12.2 实数与数轴2
- 格式:ppt
- 大小:286.00 KB
- 文档页数:8
课题实数与数轴的关系 教学目标1. 理解实数与数轴上的点一一对应关系,能估算无理数的大小2. 会求实数的相反数、倒数、绝对值,能比较实数的大小 重难点透视 1.实数与数轴的关系、大小比较、估算和运算教学内容知识整理1、实数与数轴的关系实数与数轴上的点是一一对应的。
每一个实数都可以用数轴上的一个点表示;数轴上的每一个点都表示一个实数。
例题:如图,数轴上点A 表示的实数是 .2、实数的相反数与绝对值相反数:数a 的相反数是-a ,这里a 表示任意一个实数。
例:3的相反数是3-。
0的相反数等于0. 绝对值:一个正数的绝对值是它本身;一个负数的绝对值是他的相反数;0的绝对值是0。
(1) 任何实数的绝对值都是非负数。
即0≥a(2)互为相反数的两个数的绝对值相等,即a a -=例题:的相反数是 .3、实数的运算实数之间可以进行加、减、乘、除、乘方及开方运算,有理数的运算法则及运算性质等同样适用。
(1)实数运算的限制条件:除法运算中除数不能是0,负数不能进行开平方运算。
(2)实数运算的不同结果:若未要求近似计算,则可保留根号或π;若要求近似计算,则用近似有限小数去代替无理数。
(3)实数的混合运算顺序:先乘方、开方,再乘除,最后算加减,同级运算按照从左到右的顺序进行,有括号的先算括号里面的。
4、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大.正实数大于0,负实数小于0,两个负数,绝对值大的反而小.例题:比较52和0.5的大小 基础训练1.实数a ,b 在数轴上对应的点的位置如图所示,计算|a ﹣b |的结果为( )A .a +bB .a ﹣bC .b ﹣aD .﹣a ﹣b2.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个实数A.p B.q C.m D.n3.在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是()A.②③ B.②③④C.①②④D.②④4.计算题(1)(2)(4)(3)(5)|﹣3|+(6)(7)(8)5.实数a,b,c是数轴上三点A,B,C所对应的数,如图,化简:+|a﹣b|+﹣|b﹣c|(1)和4;(2)和0.5.7.已知+1在两个连续的自然数a和a+1之间,1是b的一个平方根.(1)求a,b的值;(2)比较a+b的算术平方根与的大小.8.在数轴上表示下列各数,π,|﹣4|,0,﹣,并把这些数按从小到大的顺序进行排列9.如图所示是小军同学设计的一个计算机程序,请你仔细看懂后完成下题:(1)若输入的数x=5,输出的结果是.(2)若输出的结果是0且没有返回运算,输入的数x是.(3)请你输入一个数使它经过第一次运算时返回,经过第二次运算则可输出结果,你觉得可以输入的数是,输出的数是.提高训练1.实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b2.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0 B.﹣m<﹣n C.|m|﹣|n|>0 D.2+m<2+n3.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣4.实数a、b在数轴上的对应位置如图所示,化简|2a﹣b|﹣|b﹣1|+|a+b|.5.已知a,b为正实数,试比较+与+的大小.6.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.7.已知a、b分别是6﹣的整数部分和小数部分.(1)分别写出a、b的值;(2)求3a﹣b2的值.8、已知a是的整数部分,b是它的小数部分,求(﹣a)3+(b+3)2的值.9.计算:(1)2+++|﹣2| (2)+﹣.3 (3)+|﹣2|++(﹣1)2011(4)||+||+.(5)|﹣3|﹣×+(﹣2)3.(6)﹣14﹣2×.10.化简求值:(),其中a=2+.11、若的整数部分为a,小数部分为b,求a2+b﹣的值.12、已知x是的整数部分,y是的小数部分,求的平方根.课后作业1.计算:﹣+||+.2.计算:.3.求值:+()2+(﹣1)2015.4.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为,f的算术平方根是8,求的值。
第4课时实数与数轴(1)教学目标1、了解实数的意义,能对实数进行分类。
2、了解数轴上的点与实数一一对应,能用数轴上的点表示无理数。
3、会估计两个实数的大小。
教学过程一、创设问题情境,导入实数的概念问题l 用什么方法求 2 ?其结果如何?问题2 你能利用平方关系验算所得结果吗?问题3 验证的结果并不是2,而是接近于2,这说明了什么问题?问题4 如果用计算机计算 2 ,结果如何呢?让学生阅读P15页计算结果,并指出;在数学上已经证明,没有一个有理数的平方等于2,也就是说 2 不是有理数.有兴趣的同学可以看一看第18页的阅读材料.问题5 那么, 2 是怎样的数呢?1.回顾有理数的概念.(1)有理数包括________和________(2)请你随意写出三个分数,将它化成小数,看一看结果。
(3)由此你可以得到什么结论?(任何一个分数写成小数的形式,必定是有限小数或者无限循环小数)2.无理数的概念与有理数进行比较, 2 计算的结果是无限不循环小数,所以 2 不是有理数。
提问:还有没有其他的数不是有理数?为什么?无限不循环小数叫做无理数.例如 2 、 3 、 5 、∏、35 都是无理数.有理数与无理数统称为实数.二、试一试问题1 按照计算器显示的结果,你能想像出 2 在数轴上的位置吗?问题2 你能在数轴上找到表示 2 的点吗?请同学们准备两个边长为1的正方形纸片,分别沿它的对角线剪开,得到四个什么三角形?如果把四个等腰直角形拼成一个大的正方形,其面积为多少?其边长为多少?这就是说,边长为1的正方形的对角线长是 2 .利用这个事实,我们容易画出表示 2 的点,如图所示.三、反思提高问题1 如果将所有有理数都标到数轴上,那么数轴被填满了吗?问题2 如果再将所有无理数都标到数轴上,那么数轴被填满了吗?让学生充分思考交流后,引导学生归结为:如果将所有有理数都标到数轴上,数轴未被填满;如果再将所有无理数都标到数轴上,那么数轴被填满。
实数与数轴的关系及实数的运算一、教材分析本节课是人教版初中数学教材七年级(下册)第六章第三节第二课时的内容,是在学生学习了无理数、实数的概念及实数的分类后的一节习题课,依据教材的编排顺序,首先采用类比的方法,用有理数中关于绝对值、相反数及倒数的意义来类比出实数中的相反数、绝对值及倒数的意义;接下来安排了两个不同类型的例题。
例题1是利用近似值比较大小,例题2是关于实数的近似计算。
本节课是实数相关知识的延伸,对于后面学习好二次根式的性质与运算,有至关重要的作用。
二、教学目标分析根据数学课程标准的要求:了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;能用有理数估计一个无理数的大致范围,结合学生的年龄特征和知识储备及本节课的特点,制定本节课的教学目标如下:1、知识与技能:会求实数的相反数与绝对值,学会使用计算器求无理数的近似值,进而比较两个实数的大小;2数学思考:经历求实数的相反数与绝对值的类比过程,进行类比学习,发展学生的类比思想3解决问题:借助于近似值,会比较两个实数的大小,能用有理数估计一个无理数的大致范围,4情感态度:让学生通过动手、动脑,感悟知识的生成、发展及变化。
三、教学重点、难点实数是在有理数的基础上进行的扩充,因而有理数中的一些概念,运算律和运算法则在实数范围内仍然成立,引导学生类比有理数的相关知识,来探究实数相关知识。
