11,二次函数的图象
- 格式:doc
- 大小:99.50 KB
- 文档页数:1
考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。
而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式1.二次函数的3种表达式及其性质作用2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项 ,一次项系数为 ,常数项为 .2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣5D.y=(x﹣2)2﹣63.在平面直角坐标系中,若将抛物线y=2x2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( )A.y=2(x﹣3)2+3B.y=2(x+3)2+3C.y=2(x﹣3)2+1D.y=2(x+3)2+24.抛物线y=2x2向下平移3个单位长度后所得新抛物线的顶点坐标为( )A.(﹣3,0)B.(3,0)C.(0,﹣3)D.(0,3)5.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(6,3).若抛物线y=mx2+2mx+m+3(m为常数,m≠0)向右平移a(a>0)个单位长度,平移后的抛物线的顶点在线段AB上,则a的取值范围为 .考向二、二次函数的图象特征与最值1.对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线;顶点坐标:;a>二次函数有最小值;a <二次函数有最大值;2.图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .函数有最小值1,有最大值3B .函数有最小值﹣1,有最大值3C .函数有最小值﹣1,有最大值0D .函数有最小值﹣1,无最大值2.如图是四个二次函数的图象,则a 、b 、c 、d 的大小关系为( )A.d<c<a<b B.d<c<b<a C.c<d<a<b D.c<d<b<a3.如图是二次函数y=ax2+bx的大致图象,则一次函数y=(a+b)x﹣b的图象大致是( )A.B.C.D.4.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.5.已知二次函数y=x2﹣2x+2在m≤x≤m+1时有最小值m,则整数m的值是( )A.1B.2C.1或2D.±1或26.如图,点P是抛物线y=﹣x2+2x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .考向三、二次函数图象与系数的关系二次函数图象题符号判断类问题大致分为以下几种基本情形∶1.抛物线y =ax 2+bx +c 的对称轴为直线x =−1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b +c =0;④6a ﹣2b +c <0;⑤若点(0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2,其中正确的判断是( )A .②③④⑤B .②③④C .②③⑤D .②④⑤2.已知二次函数y =ax 2+bx +c 的y 与x的部分对应值如表:x﹣1013y0﹣1.5﹣20根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x﹣1)2﹣2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c=﹣1.5的两个根为0或2;④若y>0,则x>3;⑤a(am+b)≥a﹣b(m为任意实数).其中所有正确的结论为( )A.①②④B.②③⑤C.②③④D.①③⑤3.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是( )A.a>0B.C.或a>0D.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是( )A.①③④B.①②③⑤C.①②③④D.①②③④⑤5.已知二次函数y=x2﹣2mx+m2+2m(1)①函数的顶点坐标为 (用含m的代数式表示);②该顶点所在直线的解析式为 ;在平面直角坐标系中画出该直线的图象;(2)当m=1时,二次函数关系式为 ,在平面直角坐标系中画出此函数的图象;(3)已知点A(﹣3,1)、B(1,1)连结AB.若抛物线y=x2﹣2mx+m2+2m与线段AB有且只有一个交点,求m的取值范围;(4)把二次函数y=x2﹣2mx+m2+2m(x≤2m)的图象记为G,当G的最低点到x轴的距离为1时,直接写出m的值.考向四、二次函数与方程、不等式(组)1.二次函数y=ax2+bx+c(a≠0)与一元二次方程之间的关系:1)求交点:①求抛物线与x轴交点坐标→直接让y=0,即:ax2+bx+c=0②求抛物线与某直线l的交点坐标→联立抛物线与直线解析式,得新组成的一元二次方程,解新方程即的两图象交点横坐标,再代入直线或抛物线解析式即可得交点坐标。
二次函数二次函数一. 本周教学内容: 二次函数2 (一)二次函数的图象yax,2 (二)二次函数的图象yaxbxc,,,(三)综合测试二. 重点、难点:2 (一)二次函数的图象yax,知道二次函数的意义。
2 会用描点法画出函数的图象,知道抛物线的有关概念。
yax,2 自准确地掌握()二次函数定义,可以采用列表格对照各类函数解析式的形式、yax,变量的取值范围及对所含系数的要求有哪些异同,在比较中掌握二次函数的定义。
2 象要熟练地绘出的图象,熟悉各种图象的特征,抓住图象上关键的点,学会画图yax,2的有关技巧(y=ax的关键点是顶点及关于y轴的对称点)。
2 本节的重点是二次函数的概念,正确画出y=ax的图象,初步掌握二次函数的性质。
函数的增减性是教学的难点。
2 yaxbxcabcayx,,,,(、、是常数,),叫做的二次函数。
02 函数y=ax的图象是一条关于y轴对称的曲线,这条曲线叫抛物线。
2 (二)二次函数的图象yaxbxc,,,1. 会用描点法画出二次函数的图象。
2. 能利用图象或通过配方法确定抛物线的开口方向及对称轴、顶点的位置。
,,b4acb,3. 会由已知图象上三个点的坐标求出二次函数的解析式。
对二次函数画图象,首先应了解二次函数的图象是抛物线,其关键点是它的顶点物线与x轴有交点),然后依对称性,再参照y=ax的图象,就可迅速画出原二次函数的图象。
在学习二次函数的性质时,应结合函数的图象,对比各种不同形式及相同形式但所含常数2a4a,,不同时的各种情况,归纳总结出一定的规律,从而更好地理解函数的性质。
在函数性质的教学中,应充分调动学生的积极性,引导他们从增减性、对称性、最值、截距几个方面去发现性质,然后再逐渐条理化。
