,3D .()3,010.关于x 、y 的方程组3x y m x my n -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩,则3m n +的值是( ). A .4 B .9 C .5 D .1111.不等式组12213x x +>⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C .D .12.如图,将边长为2的正方形ABCD 沿对角线AC 平移,使点A 移至线段AC 的中点A '处,得新正方形A B C D '''',新正方形与原正方形重叠部分(图中阴影部分)的面积是 ( )A B .12 C .1 D .1413.杭州亚运会期间,某班组织亚运知识竞赛,成绩统计如下表:成绩在91分~100分的为优胜者,则优胜者的频率为( )A .18B .50C .0.30D .0.3614.运行程序如图所示,规定:从“输入一个值x ”到“结果是否94>”为一次程序操作,如果程序操作进行了三次才停止,则x 的取值范围是( )A .411x ≤<B .310x ≤<C .310x <≤D .411x <≤15.如图,在平面直角坐标系xOy 中,A ,B ,C ,D 是边长为1个单位长度的小正方形的顶点,开始时,顶点A ,B 依次放在点 1,0 , 2,0 的位置,然后向右滚动,第1次滚动使点C 落在点()3,0的位置,第2次滚动使点D 落在点()4,0的位置,…,按此规律滚动下去,则第2025次滚动后,顶点A 的坐标是( )A .()2024,1B .()2026,1C .()2025,0D .()2026,0二、填空题16.如图所示,请你添加一个条件(图中不得添加另外标记),使得AB DE ∥.17.用不等式表示x 的13倍加上6大于4-:. 18.将点()21,5P a a +-向下平移2个单位,向右平移3个单位得到点Q ,点Q 恰好落在y 轴上,则点Q 的坐标是.19.若关于x ,y 的方程组43623x y m x y +=+⎧⎨-=⎩的解满足9x y +=,则m 的值为.三、解答题20.计算:()2275÷-.21.解不等式组:()31412142x x x ⎧-<+⎪⎨-≤⎪⎩①②,并把解集在数轴上表示出来.22.为迎接春季运动会,学校先在体育用品商店购买30个足球和60条跳绳用去720元,后又购买10个足球和50条跳绳用去360元.(1)足球、跳绳的单价各是多少元?(2)该店最近正在开展促销活动,所有商品都按相同的折数打折销售,在该店促销期间购买100个足球和100条跳绳只需1800元,该店的商品按原价的几折销售?23.为了解某校九年级学生数学期末考试情况,小方随机抽取了部分学生的数学成绩(分数都为整数)为样本,分为A .120~96分;B .95~72分;C .71~48分;D .47~0分四个等级进行统计,并将统计结果制成如下两幅尚不完整的统计图.请根据图中信息解答下列问题:(1)这次随机抽取的学生共有多少人?(2)请将条形统计图补充完整;(3)该校九年级共有学生900人,若分数为72分以上(含72分)为及格,请估计这次九年级学生期末数学考试成绩为及格的学生约有多少人?24.嘉嘉和淇淇同解一个关于x ,y 的二元一次方程组142mx ny nx my +=⎧⎨+=⎩①②,嘉嘉把方程①抄错,求得方程组的解为13x y =-⎧⎨=⎩,淇淇把方程②抄错,求得方程组的解为32x y =⎧⎨=⎩. (1)求m 和n 的值;(2)求方程组的正确的解.25.如图,直线、AB CD 相交于点O ,EO AB ⊥,垂足为O .(1)直接写出AOC ∠的对顶角和邻补角;(2)若:=3:1AOC COE ∠∠,则COB ∠的度数为________.26.某中学为了给同学们提供更好的学习环境,计划购买一批桂花树和香樟树来绿化校园,经市场调查发现购买2棵桂花树和3棵香樟树共需460元,购买3棵桂花树和2棵香樟树共需440元.(1)求桂花树和香樟树的单价各是多少元?(2)根据学校实际情况,需购买两种树苗共130棵,总费用不超过12000元,且购买香樟树的棵树不少于桂花树的1.5倍,请你算算,该校本次购买桂花树和香樟树共有哪几种方案.27.如图1,直线MN 与直线AB CD 、分别交于点E F 、,12180∠+∠=︒.(1)求证:AB CD ∥;(2)如图2,在(1)的条件下,BEF ∠与EFD ∠的角平分线交于点P ,延长EP 交CD 于点G ,点H 是MN 上一点,且GH EG ⊥,求证:PF GH ∥.(3)如图3,在(2)的条件下,连接PH ,Q 是EF 上一点,且45HPQ ∠=︒,若15PHG ∠=︒,请直接写出QPE ∠的度数(不需要写过程).。
初一年级数学期末模拟试卷B
本试卷共有25道试题,满分100分,考试时间90分钟 2014年6月
姓名 校区
一、选择题 1.下列四个实数中,一定是无理数的是 ( ) A.2
2
-
B.327-
C.1415926.3
D. 13133.0 2.下列四个式子中,正确的是 ( )
A .981±= B.()662
=--
C.416
2
1= D.
()
53
22
=+
3.某网站2011年4月28日报道:国务院第六次全国人口普查登记发现,中国总人口已经达到13.7亿. 这里的近似数“13.7亿”精确到 ( )
A.亿位
B.千万位
C.百万位
D.十分位 4.下列说法中,正确的是 ( )
A.两条直线被第三条直线所截,同位角相等
B.联结直线外一点到直线上各点的所有线段中,垂线最短
C.经过一点,有且只有一条直线与已知直线平行
D.在平面内经过直线上或直线外的一点作已知直线的垂线可以作一条,并且只可以作一条 5.下列条件中,不能说明ABC ∆为等边三角形的是 ( )
A .︒=∠=∠60
B A B.︒=∠+∠120
C B C.AC AB B =︒=∠,60 D.AC AB A =︒=∠,60
6.等腰三角形的顶角为α,那么这个等腰三角形一条腰上的高与底边的夹角为 ( ) A.α B.α-︒90 C.α2
1 D.α
2 二、填空题 (本大题共12题,每题2分,满分24分) 7.化简:
=-23___________.