本节课的重点难点确定如下:重点:会求实数的相反数与绝对值难点:借助于实数的近似值,进行实数的大小比较及运算四、教法与学法本节课在学生自主学习、小组讨论的基础上尽可能的让学生自己提出问题,自己解决。
在学生不能解决的时候由师生共同探讨解决,以发展学生的能力,力求使每一位学生都能“主动参与,乐于探究,交流与合作”。
五、教学过程1、复习有理数中关于绝对值、相反数及倒数意义;2、创设情景:出示两个计算题(1)若X≤2,化简︱X-3︳-︳1-X︱(2)化简︱2-2︳+∣2-1︱设计意图第一个是有理数中关于绝对值的计算问题(学生都会做的题型)第二个是关于实数中的绝对值的化简问题。
实数与数轴的关系及实数运算教学目标:1、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
重点、难点:重点:明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
教学过程:一、探索用数轴上的点来表示无理数1、复习勾股定理。
如图在Rt△ABC 中AB= a ,BC = b ,AC = c ,其中a 、b 、c 满足什么条件。
当a=1,b=1时,c 的值是多少?2、出示投影(1)P45页图2—4,让学生探讨以下问题:(A )如图OA=OB ,数轴上A 点对应的数是多少?(B )如果将所有有理数都标到数轴上,那么数轴上被填满了吗?3、如图所示,认真观察,探讨下列问题:议一议: (1)如图,OA=OB ,数轴上A 点对应的数表示什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?知识整理(1)每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的;(2)在数轴上,右边的点表示的数总比左边的点表示的数大。
意图:探讨用数轴上的点来表示实数,将数和图形在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。
效果:经过学生的探讨,认识到了数轴上点A 表示的数是2,它是一个无理数,这表明有理数不能将整个数轴填满。
进而观察到点A 在表示数1和2的点之间,因此“数轴上,右边的点表示的数总比左边的点表示的数大”在实数范围内仍然适用。
A CB 10 1 2 -1 -2 A二、随堂练习1、在数轴上作出5对应的点。
意图:通过以上练习,检测学生对实数相关知识的掌握情况。
效果:通过回顾2的作法,学生相互讨论、交流,确定了作长、宽分别为2和1的长方形,其对角线为即为5,从而能在数轴上作出相应的点。
三、小结1、数轴上的点和实数一一对应。
四、作业课本习题板书设计:略教学反思:本节内容并不复杂,大部分同学都能很好的掌握。
《八年级上第12章第二节 实数与数轴》教案§12.2 实数与数轴(第2课时)【教学课型】:新课◆ 课程目标导航:【教学目标】:1 明确实数与数轴的关系;2 会利用计算器进行实数的计算;3 能够记住532,,…等无理数的近似值。
【教学重点】:能够熟练进行实数的加、减、乘、除、乘方、开方六种运算【教学难点】:1 实数与数轴的关系;2 会在数轴上画出 32,的位置【教学工具】:投影仪、自制胶片、课堂练习卷◆ 教学情景导入问题复习:1 数轴的三要素是______、______、______。
2 2是______数,它可以看成边长为1的正方形______的长?利用数轴你能画出表示2的点吗?◆教学过程设计1、探究归纳探究如图12.2.1,将两个边长为1的正方形分别沿它的对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.容易知道,这个大正方形的面积是2,所以大正方形的边长为2.图12.2.1图12.2..2这就是说,边长为1的正方形的对角线长是2.利用这个事实,我们容易在数轴上画出表示2的点,如图12.2.2所示.归纳 数学上可以说明,数轴上的任一点必定表示一个实数,即它所表示的数,不是有理数,就是无理数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示.换句话说,实数与数轴上的点一一对应.实数的大小比较和运算,通常可取它们的近似值来进行.在第2章学过的有关有理数的相反数和绝对值等概念、大小比较、运算法则以及运算律,对于实数也适用.2、实践应用例1试估计3+2与π的大小关系.分析用计算器求得3+2≈3.14626437,而 π≈3.141592654,这样,容易判断 3+2>π.例2计算: π/2-│23-32│.(结果精确到0.01)解 用计算器求得23-32≈-0.778539072,于是 │23-32│≈0.778539072,所以 π/2-│23-32│≈ 1.570796327-0.778539072= 0.792257255≈ 0.79.3、课堂小结(1)能够把握实数与数轴的关系,理解“一一对应”四个字的含义。
第12章 数的开方第一课时 12.1平方根与立方根(1)(P2—P3)学习目标:1.从实际问题的需要出发,引进平方根概念,体现从实际到理论、具体到抽象这样一个一般的认识过程,初步培养辩证唯物主义观点;2.从求二次幂的平方运算引出求平方根的运算,突出平方运算和开平方运算的互逆性;3.扣住定义去思考问题,重视解题技巧;正确区分平方根与算术平方根的关系。
学习过程: (一)知识衔接回顾1.说出下列各式的结果:=23 ; =-2)3( ; =2)52( ; =-2)52( ;=20 .2.填空:9)(2= ;254)(2= ; 36.0)(2= ; 0)(2= 3. 要剪出一块面积为25cm 2的正方形纸片,纸片的边长应是多少?(二)、新知自学1、平方根的定义:如果一个数的 等于a ,那么 叫做a 的平方根, a 的平方根记作 。
2、平方根的性质:①正数a 的平方根有 个,它们互为 ,记作 ②0 的平方根有 个,就是 ; ③负数 平方根。
3、开平方:求一个非负数的 的运算,叫作开平方。
开平方的结果是 ,开平方与平方互为逆运算。
(三)、探究 合作 展示 1、试一试(1)4的平方根是 (2) 0的平方根是 (3)254的平方根是(4) -4有没有平方根?为什么? (5)3的平方根是 2、求100的平方根.解:因为( )2=100,(-10)2=( ),除了10和-10以外,任何数的平方都不等于100,所以100的平方根是( )和( ),也可以说,100的平方根是±( ). 3、交流互动 (1) 正数的平方根是什么?(2) 0的平方根是什么?(3) 负数有平方根吗?为什么? 请同学概括有理数的平方根的性质.(一个正数有两个平方根,它们互为相反数;0有一个平方根,是0本身;负数没有平方根.) 4、 下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由. (1)-64;(2)0;(3)(-4)2.分析 因为只有正数和零才有平方根,所以首先应观察所给出的数是否为正数或0.(四)、巩固训练 (A )一、1、一个正数如果有平方根,那么有几个,它们之间关系如何?2、如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根?为什么?3、0的平方根有几个?是什么数?4、负数有平方根吗?为什么? 5.平方和开平方运算又有联系,二者互为 逆 运算.二、将下列各数开平方: 1、64 2、0.25 3、4981 4、0.09(B)填空题 (1).x 2=(-7)2,则x=______. (2).若2+x =2,则2x+5的平方根是______.(3).若14+a 有意义,则a 能取的最小整数为____.(4) 16的平方根是___(5).已知0≤x ≤3,化简2x +2)3(-x =______. (6). .若|x -2|+3-y =0,则x ·y =______ (五)、拓展延伸 1、求下列各数的平方根:1.(1)8116;(2) 0.36;(3) 324;(4)0.00492. (1).已知某数有两个平方根分别是a+3与2a -15,求这个数.※ (2).一个正数x 的两个平方根分别是a+1和a -3,求a 和x 的值。