学会函数知识的应用,从而加强技能的训练和能力的培养。
用描点法画二次函数的图象,用一般式来研究二次函数的性质,求二次函数的解析式,是本节的重点。
【典型例题】21 (一)二次函数的图象yax,22222 例画函数与的图象。
专题2 二次函数的图象和性质知 识 点名师点晴二次函数概念、图象和性质1.二次函数的概念 会判断一个函数是否为二次函数. 2.二次函数的图象知道二次函数的图象是一条抛物线.3.二次函数的性质 会按在对称轴左右判断增减性. 4.二次函数的解析式确定能用待定系数法确定函数解析式.二次函数与二次方程的关系 5.判别式、抛物线与x 轴的交点、二次方程的根的情况三者之间的联系.会用数形结合思想解决此类问题. 能根据图象信息,解决相应的问题.☞考点归纳归纳 1:二次函数中各系数a 、b 、c 的几何意义基础知识归纳: a 决定开口方向,a >0开口向上,a <0开口向下,ab 乘积决定对称轴的位置(左同右异), c 决定与y 轴的交点位置.基本方法归纳:根据a 、b 、c 的符号逐步分析判断.注意问题归纳:当只有ac 或者bc 时,要考虑用对称轴方程这个式子去代换变形.【例1】(2017山东省烟台市)二次函数2y ax bx c =++(a ≠0)的图象如图所示,对称轴是直线x =1,下列结论:①a b <0;②b 2>4ac ;③a +b +2c <0;④3a +c <0.其中正确的是( )A .①④B .②④C .①②③D .①②③④归纳 2:二次函数图象与几何变换 基础知识归纳:二次函数的平移.基本方法归纳:关键是熟练掌握二次函数平移主要考虑顶点的变化. 注意问题归纳:平移规律是“左加右减,上加下减.【例2】(2017广西贵港市)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A .()211y x =-+ B .()211y x =++ C .()2211y x =-+ D .()2211y x =++【2017年题组】1.(2017内蒙古包头市)已知一次函数14y x =,二次函数2222y x =+,在实数范围内,对于x 的同一个值,这两个函数所对应的函数值为1y 与2y ,则下列关系正确的是( ) A . 12y y > B .12y y ≥ C . 12y y < D .12y y ≤2.(2017四川省乐山市)已知二次函数mx x y 22-=(m 为常数),当﹣1≤x ≤2时,函数值y 的最小值为﹣2,则m 的值是( )A .23 B .2 C .23 或2 D .23-或2 3.(2017四川省凉山州)已知抛物线222y x x m =+--与x 轴没有交点,则函数m y x=的大致图象是( )A .B .C .D .4.(2017四川省泸州市)已知m ,n 是关于x 的一元二次方程222240x tx t t -+-+=的两实数根,则(2)(2)m n ++的最小值是( )A .7B .11C .12D .166.(2017山东省威海市)已知二次函数2y ax bx c =++(a ≠0)的图象如图所示,则正比例函数y =(b +c )x 与反比例函数xcb a y +-=在同一坐标系中的大致图象是( )A .B .C .D .7.(2017山东省泰安市)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x ﹣1 0 1 3 y﹣3131下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x <1时,函数值y 随x 的增大而增大;④方程20ax bx c ++=有一个根大于4,其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个8.(2017山东省泰安市)如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C以1cm /s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm /s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形P ABQ 的面积最小值为( )A .19cm 2B .16cm 2C .15cm 2D .12cm 29.(2017山东省淄博市)将二次函数221y x x =+-的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A .2(3)2y x =+- B .2(3)2y x =++ C . 2(1)2y x =-+ D .2(1)2y x =-- 11.(2017江苏省盐城市)如图,将函数()21212y x =-+的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .()21222y x =-- B .()21272y x =-+ C .()21252y x =-- D .()21242y x =-+ 12.(2017江苏省苏州市)若二次函数21y ax =+的图象经过点(﹣2,0),则关于x 的方程2(2)10a x -+= 的实数根为( )A .x 1=0,x 2=4B .x 1=﹣2,x 2=6C .x 1=32,x 2=52D .x 1=﹣4,x 2=0 13.(2017江苏省连云港市)已知抛物线2y ax =(a >0)过A (﹣2,1y 、B (1,2y )两点,则下列关系式一定正确的是( )A .120y y >>B .210y y >>C .120y y >>D .210y y >> 14.(2017浙江省嘉兴市)下列关于函数1062+-=x x y 的四个命题: ①当x =0时,y 有最小值10;②n 为任意实数,x =3+n 时的函数值大于x =3﹣n 时的函数值;③若n >3,且n 是整数,当n ≤x ≤n +1时,y 的整数值有(2n ﹣4)个; ④若函数图象过点(a ,y 0)和(b ,y 0+1),其中a >0,b >0,则a <b . 其中真命题的序号是( )A .①B .②C .③D .④19.(2017湖北省咸宁市)如图,直线y =mx +n 与抛物线2y ax bx c =++交于A (﹣1,p ),B (4,q )两点,则关于x 的不等式2mx n ax bx c +>++的解集是 .20.(2017湖北省武汉市)已知关于x 的二次函数22(1)y ax a x a =+--的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .21.(2017上海市)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)25.(2017四川省广元市)已知二次函数2y ax bx c =++的图象如图所示,有下列结论:①abc <0;②a +c >b ;③3a +c <0;④a +b >m (am +b )(其中m ≠1),其中正确的结论有 .28.