8.如果814
=y ,那么=y __________. 9.计算:=-222425__________. 10.把433写成幂的形式:__________.
11.比较大小:3-___________10- (填“﹥”、“=”或“﹤”).
12.已知直线c b a 、、,满足a ∥b ,a ∥c ,那么直线c b 、的位置关系是__________.
13.如图1,已知︒=∠100DEF ,请增加一个条件使得AB ∥CD ,这个条件可以是__________. 14.经过点()3,1-Q 且垂直于y 轴的直线可以表示为直线__________. 15.如果点()b a P ,在第三象限,那么点P 到x 轴的距离是__________.
16.在直角坐标平面内,将点()3,2A 向右平移4个单位长度所对应的点的坐标是__________. 17.等腰三角形的周长是50,一边长为10,则其余两边长为__________.
18.如图2,在一次夏令营活动中,某同学从营地A 点出发,先沿北偏东︒70方向到达B 地,再沿北偏西︒15方向去目的地C ,则ABC ∠的度数是__________.
图1 图2
三、简答题 (本大题共5题,每题6分,满分30分) 19.计算:20)21(82
1
)73(4--⨯++.
20.计算:2)32)(347(-+
21.如图3,试卷上的一个等腰三角形被墨汁污染了,现在只有它的底边AB 和B ∠还清楚可见,请用直 尺与圆规画出一个与原来形状一样的等腰三角形(不写画法,保留画图痕迹,写出最后答案).
图3
22.如图4,在ABC ∆中,点D 是边BC 上的一点,点E 在边AC 上. (1)如果B CAD ∠=∠,那么BAC ∠与ADC ∠相等吗?为什么? (2)如果C ADE ∠=∠,那么ADB ∠与CED ∠相等吗?为什么?
(3)已知C ADE ∠=∠,试说明ADC AED ∠=∠理由. 图4 解:(1) (在括号内填写依据)在ABC ∆中,︒=∠+∠+∠180C B BAC
在ADC ∆中,︒=∠+∠+∠180C CAD DAC ( ) 所以C CAD DAC C B BAC ∠+∠+∠=∠+∠+∠ (等量代换); 因为B CAD ∠=∠ (已知) 所以ADC BAC ∠=∠ (等式性质). (2) (在括号里填写依据)
因为C CED BDE ∠+∠=∠ ( ), 即C CED ADE ADB ∠+∠=∠+∠. 又C ADE ∠=∠ (已知), 所以CED ADB ∠=∠ (等式性质). (3) (写出全过程)
23.如图5,在ABC ∆中,点D 、E 分别在边AB 、AC 上,且满足CD BE =,21∠=∠,试说明ABC ∆是等腰三角形.
图5
四、解答题(本大题共4题,第24、25题各6分,第26、27题8分,满分28分) 24. 如图,在平面直角坐标系中,O 为坐标原点,△ABC 的三个顶点坐标分别为
A (-1,-2),
B (1,1),
C (-3,1),△A 1B 1C 1与△ABC 关于原点O 对称.
(1)写出点A 1、B 1、C 1的坐标,并在右图中画出
△A 1B 1C 1;
(2)求△A 1B 1C 1的面积.
25.已知等边ABC ∆,点D 在射线CA 上,点E 在射线AB 上,且BE AD =. (1)如图6,当点D 、E 分别在ABC ∆的边CA 、AB 上,求BPE ∠的度数. (2)如图7,若点D 、E 分别在ABC ∆的边CA 、AB 的延长线上. ①直线BD 与直线CE 的夹角是多少°?简述理由.
②过点B 作BF ∥EC ,交AC 于点F ,试判断ABD ∠与CBF ∠的大小,在图8的基础上画出图
形并简述说理过程.
y
O -1 -1
1 1 (第24题图)
图6
图7
26.已知ABC ∆中,AC AB =,︒=∠45BAC ,绕点C 顺时针旋转ABC ∆,使点B 落在AB 边上,得
C B A 11∆(如图8),联结1AA .
(1)说明AB ∥C A 1的理由.
(2)11AB A ∆与A CB 1∆全等吗?为什么?
(3)绕点C 顺时针旋转ABC ∆,使点B 落在AC 边上,得C B A 22∆(如图9),联结2AA ,求2
2B AA ∠的度数.
b
N P 图8 图9
27. 如图1,在平面内取一点O,过点O作两条夹角为
60的数轴,使它们以点O为公共原点且具有相同的单位长度,这样在平面内建立的坐标系称为斜坐标系,我们把水平放置的数轴称为横轴(记作a轴),将斜向放置的数轴称为斜轴(记作b轴).类似于直角坐标系,对于斜坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M、N,若点M、N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.可知建立了斜坐标系的平面内任意一个点P与有序实数对(m,n)之间是相互唯一确定的.
图1
(1)请写出图2(其中虚线均平行于a 轴或b 轴)中点P 的坐标,并在图中标出点Q ()3,2-; (2)如图3(其中虚线均平行于a 轴或b 轴),在斜坐标系中点()4,1A 、()1,1-B 、()1,6-C .
(图3)
①试判断ABC ∆的形状,并简述理由;
②如果点D 在边BC 上,且其坐标为()1,5.2-,试问:在边BC 上是否存在点E 使ACE ∆与ABD ∆相全等?如有,请写出点E 的坐标,并说明它们全等的理由;如没有,请说明理由.。