6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。
和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。
B.2+错误!未找到引用源。
C.2错误!未找到引用源。
-1D.2错误!未找到引用源。
+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。
C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。
C.-3错误!未找到引用源。
D.-3错误!未找到引用源。
10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。
12.2实数(1)学习目标:1、了解无理数的概念。
2、了解实数的概念及分类。
课前预习1、整数和 统称为有理数,而任何一个分数写成小数的形式,必是 数或者 小数。
2、有理数的分类:按定义分:有理数⎩⎨⎧ 按符号分:有理数⎪⎩⎪⎨⎧ 3.任何一个有理数都可以写成 的形式.4、规定了 、 、 的直线叫数轴。
学生展示1、 叫做无理数。
2、 和 统称为实数。
思考:2是 数,你能举一些无理数的例子吗?如图:正方形的边长为1cm ,则正方形的面积为 cm 2,正方形的对角线长为 cm 。
2的点吗?概括:数轴上的点与实数是的。
也就是说,数轴上的任一点必定表数和课堂训练1、2、35、0.1、-3.14、π、1.137、0、18、1918、4、38 3625、-16、0.1010010001…中,有理数有 ,无理数有 。
-2 -1 0 1 2 · 分数 正有理数1) 无限小数都是无理数。
( )举例:2) 带根号的数都是无理数。
( )举例:3) 实数都是有理数。
( ) 举例:4) 实数都是无理数。
( )举例:5) 有理数都是实数( )举例:6) 两个有理数相加结果仍是有理数。
( )举例:7) 两个无理数相加结果仍是无理数。
( )举例:8) 两个实数相加结果仍是实数。
( )举例:9) 两个有理数相除,如果不管添多少位小数,永远都除不尽,那么结果一定是一个无理数。
( )举例:10) 任意一个无理数的绝对值是正数. ( )举例:11) 任意一个有理数的绝对值是正数. ( )举例:当堂检测1、2、35、0.1、-3.14、π、1.137、0、18、1918、4、38 3625、-16、0.1010010001…中,有理数有 ,无理数有 。
2、 数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.交流反思(第6题)数轴上的任一点表示的数,不是有理数,就是无理数.数学上可以说明,数轴上的任一点必定表示一个实数;反过来,每一个实数也都可以用数轴上的点来表示.换句话说,实数与数轴上的点一一对应.五、作业P11 1.2.3。
平方根 课时1 作业一、积累·整合1、判断题错误!未找到引用源。
把一个数先平方再开平方得原数 ( ) 错误!未找到引用源。
正数a 的平方根是a ± ( )错误!未找到引用源。
-a 没有平方根 ( )错误!未找到引用源。
、填空题(4)平方为16的数是 ,将16开平方得 ,因此平方与 互为逆运算.(5)∵( )2=121,∴121的平方根是 .3、求下列各数的平方根。
(6)0.36;(7)6449(8)0;(9)22- 二、拓展·应用 4、解答题(10)、已知2a -1的平方根是±3,4a +2b +1的平方根是±5,求a -2b 的平方根.算术平方根 课时2 作业一、积累·整合1、 填空题(1)一个正数的两个平方根为m+1和m -3,则m= 。
(2)若==a a 则,2.1 。
(3)25的算术平方根是______。
(4)(-3)2的平方根是 。
2、选择题:(5)下列说法正确的是( )A 、-8是64的平方根,即864-=B 、8是()28-的算术平方根,即()882=-C 、±5是25的平方根,即±525=D 、±5是25的平方根,即525±=(6)下列计算正确的是( )A 、451691=B 、212214= C 、05.025.0= D 、525=--(7)下列说法错误的是( )A 、3是3的平方根之一B 、3是3的算术平方根C 、3的平方根就是3的算术平方根D 、-3的平方是33、求下列各数的算术平方根(8)、()25- ; (9)、971二、拓展·应用4、解答题(10)已知|1--b a |+052=-+b a 求a b 的算术平方根。
(11)若y=211+-+-x x ,求2x +y 的算术平方根。
立方根 作业一、积累·整合1、判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .……………………………………() (2)任何正数都有两个立方根,它们互为相反数.……………………………………() (3)负数没有立方根.……………………………………………………………………() (4)如果a 是b 的立方根,那么ab ≥0.…………………………………………………()2、填空题(5)如果一个数的立方根等于它本身,那么这个数是________. (6)3271-=________, (38)3=________(7)364的平方根是________. (8)64的立方根是________.3、求下列各数的立方根(9)729(10)-833(11)-216125 (12)(-5)3 二、拓展·应用4、解答题(13)已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长.实数与数轴 课时1 作业一、积累·整合1、填空题 下列各数中:-41,7,3.14159,π,310,-34,0,0. 3,38,16,2.121122111222… (1)其中有理数有___________________________________.(2)无理数有_______________________________________.2、判断正误(3)不带根号的数都是有理数……………………………………………………… ( )(4)带根号的数都是无理数……………………………………………………………( )(5)无理数都是无限小数………………………………………………………………( )(6)无限小数都是无理数………………………………………………………………( )八年级上§12.2 实数与数轴 课时2 作业一、积累·整合1、填空题1、在实数中绝对值最小的数是________,在负整数中绝对值最小的数是________.2、已知一个数的相反数小于它本身,那么这个数是________.3、设实数a ≠0,则a 与它的倒数、相反数三个数的和等于____________,三个数的积等于_____________.4、任何一个实数在数轴上都有一个__________与它对应,数轴上任何一个点都对应着一个___________.5、绝对值等于它本身的数是________,平方后等于它本身的数是________.6、实数a ,b 在数轴上所对应的点的位置如图所示,则2a ___________0,a +b__________0,-|b -a |________0,化简|2a |-|a +b |=________.2、计算下列各题(7)233+=______ (8)5253-=______(9)2516⨯=______ (10) |-π| =______(11)|4-π|=______ (12)313⨯=______ 3、(13)比较大小 :比较144、226、15三个数的大小二、拓展·应用4、解答题(15)、已知5+11的小数部分为a ,5-11的小数部分为b ,求:a +b 的值;a -b 的值.。