(2017江苏省常州市)已知二次函数23y ax bx =+-自变量x 的部分取值和对应函数值y 如下表:则在实数范围内能使得50y ->成立的x 取值范围是 .x ... -2 -1 0 1 2 3 ... y...5-3-4-3...30.(2017天门)已知关于x 的一元二次方程221(1)(1)02x m x m -+++=有实数根. (1)求m 的值;(2)先作221(1)(1)2y x m x m =-+++的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y =2x +n (n ≥m )与变化后的图象有公共点时,求24n n -的最大值和最小值.34.(2017贵州省贵阳市)如图,直线y =2x +6与反比例函数ky x=(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM . (1)求m 的值和反比例函数的表达式;(2)直线y =n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?【2016年题组】1.(2016内蒙古呼伦贝尔市,第11题,3分)在平面直角坐标系中,将抛物线212y x =-向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是( ) A .21322y x x =--- B .21122y x x =-+- C .21322y x x =-+- D .21122y x x =--- 2.(2016内蒙古呼和浩特市)已知a ≥2,2220m am -+=,2220n an -+=,则22(1)(1)m n -+-的最小值是( )A .6B .3C .﹣3D .03.(2016天津市)已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或﹣5B .﹣1或5C .1或﹣3D .1或34.(2016四川省凉山州)二次函数2y ax bx c =++(0a ≠)的图象如图,则反比例函数ay x=-与一次函数y bx c =-在同一坐标系内的图象大致是( )A .B .C .D .5.(2016四川省巴中市)如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,给出四个结论: ①c >0; ②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b =0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .48.(2016四川省自贡市)二次函数=++2y ax bx c 的图象如图,反比例函数=ay x与正比例函数=y bx 在同一坐标系的大致图象是( )A .B .C .D .12.(2016山东省威海市)已知二次函数2()y x a b =---的图象如图所示,则反比例函数aby x=与一次函数y =ax +b 的图象可能是( )A .B .C .D .11.(2016山东省临沂市)二次函数2y ax bx c =++,自变量x 与函数y 的对应值如表:x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 … y…4﹣2﹣24…下列说法正确的是( )A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是52x =-14.(2016山东省泰安市)一元二次方程22(1)2(1)7x x +--=的根的情况是( )A .无实数根B .有一正根一负根C .有两个正根D .有两个负根 15.(2016山东省泰安市)在﹣2,﹣1,0,1,2这五个数中任取两数m ,n ,则二次函数2()y x m n =-+的顶点在坐标轴上的概率为( ) A .25 B .15 C .14 D .1216.(2016山东省滨州市)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线256y x x =++,则原抛物线的解析式是( ) A .2511()24y x =---B .2511()24y x =-+-C .251()24y x =---D .251()24y x =-++ 19.(2016浙江省衢州市)二次函数2y ax bx c =++(a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:x… ﹣3 ﹣2 ﹣1 0 1 … y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的对称轴是( )A .直线x =﹣3B .直线x =﹣2C .直线x =﹣1D .直线x =0 20.(2016甘肃省兰州市)点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>21.(2016甘肃省兰州市)二次函数2y a x b x c =++的图象如图所示,对称轴是直线x =﹣1,有以下结论:①abc >0;②24ac b <;③2a +b =0;④a ﹣b +c >2.其中正确的结论的个数是( )A .1B .2C .3D .423.(2016宁夏)若二次函数22y x x m =-+的图象与x 轴有两个交点,则m 的取值范围是 . 25.(2016四川省凉山州)将抛物线2y x =-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.27.(2016湖北省荆州市)若函数2(1)42y a x x a =--+的图象与x 轴有且只有一个交点,则a 的值为 .。
2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点11 二次函数考点总结一、二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.三、二次函数的图象及性质1.二次函数的图象与性质开口向上开口向下2.二次函数图象的特征与a,b,c的关系四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h) 2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0)2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题:解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.真题演练一.选择题(共10小题)1.