π
4
-2 的单调区间;
(2)比较 tan 1,tan 2,tan 3 的大小.
π
分析:解(1)可先用诱导公式将 x 的系数化为正数,再把 2x- 看作
4
整体,代入相应的区间,解出 x 的范围;解(2)可先把角化到一个单调区
间中,再利用单调性比较大小.
解:(1)原函数 y=-3tan 2π
π
π
π
正切函数的性质与图象
正切函数的图象与性质
(1)图象:如图所示.
π
正切函数y=tan x,x∈R,x≠ +kπ,k∈Z的图象叫做正切曲线.
2
(2)性质:如下表所示.
函数
性质
y=tan x
x x ≠ + k,k∈Z
2
定义域
值域
周期
奇偶性
单
调
性
对
称
性
R
π
奇函数
增
π
2
2
- + π, + π (k∈Z)
奇偶性、周期性.
分析:画y=tan x的图象→y=|tan x|的图象→研究性质
解:由 y=|tan x|得,
π
tan,π ≤ < π + (∈Z),
2
y=
其图象如图:
π
-tan,- + π < < π(∈Z),
2
由图象可知,函数 y=|tan x|是偶函数;
π
单调递增区间为 π, + π (k∈Z),单调递减区间为
π
π
2
2
显然- <2-π<3-π<1< ,
π π