华师大版初中数学教材按年级分目录七年级上走进数学世界;有理数;整式的加减;图形的初步认识;数据的收集与表示;七年级下一元一次方程;二元一次方程组;一元一次不等式;多边形;轴对称;体验不确定现象;八年级上数的开方;整式的乘除;勾股定理;平移与旋转;平行四边形的认识八年级下分式;函数及其图像;全等三角形;平行四边形的判定;数据整理与初步处理九年级上二次根式;一元二次方程;图形的相似;解直角三角形;随机事件的概率;九年级下二次函数;圆;几何的回顾;样本与总体;华东师大版按章节分目录华东师大版七年级上详细目录:第1章走进数学世界§1.1 从实际问题到方程:1. 数学伴我们成长;2. 人类离不开数学;3. 人人都能学会数学;阅读材料华罗庚的故事;视数学为生命的陈景润;少年高斯的速算;§1.2 让我们来做数学;1. 跟我学;2. 试试看;阅读材料幻方.第2章有理数§2.1 正数和负数:1. 相反意义的量;2. 正数与负数;3. 有理数;§2.2 数轴;1. 数轴;2. 在数轴上比较数的大小;§2.3 相反数;§2.4 绝对值;§2.5 有理数的大小比较;1. 数轴;2. 在数轴上比较数的大小;§2.6 有理数的加法;1. 有理数的加法法则;2. 有理数加法的运算律;§2.7 有理数的减法;§2.8 有理数的加减混合运算;1. 加减法统一成加法;2. 加法运算律在加减混合运算中的应用;阅读材料中国人最早使用负数;§2.9 有理数的乘法;1. 有理数的乘法法则;2. 有理数乘法的运算律;§2.10 有理数的除法;§2.11 有理数的乘方;阅读材料与;§2.12 科学记数法;阅读材料光年和纳米;§2.13 有理数的混合运算;§2.14 近似数和有效数字;§2.15 用计算器进行数的简单运算;阅读材料从结绳记数到计算器;小结;复习题第3章整式的加减§3.1 列代数式:1. 用字母表示数;2. 代数式;3. 列代数式;§3.2 代数式的值;阅读材料有趣的“3x+1”问题;§3.3 整式;1. 单项式;2. 多项式;3. 升幂排列与降幂排列;§3.4 整式的加减;1. 同类项;2. 合并同类项;3. 去括号与添括号;4. 整式的加减;阅读材料用分离系数法进行整式的加减运算;供应站的最佳位置在哪里;复习题;课题学习身份证号码与学籍号第4章图形的初步认识§4.1 生活中的立体图形;阅读材料欧拉公式;§4.2 画立体图形;1. 由立体图形到视图;2. 由视图到立体图形;§4.3 立体图形的表面展开图;§4.4 平面图形;阅读材料七巧板;§4.5 最基本的图形-点和线;1. 点和线;2. 线段的长短比较;§4.6 角;1. 角;2. 角的比较和运算;3. 角的特殊关系;§4.7 相交线;1. 垂线;2. 相交线中的角;§4.8 平行线;1. 平行线;2. 平行线的识别;3. 平行线的特征;小结;复习题;第5章数据的收集与表示§5.1 数据的收集;1. 数据有用吗;2. 数据的收集;阅读材料赢在哪里;谁是《红楼梦》的作者;§5.2 数据的表示;1. 利用统计图表传递信息;2. 从统计图表获取信息;阅读材料计算机帮我们画统计图小结;复习题;课题学习图标的收集与探讨华东师大版七年级下详细目录:第6章一元一次方程;§6.1 从实际问题到方程;§6.2 解一元一次方程;1. 方程的简单变形;2. 解一元一次方程;阅读材料丢番图的墓志铭与方程;§6.3 实践与探索;阅读材料 2=3吗;小结;复习题第7章二元一次方程组;§7.1二元次方程组和它的解;§7.2二元一次方程组的解法;§7.3实践与探索;阅读材料鸡兔同笼;小结;复习题;第8章一元一次不等式;§8.1认识不等式;§8.2解一元一次不等式;1. 不等式的解集;2. 不等式的简单变形;3. 解一元一次不等式;§8.3一元一次不等式组;小结;复习题;第9章多边形§9.1三角形;1. 认识三角形;2. 三角形的外角和;3. 三角形的三边关系;§9.2多边形的内角和与外角和;§9.3用正多边形拼地板;1. 用相同的正多边形拼地板;2. 用多种正多边形拼地板;阅读材料多姿多彩的图案;小结;复习题;课题学习图形的镶嵌第10章轴对称§10.1生活中的轴对称;阅读材料剪正五角星;§10.2轴对称的认识;1. 简单的轴对称图形;2. 画图形的对称轴;3. 设计轴对称图案;阅读材料对称拼图游戏;§10.3等腰三角形;1. 等腰三角形;2. 等腰三角形的识别;阅读材料 Times and dates;小结;复习题;第11章体验不确定现象§11.1可能还是确定;1. 不可能发生、可能发生和必然发生;2. 不太可能是不可能吗;§11.2机会的均等与不等;1. 成功与失败;2. 游戏的公平与不公平;阅读材料搅匀对保证公平很重要;§11.3在反复实验中观察不确定现象;阅读材料计算机帮我们处理数据;小结;复习题;课题学习红灯与绿灯华东师大版八年级上详细目录:第12章数的开方§12.1 平方根与立方根;1. 平方根;2. 立方根;§12.2 实数与数轴;阅读材料为什么根号5不是有理数根号5的算法;第13章整式的乘除§13.1 幂的运算;1. 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;§13.2 整式的乘法;1. 单项式与单项式相乘;2. 单项式与多项式相乘;3. 多项式与多项式相乘;§13.3 乘法公式;1. 两数和乘以这两数差;2. 两数和的平方;阅读材料贾宪三角;§13.4 整式的除法;1. 单项式除以单项式;. 多项式除以单项式;§13.5 因式分解;阅读材料你会读吗;课题学习面积与代数恒等式第14章勾股定理§14.1 勾股定理;1. 直角三角形三边的关系;2. 直角三角形的判定;阅读材料勾股定理史话;美丽的勾股树;§14.2 勾股定理的应用;课题学习勾股定理的无字证明第15章平移与旋转§15.1 平移;1. 图形的平移;2. 平移的特征;§15.2 旋转;1. 图形的旋转;2. 旋转的特征;3. 旋转对称图形;§15.3 中心对称;§15.4 图形的全等;阅读材料古建筑中的旋转对称;-从敦煌洞窟到欧洲教堂课题学习图案设计;第16章平行四边形的认识§16.1 平行四边形的性质;§16.2 矩形、菱形与正方形的性质;1. 矩形;2. 菱形;3. 正方形;阅读材料黄金矩形;§16.3 梯形的性质;阅读材料四边形的变身术第17章分式17.1 分式及其基本性质;17.2 分式的运算;阅读材料历史上的分数运算法则;17.3 可化为一元一次方程的分式方程;17.4 零指数幂与负整指数幂;小结;复习题华东师大版八年级下详细目录:第18章函数及其图象18.1 变量与函数;18.2 函数的图象;阅读材料笛卡儿的故事;18.3 一次函数;阅读材料小明算得正确吗?;18.4 反比例函数;18.5 实践与探索;阅读材料 The Graph of Function小结;复习题第19章全等三角形19.1 命题与定理;19.2 全等三角形的判定;阅读材料图形中的"裂缝";19.3 尺规作图阅读材料由尺规作图产生的三大难题;19.4 逆命题与逆定理;小结;复习题第20章平行四边形的判定20.1平行四边形的判定;20.2 矩形的判定;20.3 菱形的判定;20.3 正方形的判定;阅读材料完全正方形;20.4 等腰梯形的判定;小结;复习题;课题学习中点四边形第21章数据的整理与初步处理21.1 算术平均数与加权平均数;阅读材料均贫富;21.2 平均数、中位数和众数的选用阅读材料对平均数、中位数和众数说长;道短;21.3 极差、方差和标准差;阅读材料借助计算机求方差与标准差;早穿皮袄午穿纱;标准分;小结;复习题;课题学习心率与年龄华东师大版九年级上详细目录:第22章二次根式22.1 二次根式的概念;阅读材料蚂蚁和大象一样重吗?;22.2 二次根式的乘除法;22.3 二次根式的加减法;小结;复习题;第23章一元二次方程23.1 一元二次方程;23.2 