(2021•河北模拟)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣3(m≠0)与x轴交于点A,B.若线段AB上有且只有7个点的横坐标为整数,则m的取值范围是()A.m>0 B.316<m≤13C.m>316D.316<m<13【分析】先判断出x=4时,y≤0,当x=5时,y>0,解不等式,即可得出结论.【解答】解:∵抛物线y=mx2﹣2mx+m﹣3=m(x﹣1)2﹣3,∴顶点(1,﹣3),抛物线的对称轴为直线为x=﹣1,∵抛物线与x轴交于点A,B.∴抛物线开口向上,∵线段AB上有且只有7个点的横坐标为整数,∴这些整数为﹣2,﹣1,0,1,2,3,4,∵m>0,∴当x=4时,y=16m﹣8m+m﹣3≤0,∴m≤1 3,当x=5时,y=25m﹣10m+m﹣3>0,∴m>3 16,∴316<m≤13,故选:B.2.(2021•开平区一模)如图,已知抛物线y=ax(x+t)(a≠0)经过点A(﹣3,﹣3),t≠0,当抛物线的开口向上时,t的取值范围是()A.t>3 B.t>﹣3 C.t>3或t<﹣3 D.t<﹣3【分析】将A(﹣3,﹣3)代入y=ax(x+t),求得a=1t−3,根据抛物线开口向上,a>0,即可得出关于t的不等式,解不等式即可求解.【解答】解:将A(﹣3,﹣3)代入y=ax(x+t)得,﹣3=a(9﹣3t),∴a=1 t−3∵抛物线开口向上,∴a>0,∴1t−3>0,∴t﹣3>0,∴t>3.故选:A.3.(2021•河北模拟)对于题目,“线段y=−34x+94(−1≤x≤3)与抛物线y=ax2﹣2a2x(a≠0)有唯一公共点,确定a的取值范围”.甲的结果是a≤−32,乙的结果是a>32,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分类讨论a>0,a<0两种情况,通过数形结合方法,列不等式求解.【解答】解:如图,点A坐标为(﹣1,3),点B坐标为(3,0),①a>0时,抛物线开口向上,经过定点(0,0),抛物线与直线x=﹣1交点坐标为C(﹣1,a+2a2),与直线x=3交点坐标为(3,9a﹣6a2),当点C在点A下方,点D在点B上方时满足题意,即{a+2a2<39a−6a2≥0 a>0,解得0<a<1,当点C 在点A 上方,点D 在点B 下方时也满足题意, {a +2a 2>39a −6a 2<0a >0, 解得a >32,②a <0时,抛物线开口向下,经过定点(0,0), 当点C 与点A 重合或在A 上方时满足题意, 即{a +2a 2≥3a <0, 解得a ≤−32.综上所述,0<a <1或a >32或a ≤−32. 故选:D .4.(2021•清苑区模拟)对于二次函数y =4(x +1)(x ﹣3)下列说法正确的是( )A.图象开口向下B.与x轴交点坐标是(1,0)和(﹣3,0)C.x<0时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【分析】根据题目中的函数解析式,利用二次函数的性质可以判断各个选项是否正确.【解答】解:y=4(x+1)(x﹣3)=4(x﹣1)2﹣16,A、a=4>0,则该抛物线的开口向上,故选项A不符合题意,B、与x轴的交点坐标是(﹣1,0)、(3,0),故选项B不符合题意,C、当x<0时,y随x的增大而减小,故选项C符合题意,D、图象的对称轴是直线x=1,故选项D不符合题意,故选:C.5.(2021•衡水模拟)若二次函数y=ax2+2ax(a≠0)过P(1,4),则这个函数必过点()A.(﹣3,4)B.(﹣1,4)C.(0,3)D.(2,4)【分析】根据二次函数的对称性即可判断.【解答】解:∵二次函数的图象过点P(1,4),对称轴为直线x=﹣1,∴点P关于对称轴的对称点为(﹣3,4),∵点P关于对称轴的对称点必在这个函数的图象上,∴这个函数图象必过点(﹣3,4),故选:A.6.(2021•石家庄一模)在平面直角坐标系中,已知点A(4,2),B(4,4),抛物线L:y=﹣(x﹣t)2+t(t≥0),当L与线段AB有公共点时,t的取值范围是()A.3≤t≤4 B.5≤t≤6C.3≤t≤4,t=6 D.3≤t≤4或5≤t≤6【分析】把A、B的坐标分别代入抛物线解析式得到关于t的方程,解方程求得t的值,即可得到符合题意的t的取值范围.【解答】解:把A(4,2)代入y=﹣(x﹣t)2+t(t≥0)得2=﹣(4﹣t)2+t,解得t=3或t=6;把B(4,4)代入y=﹣(x﹣t)2+t(t≥0)得4=﹣(4﹣t)2+t,解得t=4或t=5;∴当L与线段AB有公共点时,t的取值范围是3≤t≤4或5≤t≤6,故选:D.7.(2021•邢台模拟)对于题目:“已知A(0,2),B(3,2),抛物线y=mx2﹣3(m﹣1)x+2m ﹣1(m≠0)与线段AB(包含端点A、B)只有一个公共点,求m的取值范围”.甲的结果是﹣3<m<0,乙的结果是0<m<32,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】根据题意和二次函数的性质,可以得到关于m的不等式组,从而可以求得m的取值范围,本题得以解决.【解答】解:当x=0时,y=2m﹣1,当x=3时,y=9m﹣9(m﹣1)+2m﹣1=2m+8,∵y=mx2﹣3(m﹣1)x+2m﹣1=m(x2﹣3x+2)+3x﹣1=m(x﹣2)(x﹣1)+3x﹣1,∴该函数和恒过点(2,5)、(1,2),当(1,2)为抛物线顶点时,该抛物线与线段AB一个交点,此时−−3(m−1)2m=1,得m=3;当抛物线过点A(0,2),则2m﹣1=2,此时m=32>0,抛物线开口向上,又∵抛物线恒过点(1,2),∴抛物线与线段AB一个交点时,2m﹣1<2,得m<3 2,∴0<m<3 2;当抛物线过点B(3,2)时,2m+8=2,得m=﹣3<0,此时抛物线开口向下,又∵抛物线恒过点(1,2),∴抛物线与线段AB一个交点时,2m+8>2,得m>﹣3,∴﹣3<m<0;由上可得,0<m<32或﹣3<m<0或m=3,故选:D.8.(2021•柳南区校级模拟)如图,现要在抛物线y=x(6﹣x)上找点P(a,b);针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=15,则点P的个数为0;乙:若b=9,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【分析】把点P的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断甲、乙、丙的判断对与错.【解答】解:∵点P(a,b),当b=15时,则15=a(6﹣a),整理得a2﹣6a+15=0,∵Δ=36﹣4×15<0,∴点P的个数为0;当b=9时,则9=a(6﹣a),整理得a2﹣6a+9=0,∵Δ=36﹣4×9=0,∴a有两个相同的值,∴点P的个数为1;当b=3时,则3=a(6﹣a),整理得a2﹣6a+3=0,∵Δ=36﹣4×3>0,∴有两个不相等的值,∴点P 的个数为2; 故甲、乙对,丙错, 故选:C .9.(2021•商河县一模)在平面直角坐标系xOy 中,抛物线y =mx 2﹣2mx +m ﹣3与x 轴交于点A 、B .下列结论正确的有( )个.①m 的取值范围是m >0;②抛物线的顶点坐标为(1,﹣3);③若线段AB 上有且只有5个点的横坐标为整数,则m 的取值范围是13<m ≤34;④若抛物线在﹣3<x <0这一段位于x 轴下方,在5<x <6这一段位于x 轴上方,则m 的值为316.A .1B .2C .3D .4【分析】根据抛物线与x 轴有两个交点,得出Δ>0,即可判断①;用配方法将抛物线解析式配成顶点式,即可判断②;先判断出x =3时,y ≤0,当x =4时,y >0,解不等式,即可判断③;先判断出抛物线在﹣4<x <﹣3这一段位于x 轴上方,结合抛物线在﹣3<x <0这一段位于x 轴下方,得出当x =﹣3时,y =0,即可得出判断④.【解答】解:①∵抛物线y =mx 2﹣2mx +m ﹣3与x 轴交于点A 、B , ∴Δ=(﹣2m )2﹣4m (m ﹣3)>0, ∴m >0,故①正确;②∵y =mx 2﹣2mx +m ﹣3=m (x 2﹣2x +1)﹣3=m (x ﹣1)2﹣3, ∴抛物线的顶点坐标为(1,﹣3),故②正确;③由②知,抛物线的对称轴为直线为x =1, ∵线段AB 上有且只有5个点的横坐标为整数, ∴这些整数为﹣1,0,1,2,3, ∵m >0,∴当x =3时,y =9m ﹣6m +m ﹣3≤0, ∴m ≤34,当x =4时,y =16m ﹣8m +m ﹣3>0,∴m >13,∴13<m ≤34,故③正确;④∵抛物线的对称轴为直线为x =1,且m >0,抛物线在5<x <6这一段位于x 轴上方, ∴由抛物线的对称性得,抛物线在﹣4<x <﹣3这一段位于x 轴上方, ∵抛物线在﹣3<x <0这一段位于x 轴下方, ∴当x =﹣3时,y =9m +6m +m ﹣3=0, ∴m =316,故④正确, 故选:D .10.(2021•河北模拟)对二次函数y =12x 2+2x +3的性质描述正确的是( ) A .该函数图象的对称轴在y 轴左侧 B .当x <0时,y 随x 的增大而减小 C .函数图象开口朝下D .该函数图象与y 轴的交点位于y 轴负半轴 【分析】根据二次函数图象与系数的关系判断.【解答】解:A 、y =12x 2+2x +3对称轴为x =﹣2,在y 轴左侧,故A 符合题意;B 、因y =12x 2+2x +3对称轴为x =﹣2,x <﹣2时y 随x 的增大而减小,故B 不符合题意; C 、a =12>0,开口向上,故C 不符合题意;D 、x =0是y =3,即与y 轴交点为(0,3)在y 轴正半轴,故D 不符合题意;故选:A .二.填空题(共5小题)11.(2021•河北模拟)在平面直角坐标系中,已知A (﹣1,m )和B (5,m )是抛物线y =x 2+bx +1上的两点,b = ﹣4 ;m = 6 ;将抛物线y =x 2+bx +1向上平移n (n 是正整数)个单位,使平移后的图象与x 轴没有交点,则n 的最小值为 4 .【分析】根据抛物线的对称性得到抛物线的对称轴为直线x =2,则−b2×1=2,解得b =﹣4,再把(﹣1,m )代入y =x 2﹣4x +1中求出m 的值;利用二次函数图象平移的规律得到抛物线向上平移n 个单位后的解析式为y =x 2﹣4x +1+n ,根据判别式的意义得到△=(﹣4)2﹣4(1+n)<0,然后解不等式后可确定n的最小值.【解答】解:∵A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,∴点A和点B为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即−b2×1=2,解得b=﹣4,∴抛物线解析式为y=x2﹣4x+1,把(﹣1,m)代入得m=1+4+1=6;抛物线向上平移n个单位后的解析式为y=x2﹣4x+1+n,∵抛物线y=x2﹣4x+1+n与x轴没有交点,∴△=(﹣4)2﹣4(1+n)<0,解得n>3,∵n是正整数,∴n的最小值为4.故答案为﹣4,6;4.12.(2021•永德县模拟)抛物线y=x2+bx+c经过点A(0,3),B(2,3),抛物线的对称轴为直线x=1 .【分析】先根据抛物线上两点的纵坐标相等可知此两点关于对称轴对称,再根据中点坐标公式求出这两点横坐标的中点坐标即可.【解答】解:∵抛物线y=x2+bx+c经过点A(0,3)和B(2,3),∴此两点关于抛物线的对称轴对称,∴x=0+22=1.故答案为:直线x=1.13.(2020•秦皇岛一模)如图,将抛物线y=12x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q.(1)点P的坐标为(−3,−92 );(2)图中阴影部分的面积为272.【分析】(1)抛物线C 1与抛物线y =13x 2的二次项系数相同,利用待定系数法即可求得函数的解析式,进而即可求得顶点P 的坐标;(2)图中阴影部分的面积与△POQ 的面积相同,利用三角形面积公式即可求解. 【解答】解:(1)∵把抛物线y =12x 2平移得到抛物线m ,且抛物线m 经过点A (﹣6,0)和原点O (0,0),∴抛物线m 的解析式为y =12(x ﹣0)(x +6)=12x 2+3x =12(x +3)2−92. ∴P (−3,−92). 故答案是:(−3,−92);(2)把x =﹣3代入=12x 2得y =92, ∴Q (﹣3,92),∵图中阴影部分的面积与△POQ 的面积相同,S △POQ =12×9×3=272. ∴阴影部分的面积为272.故答案为:272.14.(2021•桥西区模拟)在平面直角坐标系中,函数y =x 2﹣4x 的图象为C 1,C 1关于原点对称的函数图象为C 2.①则C 2对应的函数表达式为 y =﹣x 2﹣4x ,②直线y =a (a 为常数)分别与C 1、C 2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a 的取值范围 ﹣2<a <﹣1 .【分析】(1)根据关于原点对称的关系,可得C2;(2)根据图象可得答案.【解答】解:(1)函数y=x2﹣4x的图象为C1,C1关于原点对称的图象为C2,C2图象是y =﹣x2﹣4x;故答案为y=﹣x2﹣4x;(2)由图象可知,直线y=a(a为常数)分别与C1、C2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a的取值范围﹣2<a<﹣1.故答案为﹣2<a<﹣1.15.(2021•石家庄模拟)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐很小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t (单位:min )近似满足的函数关系为:p =at 2+bt +c (a ≠0,a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到P 与t 的解析式为 P =﹣0.2t 2+1.5t ﹣1.9 ;并得到加工煎炸臭豆腐的最佳时间为 3.75分钟 .