一元二次方程的解法;阅读材料一元二次方程根的判别式§23.3实践与探索;小结;复习题第24章图形的相似24.1 相似的图形;24.2 相似图形的特征;阅读材料黄金分割;24.3 相似三角形阅读材料线段的等分;24.4 画相似图形;阅读材料数学与艺术的美妙结合-分形24.5 图形与坐标;小结;复习题第25章解直角三角形25.1 测量;25.2 三角函数;25.3 解直角三角形;阅读材料葭生池中;小结;复习题课题学习高度的测量;第26章随机事件的概率26.1 概率的含义;阅读材料电脑键盘上的字母为何不按;顺序排列;26.2 概率的预测26.3 模拟实验;小结;复习题;课题学习通讯录的设计华东师大版九年级下详细目录:第27章二次函数27.1 二次函数;27.2 二次函数的图象与性质;阅读材料生活中的抛物线;27.3 实践与探索小结;复习题第28章圆28.1 圆的认识;28.2 与圆有关的位置关系;阅读材料你能画吗;28.3 圆中的计算问题阅读材料古希腊人对大地的测量;圆周率;小结;复习题第29章几何的回顾29.1 几何问题的处理方法;29.2 反证法;阅读材料几何原本;小结;复习题;课题学习图形中的趣题第30章样本与总体30.1 统计的意义;30.2 简单的随机抽样;阅读材料空气污染指数;30.3 用样本估计总体30.4 数据分析与决策;阅读材料漫谈收视率;小结;复习题;课题学习改进我们的课桌椅.华师大版初中数学按知识模块分目录代数部分:第1章走进数学世界发现数的规律,数的排列规律,叠加规律.第2章有理数§2.1 正数和负数:1. 相反意义的量;2. 正数与负数;3. 有理数;§2.2 数轴;1. 数轴;2. 在数轴上比较数的大小;§2.3相反数;§2.4 绝对值;§2.5 有理数的大小比较;1. 数轴;2. 在数轴上比较数的大小;§2.6 有理数的加法;1. 有理数的加法法则;2. 有理数加法的运算律;§2.7 有理数的减法;§2.8 有理数的加减混合运算;1. 加减法统一成加法;2. 加法运算律在加减混合运算中的应用;§2.9 有理数的乘法;1. 有理数的乘法法则;2. 有理数乘法的运算律;§2.10 有理数的除法;§2.11 有理数的乘方;§2.12 科学记数法;§2.13 有理数的混合运算;§2.14 近似数和有效数字;§2.15 用计算器进行数的简单运算;第3章整式的加减§3.1 列代数式:1. 用字母表示数;2. 代数式;3. 列代数式;§3.2 代数式的值;§3.3 整式;1. 单项式;2. 多项式;3. 升幂排列与降幂排列;§3.4 整式的加减;1. 同类项;2. 合并同类项;3. 去括号与添括号;4. 整式的加减;用分离系数法进行整式的加减运算;第6章一元一次方程;§6.1 从实际问题到方程;§6.2 解一元一次方程;1. 方程的简单变形;2. 解一元一次方程;§6.3 实践与探索;第7章二元一次方程组;§7.1二元次方程组和它的解;§7.2二元一次方程组的解法;§7.3实践与探索;第8章一元一次不等式;§8.1认识不等式;§8.2解一元一次不等式;1. 不等式的解集;2. 不等式的简单变形;3. 解一元一次不等式;§8.3一元一次不等式组;第12章数的开方§12.1 平方根与立方根;1. 平方根;2. 立方根;§12.2 实数与数轴;第13章整式的乘除§13.1 幂的运算;1. 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;§13.2 整式的乘法;1. 单项式与单项式相乘;2. 单项式与多项式相乘;3. 多项式与多项式相乘;§13.3 乘法公式;1. 两数和乘以这两数差;2. 两数和的平方;§13.4 整式的除法;1. 单项式除以单项式;. 多项式除以单项式;§13.5 因式分解;第17章分式17.1 分式及其基本性质;17.2 分式的运算;阅读材料历史上的分数运算法则;17.3 可化为一元一次方程的分式方程;17.4 零指数幂与负整指数幂;第18章函数及其图象18.1 变量与函数;18.2 函数的图象;18.3 一次函数;18.4 反比例函数;18.5 实践与探索;第22章二次根式22.1 二次根式的概念;22.2 二次根式的乘除法;22.3 二次根式的加减法;第23章一元二次方程23.1 一元二次方程;23.2 一元二次方程的解法;一元二次方程根的判别式§23.3实践与探索;第27章二次函数27.1 二次函数;27.2 二次函数的图象与性质;27.3 实践与探索统计概率部分:第5章数据的收集与表示§5.1 数据的收集;1. 数据有用吗;2. 数据的收集;§5.2 数据的表示;1. 利用统计图表传递信息;2. 从统计图表获取信息;第11章体验不确定现象§11.1可能还是确定;1. 不可能发生、可能发生和必然发生;2. 不太可能是不可能吗;§11.2机会的均等与不等;1. 成功与失败;2. 游戏的公平与不公平;§11.3在反复实验中观察不确定现象;第21章数据的整理与初步处理21.1 算术平均数与加权平均数;21.2 平均数、中位数和众数的选用21.3 极差、方差和标准差;第26章随机事件的概率26.1 概率的含义;26.2 概率的预测26.3 模拟实验;第30章样本与总体30.1 统计的意义;30.2 简单的随机抽样;30.3 用样本估计总体30.4 数据分析与决策;几何部分第4章图形的初步认识§4.1 生活中的立体图形;§4.2 画立体图形;1. 由立体图形到视图;2. 由视图到立体图形;§4.3 立体图形的表面展开图;§4.4 平面图形;§4.5 最基本的图形-点和线;1. 点和线;2. 线段的长短比较;§4.6 角;1. 角;2. 角的比较和运算;3. 角的特殊关系;§4.7 相交线;1. 垂线;2. 相交线中的角;§4.8 平行线;1. 平行线;2. 平行线的识别;3. 平行线的特征;第9章多边形§9.1三角形;1. 认识三角形;2. 三角形的外角和;3. 三角形的三边关系;§9.2多边形的内角和与外角和;§9.3用正多边形拼地板;1. 用相同的正多边形拼地板;2. 用多种正多边形拼地板;图形的镶嵌第10章轴对称§10.1生活中的轴对称;§10.2轴对称的认识;1. 简单的轴对称图形;2. 画图形的对称轴;3. 设计轴对称图案;§10.3等腰三角形;1. 等腰三角形;2. 等腰三角形的识别;第14章勾股定理§14.1 勾股定理;1. 直角三角形三边的关系;2. 直角三角形的判定;§14.2 勾股定理的应用;第15章平移与旋转§15.1 平移;1. 图形的平移;2. 平移的特征;§15.2 旋转;1. 图形的旋转;2. 旋转的特征;3. 旋转对称图形;§15.3 中心对称;§15.4 图形的全等;图案设计;第16章平行四边形的认识§16.1 平行四边形的性质;§16.2 矩形、菱形与正方形的性质;1. 矩形;2. 菱形;3. 正方形;黄金矩形;§16.3 梯形的性质;第19章全等三角形19.1 命题与定理;19.2 全等三角形的判定;19.3 尺规作图19.4 逆命题与逆定理;第20章平行四边形的判定20.1平行四边形的判定;20.2 矩形的判定;20.3 菱形的判定;20.3 正方形的判定;20.4 等腰梯形的判定;中点四边形第24章图形的相似24.1 相似的图形;24.2 相似图形的特征;黄金分割;24.3 相似三角形线段的等分;24.4 画相似图形;24.5 图形与坐标;第25章解直角三角形25.1 测量;25.2 三角函数;25.3 解直角三角形;高度的测量;第28章圆28.1 圆的认识;28.2 与圆有关的位置关系;28.3 圆中的计算问题第29章几何的回顾29.1 几何问题的处理方法;29.2 反证法;图形中的趣题。
初中数学常考的知识点:实数与数轴
初中数学常考的知识点:实数与数轴
导语:我总是尽我的精力和才能来摆脱那种繁重而单调的计算。
下面时候小编为大家整理的关于,初中数学,希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!