【分析】将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p =at 2+bt +c 中,可得函数关系式为:p =﹣0.2t 2+1.5t ﹣1.9,再根据加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标,求出即可得结论.【解答】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P =at 2+bt +c 中,{9a +3b +c =0.816a +4b +c =0.925a +5b +c =0.6, 解得{a =−0.2b =1.5c =−1.9,所以函数关系式为:P =﹣0.2t 2+1.5t ﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t =−b 2a=−1.52×(−0.2)=3.75,则当t =3.75分钟时,可以得到最佳时间. 故答案为:P =﹣0.2t 2+1.5t ﹣1.9,3.75分钟. 三.解答题(共3小题)16.(2021•路北区一模)如图,抛物线L :y =﹣(x ﹣t )2+t +2,直线l :x =2t 与抛物线、x 轴分别相交于Q 、P 两点.(1)t =1时,Q 点的坐标为 (2,2) ;(2)当P、Q两点重合时,求t的值;(3)当Q点达到最高时,求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出1≤t≤2时“可点”的个数.【分析】(1)把t=1代入x=2t即可求出直线l的解析式,把x=2,t=1代入抛物线L的解析式得y=2,即可求出Q点的坐标;(2)由P、Q两点重合,可知直线与抛物线交于x轴,即交点的纵坐标为0,代入抛物线解析式,即可求得t的值;(3)由题意可知,直线与抛物线交于抛物线顶点,即可得到关于t的方程,求解方程得出t的值,代入y=﹣(x﹣t)2+t+2,即可得出抛物线解析式;(4)根据“可点”的定义,分t=1,t=2,1<t<2三种情况讨论,即可得出“可点”的个数.【解答】解:(1)当t=1时,x=2,∴直线l的解析式为:x=2,把x=2,t=1代入抛物线L的解析式得:y=﹣(2﹣1)2+1+2=2,∴Q点的坐标为(2,2),故答案为:(2,2);(2)∵P、Q两点重合,∴直线与抛物线交于x轴,∴交点为(2t,0),∴﹣(2t﹣t)2+t+2=0,解得:t=2或t=﹣1;(3)∵抛物线L:y=﹣(x﹣t)2+t+2,∴抛物线顶点坐标为(t,t+2),当Q点达到最高时,则直线与抛物线交于顶点,∴2t=t,解得:t=0,∴抛物线解析式为:y=﹣x2+2;(4)∵1≤t≤2时,∴分三种情况讨论,当t=1时,抛物线解析式为:y=﹣(x﹣1)2+3,令y=0,则﹣(x﹣1)2+3=0,解得:x=1±√3,∴“可点”在x轴上有3个,抛物线上有3个,共有6个,当t=2时,抛物线解析式为:y=﹣(x﹣2)2+4,令y=0,则﹣(x﹣2)2+4=0,解得:x=0或4,∴“可点”在x轴上有5个,抛物线上有3个,共有8个,当1<t<2时,抛物线与x轴的交点在1−√3和4之间,当L过(3,0)时,“可点”在x轴上有4个,抛物线上有3个,共有7个,综上所述,“可点”的个数为6或7或8.17.(2021•开平区一模)如图,一位运动员进行投篮训练,设篮球运行过程中的距离地面的高度为y,篮球水平运动的距离为x,已知y﹣3.5与x2成正比例,(1)当x=√5时,y=2.5,根据已知条件,求y与x的函数解析式;(2)直接写出篮球在空中运行的最大高度.(3)若运动员的身高为1.8米,篮球投出后在离运动员水平距离2.5米处到达最高点,球框在与运动员水平距离4米处,且球框中心到地面的距离为3.05米,问计算说明此次投篮是否成功?【分析】(1)设y﹣3.5=kx2,用待定系数法求函数解析式即可;(2)由(1)解析式求函数最大值即可;(3)根据题意球框距离篮球最高点的水平距离是1.5米,把x=1.5代入(1)中解析式得出y3.05米即可.【解答】解:(1)由题意可设y﹣3.5=kx2,∵当x=√5时,y=2.5,∴2.5﹣3.5=k×(√5)2,解得:k=−1 5,∴y与x的函数解析式为y=−15x2+3.5;(2)∵y=−15x2+3.5,∴篮球在空中运行的最大高度为3.5米;(3)此次投篮成功,理由:把x=4﹣2.5=1.5代入y=−15x2+3.5得:y=−15×1.52+3.5=3.05,∴(1.5,3.05)在抛物线y=−15x2+3.5上,∴此次投篮成功.18.(2021•海港区模拟)已知抛物线y=ax2﹣2ax+a2﹣2a(a≠0)与y轴交于点A,顶点为B.(1)若抛物线过点(1,4),求抛物线解析式.(2)设点A的纵坐标为y A,用含a的代数式表示y A,求出y A的最小值.(3)若a>0,随着a增大A点上升而B点下降,求a的取值范围.【分析】(1)把(1,4)代入抛物线解析式求解.(2)用含a代数式表示表示y A,并将解析式化为顶点式求解.(3)分别用含a代数式表示y A,y B,并将其化为顶点式求解.【解答】解:(1)把(1,4)代入y=ax2﹣2ax+a2﹣2a得4=a﹣2a+a2﹣2a,解得a1=﹣1,a2=4.∴抛物线解析式为y=﹣x2+2x+3或y=4x2﹣8x+8.(2)把x=0代入y=ax2﹣2ax+a2﹣2a,即y A=a2−2a=(a﹣1)2﹣1,∴y A的最小值为﹣1.(3)∵y=ax2﹣2ax+a2﹣2a=a(x﹣1)2+a2﹣3a,∴y A=a2−2a=(a﹣1)2﹣1,y B=a2−3a=(a−32)2−94,∴当a>1时,随着a增大A点上升;当a<1.5时,随着a增大B点下降.∴当1<a<1.5时,随着a增大A点上升而B点下降.。