实数与数轴
1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的`三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
相信上面对数学中实数与数轴知识点的内容总结学习,可以很好的帮助同学们对此知识点的巩固学习吧,希望同学们会学习的更好。
实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
相信上面对数学中实数大小的比较知识点的讲解学习之后,同学们对上面的知识已经能很好的掌握了吧,希望同学们都能考试成功。
人教版初中数学目录:七年级上册第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)3.3 解一元一次方程(二)3.4 实际问题与一元一次方程第四章图形认识初步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状. 七年级下册第五章相交线与平行线5.1 相交线5.2 平行及其判定5.3 平行线的性质5.4 平移第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解.8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法举例第九章实际问题与一元一次不等式9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水八年级上册第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第12章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第13章实数13.1 平方根13.2 立六根13.3 实数第14章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等.14.4 课题学习选择方案第15章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八年级下册第16章分式16.1 分式16.2 分式的运算16.3 分式方程第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习重心第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习体质健康测试中的数据分析九年级上册第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第22章一元二次方程22.1 一元二次方程22.2 降次——一元二次方程的解.22.3 再探实际问题与一元二次方程第23章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第24章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第25章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率25.4 课题学习键盘上字母的排列规律九年级下册第26章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程26.3实际问题与二次函数第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第28章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第29章投影与视图29.1 投影29.2 三视图29.3 课题学习制作立体模型北师大版初中数学目录:七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄第六章生活中的数据1.认识100万2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整式的除法第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化第七章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镜子改变了什么6.镶边与剪纸八年级上册第一章勾股定理1.探索勾股定理2.能得到直角三角形吗3.蚂蚁怎样走最近第二章实数1.数怎么又不够用了2.平方根3.立方根4.公园有多宽5.用计算器开方6.实数第三章图形的平移与旋转1.生活中的平移2.简单的平移作图3.生活中的旋转4.简单的旋转作图5.它们是怎样变过来的6.简单的图案设计第四章四边形性质探索1.平行四边形的性质2.平行四边形的判别3.菱形4.矩形、正方形5.梯形6.探索多边形的内角和与外角和7.平面图形的密铺8.中心对称图形第五章位置的确定1.确定位置2.平面直角坐标系3.变化的鱼第六章一次函数1.函数2.一次函数3.一次函数的图象4.确定一次函数表达式5.一次函数图象的应用第七章二元一次方程组1.谁的包裹多2.解二元一次方程组3.鸡兔同笼4.增收节支5.里程碑上的数6.二元一次方程与一次函数第八章数据的代表1.平均数2.中位数与众数3.利用计算器求平均数八年级上册第一章一元一次不等式和一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组第二章分解因式1.分解因式2.提公因式法3.运用公式法第三章分式1.分式2.分式的乘除法3.分式的加减法4.分式方程第四章相似图形1.线段的比2.黄金分割3.形状相同的图形4.相似多边形5.相似三角形6.探索三角形相似的条件7.测量旗杆的高度8.相似多边形的性质9.图形的放大与缩小第五章数据的收集与处理1.每周干家务活的时间2.数据的收集3.频数与频率4.数据的波动第六章证明(一)1.你能肯定吗2.定义与命题3.为什么它们平行4.如果两条直线平行5.三角形内角和定理的证明6.关注三角形的外角九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是0.618第三章证明(三)1.平行四边形2.特殊平行四边形第四章视图与投影1.视图2.太阳光与影子3.灯光与影子第五章反比例函数1.反比例函数2.反比例函数的图象与性质3.反比例函数的应用第六章频率与概率1.频率与概率2.投针实验3.生日相同的概率4.池塘里有多少条鱼九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30º,45º,60º角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数y=ax2+bx+c 的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗浙教版初中数学目录:七年级上册第1章从自然数到有理数1.1 从自然数到分数1.2 有理数1.3 数轴1.4 绝对值1.5 有理数大小比较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘方2.6 有理数的混合运算2.7 准确数和近似数2.8 计算器的使用第3章实数3.1 平方根3.2 实数3.3 立方根3.4 用计算器进行数的开方3.5 实数的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 解一元一次方程的方法和步骤5.3 一元一次方程的应用5.4 问题解决的基本步骤第6章数据和图表6.1 数据的收集和整理6.2 统计表6.3 条形统计图和折线形统计图6.4 扇形统计图第7章图形的初步知识7.1 几何图形7.2 线段射线和直线7.3 线段的长短比较7.4 角和角的度量7.5 角的大小比较7.6 余角和补角7.7 相交线7.8 平行线七年级下册第1章三角形的初步认识1.1 认识三角形1.2 三角形的角平分线和中线1.3 三角形的高线1.4 全等三角形1.5 三角全等的条件1.6 作三角形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性3.2 可能性的大小3.3 可能性和概率第4章二元一次方程4.1 二元一次方程4.2 二元一次方程组4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4 乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式6.3 用乘法公式分解因式6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1 同位角内错角同旁内角1.2 平行线的判定1.3 平行线的性质1.4 平行线之间的距离第2章特殊三角形2.1 等腰三角形2.2 等腰三角形的性质2.3 等腰三角形的判定2.4 等边三角形2.5 直角三角形2.6 探索勾股定理2.7直角三角形的全等判定第3章直棱柱3.1 认识直棱柱3.2 直棱柱的表面展开图3.3 三视图3.4 