《第22章二次函数》单元检测试卷(一)一、选择题:1.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是( )A.x=1B.x=2C.x=3D.x=42.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)3.下列函数中,是二次函数的有( )①y=1-x2;②y=;③y=x(1-x);④y=(1-2x)(1+2x).A.1个B.2个C.3个D.4个4.二次函数y=a(x+k)2+k(a≠0),无论k取何值,其图象的顶点都在( )A.直线y=x上B.直线y=-x上C.x轴上D.y轴上5.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-26.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米7.二次函数y=x2+2x-3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,﹣4)8.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()9.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元D.30元10.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.211.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大二、填空题:13若把二次函数y=x2+6x+2化为y=(x-h)2+k的形式,其中h,k为常数,则h+k= .14.抛物线y=(x-1)2+2的顶点坐标是 .15.已知点A(x1,y1)、B(x2,y2)都在二次函数y=﹣2(x﹣2)2+1的图象上,且x1<x2<2,则1,y1、y2的大小关系是.16a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)17.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.18.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.19.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是_______.三、解答题:20.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.21.已知二次函数y=x 2+bx+c 的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.22. 如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2交于A ,B 两点,且A(1,0),抛物线的对称轴是x =-32.(1)求k 和a ,b 的值;(2)求不等式kx +1>ax 2+bx -2的解集.23.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求∠BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.24.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线的一部分,如图。
二次函数的图象1、二次函数的性质2、二次函数解析式的几种形式:①一般式:2y ax bx c(a、b、c 为常数,a≠0)②顶点式:2y a(x h)k(a、h、k 为常数,a≠ 0),其中(h,k)为顶点坐标。
③交点式:y a(x x1)(x x2),其中x1 ,x2是抛物线与x 轴交点的横坐标,即一2元二次方程ax2 bx c 0 的两个根,且a≠ 0,(也叫两根式)3 、求抛物线的顶点、对称轴和最值的方法22①配方法:将解析式y ax bx c化为y a(x h) k 的形式,顶点坐标为(h,k),对称轴为直线x h,若a>0,y有最小值,当x=h时,y最小值k;若a<0,y有最大值,当x=h时,y最大值k。
b ,4ac b2 ②公式法:直接利用顶点坐标公式(2a 4a ),求其顶点;对称轴是直线x ba 0,y有最小值,当x b时,y 最小值4ac b;2a ,若2a 4a 若a 0 ,y 有b 4ac b2x 时,y 最大值最大值,当2a 4a4、抛物线与x 轴交点情况:2对于抛物线y ax bx c (a≠ 0)2①当b2 4ac 0时,抛物线与x 轴有两个交点,反之也成立。
2②当b2 4ac 0时,抛物线与x 轴有一个交点,反之也成立,此交点即为顶点。
2③当b2 4ac 0 时,抛物线与x 轴无交点,反之也成立。
x5、求根公式:b b 4ac2ax赠送以下资料二次函数的应用》中考题集锦10 题已知抛物线y x2mx 2m2(m 0).(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m,n ,使得AP 2PB ?若存在,则求出m,n 满足的条件;若不存在,请说明理由.答案:解:(1)证法1:y x 2mx 2m2x m 9m2 ,249 当m 0 时,抛物线顶点的纵坐标为m2 0 ,4 顶点总在x 轴的下方.而该抛物线的开口向上,该抛物线与x 轴有两个不同的交点.或者,当m 0 时,抛物线与y 轴的交点(0,2m2)在x轴下方,而该抛物线的开口向上,该抛物线与x 轴有两个不同的交点.)证法 2 :2 2 2m24 1 ( 2m2) 9m2,2当m 0 时,9m20 ,该抛物线与x 轴有两个不同的交点.(2)存在实数m,n ,使得AP 2PB.设点B的坐标为(t,n),由AP 2PB知,①当点B 在点P的右边时,t 0,点A的坐标为( 2t,n),且t,2t 是关于x 的方程x2mx 2m2n 的两个实数根.2 2 2 92m24( 2m2n) 9m24n 0 ,即n m2.4 且t ( 2t) m(I),t (2)t m n2(II )由(I )得,t m,即m 0 .将t m代入(II )得,n 0 .当m 0且n 0时,有AP 2PB.②当点B 在点P 的左边时,t 0,点A的坐标为(2t,n),且t,2t 是关于x 的方程x2mx 2m2n 的两个实数根.m24( 2m2n) 9m24n 0 ,即n 9m2.4且t 2t m(I),t 2t 2m2n(II )由(I )得,t ,即m 0.3m 20 2 9 2将t 代入(II )得,n m2且满足n m2.3 9 4当m 0且n 20 m2时,有AP 2PB9第11 题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为S 10t t2,若滑到坡底的时间为 2 秒,则此人下滑的高度为()A.24 米B.12 米C.12 3米D.6 米答案:B第12 题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的 3 月25 日起的180 天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(1)直接写出图( 1)中表示的市场销售单价 y (元)与上市时间 t (天)( t 0)的函数 关系式;(2)求出图( 2)中表示的种植成本单价 z (元)与上市时间 t (天)(t 0 )的函数关系 式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最 大?