由三视图描述几何体第4章样本与数据的分析初步4.1 抽样4.2 平均数4.3中位数和众数4.4 方差和标准差4.5 统计量的选择和应用第5章一元一次不等式5.1 认识一元一次不等式5.2 不等式的基本性质5.3 一元一次不等式5.4 一元一次不等式组第6章图形与坐标6.1 探索确定位置的方法6.2 平面直角坐标系6.3 坐标平面内的图形变换第7章一次函数7.1 常量和变量7.2 认识函数7.3 一次函数7.4 一次函数的图象7.5 一次函数的简单应用八年级下册第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率3.2 频数分布直方图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4 中心对称5.5 平行四边形的判定5.6 三角形的中位线5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形6.2 菱形6.3 正方形6.4 梯形九年级上册第一章反比例函数1.1反比例函数1.2反比例函数的图象和性质1.3反比例函数的应用第二章二次函数2.1 二次函数2.2 二次函数的图象2.3 二次函数的性质2.4 二次函数的应用第三章圆的基本性质3.1 圆3.2 圆的轴对称3.3 圆心角3.4 圆周角3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积第四章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及应用4.5 相似多边形4.6 图形的位似九年级下册第一章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形第二章简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应用第三章直线与圆、圆与圆的基本性质3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系第四章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图湘教版初中数学目录:七年级上册第一章有理数1.1具有相反意义的量1.2 数轴,相反数与绝对值1.3有理数大小的比较1.4有理数的加法1.5 有理数的减法1.6有理数的乘法1.7有理数的除法1.8有理数的乘方1.9有理数的混合运算1.10用计算器计算第二章代数式2.1用字母表示数2.2列代数式2.3代数式的值2.4一类代数式的加法第三章图形欣赏人与操作3.1图形欣赏3.2平面图形与空间图形3.3观察物体3.4图形操作3.5视图第四章一元一次方程模型与算法4.1 一元一次方程模型4.2 解一元一次方程的算法4.3 一元一次方程的应用第五章一元一次不等式5.1 不等式的基本性质5.2 一元一次不等式的解法5.3 一元一次不等式的应用第六章数据的收集与描述6.1 数据的收集6.2 统计图6.3 平均数、中位数和众数七年级下册第一章一元一次不等式组1.1 一元一次不等式组1.2 一元一次不等式组的解法1.3 一元一次不等式组的应用第二章二元一次方程组2.1 二元一次方程组2.2 二元一次方程组的解法2.3 二元一次方程组的应用第三章平面上直线的位置关系和度量3.1 线段、直线、射线3.2 角3.3 平面直线的位置关系3.4 图形的平移3.5 平行线的性质与判定3.6 垂线的性质与判定第四章多项式4.1 多项式4.2 多项式的加减4.3 多项式的乘法4.4 乘法公式第五章轴对称图形5.1 轴反射与轴对称图形5.2 线段的垂直平分线5.3 三角形5.4 三角形的内角和5.5 角平分线的性质5.6 等腰三角形5.7 等边三角形第六章数据的分析与比较6.1 加权平均数6.2 极差、方差6.3 两组数据的比较八年级上册第一章实数1.1 平方根1.2 立方根1.3 实数1.4 平面直角坐标系第二章一次函数2.1 函数和它的表示法2.2 一次函数和它的图象3.3 建立一次函数模型第三章全等三角形3.1 旋转3.2 图案设计3.3 全等三角形及其性质3.4 全等三角形的判定定理3.5 直角三角形3.6 勾股定理3.7 作三角形第四章频数与频率4.1 频数与频率4.2 数据的分布八年级下册第一章因式分解1.1 多项式的因式分解1.2 提公因式法1.3 公式法第二章分式2.1 分式和它的基本性质2.2 分式的乘除法2.3 整数指数幂2.4 分式的加减法2.5 分式方程第三章四边形3.1 平行四边形与中心对称图形3.2 菱形3.3 矩形3.4 正方形3.5 梯形3.6 多边形的内角和与外角和第四章二次根式4.1 二次根式和它的化简4.2 二次根式的乘除法4.3 二次根式的加、减法第五章概率的概念5.1 概率的概念5.2 概率的含义九年级上册第一章一元二次方程1.1 建立一元二次方程模型1.2 一元二次方程的算法1.3 一元二次方程的应用第二章定义命题公理与证明2.1 定义2.2 命题2.3 公理与定理2.4 证明第三章相似形3.1 相似的图形3.2 比与比例3.3 相似三角形的性质和判定3.4 相似多边形及性质3.5 图形的放大与缩小、位似变换第四章解直角三角形4.1 正弦和余弦4.2 正切4.3 直角三角形及其应用第五章概率的计算5.1 用频率估计概率5.2 用列举法计算概率九年级下册第一章反比例函数1.1 建立反比例函数模型1.2 反比例函数的图像与性质1.3 实际生活中的反比例函数第二章二次函数2.1 建立二次函数模型2.2 二次函数的图像与性质2.3 二次函数的应用第三章圆3.1 圆3.2 点、直线与圆的位置关系,圆3.3 圆与圆的位置关系3.4 弧长和扇形的面积,圆锥的侧面积3.5 平行投影和中心投影第四章统计估计4.1 总体与样本4.2 用样本估计总体华师大版初中数学目录:七年级上册第一章走进数学世界1.1 与数学交朋友1.2 让我们来做数学第二章有理数2.1 正数和负数2.2 数轴2.3 相反数2.4 绝对值2.5 有理数的大小比较2.6 有理数的加法2.7 有理数的减法2.8 有理数加减混合运算2.9 有理数的乘法2.10 有理数的除法2.11 有理数的乘方2.12 科学记数法2.13 有理数的混合运算2.14 近似数和有效数字2.15 用计算器进行数的简单运算第三章整式的加减3.1 列代数式3.2 代数式的值3.3 整式3.4 整式的加减第四章图形的初步认识4.1 生活中的立体图形4.2 画立体图形4.3 立体图形的展开图4.4 平面图形4.5 最基本的图形——点和线4.6 角4.7 相交线4.8 平行线第五章数据的收集与表示5.1 数据的收集5.2 数据的表示七年级下册第六章一元一次方程6.1 从实际问题到方程6.2 解一元一次方程6.3 实践与探索第七章二元一次方程组7.1 二元一次方程组和它的解7.2 二元一次方程组的解法7.3 实践与探索第八章一元一次不等式8.1 认识不等式8.2 解一元一次不等式8.3 一元一次不等式组第九章多边形9.1 三角形9.2 多边形的内角和与外角和9.3 用正多边形拼地板第十章轴对称10.1 生活中的轴对称10.2 轴对称的认识10.3 等腰三角形第十一章体验不确定现象11.1 可能还是确定11.2 机会的均等与不等11.3 在反复实验中观察不确定现象八年级上册第12章数的开方12.1 平方根与立方根12.2 实数与数轴第13章整式的乘除13.1 幂的运算13.2 整式的乘法13.3 乘法公式13.4 整式的除法13.5 因式分解第14章勾股定理14.1 勾股定理14.2 勾股定理的应用第15章平移与旋转15.1 平移15.2 旋转15.3 中心对称15.4 图形的全等第16章平行四边形的认识16.1 平行四边形的性质16.2 矩形、菱形与正方形的性质16.3 梯形的性质八年级下册第17章分式17.1 分式及其基本性质17.2 分式的运算17.3 可化为一元一次方程的分式方程17.4 零指数幂与负整指数幂第18章函数及其图像18.1 变量与函数18.2 函数的图象18.3 一次函数18.4 反比例函数18.5 实践与探索第19章全等三角形19.1 命题与定理19.2 三角形全等的判定19.3 尺规作图19.4 逆命题与逆定理课题学习图形中的趣题第20章平行四边形的判定20.1 平行四边形的判定20.2 矩形的判定20.3 菱形的判定20.4 正方形的判定20.5 等腰梯形的判定第21章数据的整理与初步处理21.1 算术平均数与加权平均数21.2 平均数、中位数和众数的选用21.3 极差、方差和标准差课题学习心率与年龄九年级上册第22章二次根式22.1 二次根式22.2 二次根式的乘除法22.3 二次根式的加减法第23章一元二次方程23.1 一元二次方程23.2 一元二次方程的解法23.3 实践与探索第24章图形的相似24.1 相似的图形24.2 相似图形的性质24.3 相似三角形24.4 中位线24.5 画相似图形24.6 图形与坐标第25章解直角三角形25.1 测量25.2 锐角三角函数25.3 解直角三角形课题学习高度的测量第26章随机事件的概率26.1 概率的预测26.2 模拟实验课题学习通讯录的设计九年级下册第27章二次函数27.1 二次函数27.2 二次函数的图象与性质27.3 实践与探索第28章圆28.1 圆的认识28.2 与圆有关的位置关系28.3 圆中的计算问题第29章几何的回顾29.1 几何问题的处理方法29.2 反证法阅读材料《几何原本》第30章样本与总体30.1 抽样调查的意义30.2 用样本估计总体30.3 借助调查作决策苏科版初中数学目录:七年级上册第一章我们与数学同行1.1 生活数学1.2 活动思考第二章有理数2.1 比0小的数2.2 数轴2.3 绝对值与相反数2.4 有理数的加法与减法2.5 有理数的乘法与除法2.6 有理数的乘方2.7 有理数的混合运算第三章用字母表示数3.1 字母表示数3.2 代数式3.3 代数式的值3.4 合并同类项3.5 去括号第四章一元一次方程4.1 从问题到方程4.2 解一元一次方程4.3 用方程解决问题第五章走进图形世界5.1 丰富的图形世界5.2 图形的变化5.3 展开与折叠5.4 从三个方向看第六章平面图形的认识(一)6.1 线段射线直线6.2 角6.3 余角补角对顶角6.4 平行6.5 垂直七年级下册第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识——因式分解(一)9.6 乘法公式的再认识——因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们周围12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布直方图第十三章感受概率13.1 确定与不确定13.2 可能性八年级上册第一章轴对称图形1.1 轴对称与轴对称图形1.2 轴对称的性质1.3 设计轴对称图案1.4 线段、角的轴对称性1.5 等腰三角形的轴对称性1.6 等腰梯形的轴对称性数学活动剪纸第二章勾股定理与平方根2.1 勾股定理2.2 神秘的数组2.3 平方根2.4 立方根2.5 实数2.6 近似数与有效数字2.7 勾股定理的应用数学活动关于勾股定理的研究第三章中心对称图形(一)3.1 图形的旋转3.2 中心对称与中心对称图形3.3 设计中心对称图案3.4 平行四边形3.5 矩形、菱形、正方形3.6 三角形、梯形的中位线数学活动镶嵌小结与思考第四章数量、位置的变化4.1 数量的变化4.2 位置的变化4.3 平面直角坐标系数学活动:确定藏宝地第五章一次函数5.1 函数5.2 一次函数5.3 一次函数的图象5.4 一次函数的应用5.5 二元一次方程组的图象解法数学活动温度计上的一次函数第六章数据的集中程度6.1 平均数6.2 中位数与众数6.3 用计算器求平均数全章复习与测试数学活动你是“普通”学生吗八年级下册第七章一元一次不等式7.1 生活中的不等式7.2 不等式的解集7.3 不等式的性质7.4 解一元一次不等式7.5 用一元一次不等式解决问题7.6 一元一次不等式组7.7 一元一次不等式与一元一次方方程、一次函数第八章分式8.1 分式8.2 分式的基本性质8.3 分式的加减8.4 分式的乘除8.5 分式方程第九章反比例函数9.1 反比例函数9.2 反比例函数的图象与性质9.3 反比例函数的应用第十章图形的相似10.1 图上距离与实际距离10.2 黄金分割10.3 相似图形10.4 探索三角形相似的条件10.5 相似三角形的性质10.6 图形的位似10.7 相似三角形的应用第十一章图形的证明(一)11.1 你的判断对吗11.2 说理11.3 证明11.4 互逆命题第十二章认识概率12.1 等可能性12.2 等可能条件下的概率(一)12.3 等可能条件下的概率(二)课题学习:游戏公平吗?九年级上册第一章图形与证明(二)1.1 等腰三角形的性质与判定1.2 直角三角形全等的判定1.3 平行四边形、矩形、菱形、正方形的性质和判定1.4 等腰梯形的性质和判定1.5 中位线第二章数据的离散程度2.1 极差2.2 方差与标准差2.3 用计算器求标准差的方差第三章二次根式3.1 二次根式3.2 二次根式的乘除3.3 二次根式的加减。
《实数与数轴》习题精选及参考答案习题一一、选择题(1)下列各式正确的是()A. B. C. D.(2)实数是()A.整数 B.分数 C.有理数 D.无理数(3)不是()A.分数 B.小数 C.无理数 D.实数(4)在数轴上,原点和原点左边的所有点表示的数是()A.负有理数 B.负实数 C.零和负有理数 D.零和负实数(5)a、b是两个实数,在数轴上的位置如图所示,下面结论正确的是()A.a、b互为相反数 B. C. D.(6)和数轴上的点一一对应的数是()A.整数 B.有理数 C.无理数 D.实数(7)若是有理数,则a是()A.有理数 B.负的实数 C.完全平方数 D.完全平方数的相反数(8)下列式子正确的是()A. B. C. D.(9)若a与它的绝对值之和为0,则的值是()A.-1 B.1 C. D.(10)已知为实数,那么下列结论中正确的是()A.若,则 B.,则C.若,则 D.若,则二、填空题(1)绝对值最小的实数是______________.(2)的绝对值是___________,相反数是___________.(3)若实数a满足,则a是_________.(4)当时,在实数范围内有意义.(5)在数轴上表示的点与原点的距离是__________.(6)若,则.(7)比小且比大的整数为________.(8).(9)若,则的取值范围是_________.(10)当时,有最大值是_______.三、解答题1.化简(1);(2);(3);(4).2.若实数a满足,化简.3.已知,求的值.4.已知,求x的值.5.已知实数在数轴上的位置如图所示,且.化简.6.如果,求的值.7.当时,求代数式的值.8.已知,求的值.参考答案:一、(1)B;(2)D;(3)A;(4)D;(5)D;(6)D;(7)D;(8)C;(9)B;(10)B.二、(1)0;(2),;(3)负数;(4);(5);(6);(7)2;(8)9;(9);(10)0,3.三、1.(1)1;(2);(3);(4).2.因为,所以.所以.3.因为,所以有所以所以.4.因为,所以,即.所以.5.由已知可知,且,所以.6.由已知可知所以.当时,,所以.7.因为,所以当时,.8.因为,所以,所以.设,则.所以.所以.习题二一、选择题:1.下列说法中正确的是()A.带根号的数是无理数B.无限小数是无理数C.不能写成分数形式的数是无理数D.不能在数轴上表示的数是无理数说明:有理数也可写成带根号的形式,比如2 =,则不是无理数,A错;循环小数也是无限小数,但循环小数是有理数,不是无理数,B错;C正确;无理数与有理数都是实数,实数都可以在数轴上表示,D错;答案为C.2.下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④−是17的平方根;其中正确的个数有( )A.0个 B.1个 C.2个 D.3个答案:B说明:实数与数轴上的点一一对应,故①错;不带根号的数不一定是有理数,比如,π等,则②错;任一实数都有一个立方根,③错;17的平方根为±,−是17的一个平方根,故④正确;答案为B.3.在−1.732,,π,3.,2+,3.212212221…,3.14这些数中,无理数的个数为( )A.5 B. 2 C.3 D.4答案:D说明:这其中的无理数有,π,2+,3.212212221…,一共4个,答案为D.4.如图所示,数轴上表示1、的对应点分别为A、B,点B关于点A的对称点为C,则点C所表示的数是( )A.−1 B.1− C.2− D.−2答案:C说明:设点C表示的数为x;因为点C为点B关于点A的对称点,所以AC的长度与AB的长度相等,从图中不难看出AB的长度为−1,而AC的长度为1−x,所以−1 = 1−x,可以解出x = 2−,答案为C.二、把下列各数的序号填入相应的集合中:①3.14;②−;③−;④;⑤0;⑥1.212212221…;⑦,⑧0.15有理数集合:{ }正数集合:{ }无理数集合:{ }负数集合:{ }答案:①,⑤,⑧,…;①,④,⑥,⑦,⑧,…;②,③,④,⑥,⑦,…;②,③,…三、判断下列说法是否正确:①无理数一定是无限小数;正确;无理数是无限不循环小数,当然是无限小数②实数不是有理数就是无理数;正确;实数分为有理数和无理数两类③π是无理数,3.14是有理数;正确;π是无限不循环小数,是无理数;3.14是有限小数,是有理数④数轴上的任何一点都可表示为一个实数;正确;数轴上的点与实数是一一对应的⑤等于1.732;不正确;是无限不循环小数,是无理数,1.732是有限小数,它是的近似值⑥无理数没有平方根.不正确;正无理数的平方根有两个,是互为相反数的两个无理数四、解答题:1.已知x、y均为实数,且(x−y)2与互为相反数,求2(x2+y2)的算术平方根.解:因为(x−y)2与互为相反数所以(x−y)2+= 0因为(x−y)2≥0,≥0所以x−y = 0且5x−3y−16 = 0,所以x = 8,y = 8则=== 16即2(x2+y2)的算术平方根是16.2.已知实数a、b、c满足|a−b|++−c+c2 = 0,求a(b+c)的值.解:因为|a−b|++−c+c2 = 0,而|a−b|≥0,≥0,−c+c2 = (−c)2≥0所以a−b = 0,2b+c = 0,−c = 0所以a = −,b = −,c =所以a(b+c) = −×(−+) = −.。