(说明: 市场销售单价和种植成本单价的单位:元/ 500 克.) 答案:解:( 1)依题意,可建立的函数关系式为:2t 160 (0 t 120), 3y 80 (120≤ t 150),2t 20 (150 ≤ t ≤ 180).2)由题目已知条件可设 z a (t 110)2 20 .85图象过点 (60,85) ,3化简得85 2a(60 110)2 12 z (t 110)2 300(3)设纯收益单价为 20. a 3100 20 (t 0) .W 元,则 W =销售单价 成本单价.1(t 110)2 20 (0 t 120), 300故 W 80 2t 160 3 12 (t 110)2 20 (120≤ t 150),3002 1 2t 20 (t 110)2 20 (150≤ t ≤ 180). 5 3002(t 110)2 60 (120≤ t 150), (t 170)2 56 (150≤ t ≤ 180). 12①当 W (t 10)2 100(0 t 120)时,有 t 10时, W 最大,最大值为 100; 30012②当W (t 110)2 60(120≤ t 150)时,由图象知,有 t 120时, W 最大,最2 大值为 59 ;3 12③当 W (t 170)2 56(150≤ t ≤ 180)时,有 t 170时, W 最大,最大值为 56. 300 综上所述,在 t 10时,纯收益单价有最大值,最大值为 100 元.第13题如图,足球场上守门员在 O 处开出一高球, 球从离地面 1米的 A 处飞出( A 在 y轴 上),运动员乙在距 O 点 6 米的 B 处发现球在自己头的正上方达到最高点 M ,距地面约4 米高,球落地后又一次弹起. 据实验, 足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点 C 距守门员多少米?(取 4 3 7 )(3)运动员乙要抢到第二个落点 D ,他应再向前跑多少米?(取 2 6 5)1213002 (t 10)2100 (0 t 120),1 3001300抛物线的表达式为 由已知:当 x 0 时 y 1.即 1 36a 4, a 112y a( x 6)2 4. 答案:解:( 1)(表达式为y (x 6)2 4.1212(或y x2 x 1 )1212(2)(3 分)令y 0,(x 6)2 4 0.12( x 6) 48.x1 4 3 6 ≈13,x2 4 3 6 0 (舍去).足球第一次落地距守门员约13 米.(3)(4 分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF (即相当于将抛物线AEMFC 向下平移了 2 个单位)2 1(x 6)2 4 解得x1 6 2 6,x2 6 2 6.CD x1 x2 4 6 ≈10.BD 13 6 10 17 (米).12解法二:令(x 6)2 4 0.12解得x1 6 4 3(舍),x2 6 4 3≈13.点C 坐标为(13,0).设抛物线CND 为y 1(x k)2 2.1212将C 点坐标代入得:(13 k)2 2 0.12解得:k1 13 2 6 13 (舍去),k2 6 4 3 2 6 ≈6 7 5 18.12y (x 18)2 2 1212令y 0,0 (x 18)2 2.12x1 18 2 6 (舍去),x2 18 2 6≈23.BD 23 6 17 (米).解法三:由解法二知,k 18,所以CD 2(18 13) 10,所以BD (13 6) 10 17.答:他应再向前跑17 米.第14 题荆州市“建设社会主义新农村” 工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费 2.7 万元;购置滴 灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为 0.9 ;另外每公 顷种植蔬菜需种子、化肥、农药等开支 0.3万元.每公顷蔬菜年均可卖 7.5 万元.(1)基地的菜农共修建大棚 x (公顷),当年收益(扣除修建和种植成本后)为 y (万元), 写出 y 关于 x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得 5 万元收益,工作组应建议他修建多少公项 大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施 3 年内不需增加投资仍可继续使 用.如果按 3 年计算, 是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收 益?请帮工作组为基地修建大棚提一项合理化建议.答案:( 1) y 7.5x 2.7x 0.9x 2 0.3x0.9x 2 4.5x .222)当 0.9x 2 4.5x 5 时,即 9x 2 45x 50 0 ,5从投入、占地与当年收益三方面权衡,应建议修建 公顷大棚. 3(3)设 3 年内每年的平均收益为 Z (万元)2 2 2Z 7.5x 0.9x 0.3x 2 0.3x 0.3x 2 6.3x 0.3 x 10.5 33.075(10 分)不是面积越大收益越大.当大棚面积为 10.5公顷时可以得到最大收益.建议:①在大棚面积不超过 10.5 公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过 10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.2③当 0.3x 2 6.3x 0时, x 1 0, x 2 21.大棚面积超过 21公顷时,不但不能收益, 反而会亏本. (说其中一条即可)第 15 题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为 18 元,按定价40 元出售,每月可销售 20万件.为了增加销量,公司决定采取降价的办法,经市场调研, 每降价 1元,月销售量可增加 2 万件.(1)求出月销售量 y (万件)与销售单价 x (元)之间的函数关系式(不必写 x 的取值范围);(2)求出月销售利润 z (万元)(利润=售价-成本价)与销售单价 x (元)之间的函数关 系式(不必写 x 的取值范围) ;(3)请你通过( 2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月 销售利润不低于 480 万元.答案:略.第 16 题一座隧道的截面由抛物线和长方形构成,长方形的长为 8m ,宽为 2m ,隧道最高点 P 位于 AB 的中央且距地面 6m ,建立如图所示的坐标系 (1)求抛物线的解析式;(2)一辆货车高 4m ,宽 2m ,能否从该隧道内通过,为什么?x1 3,10x2233)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点A 0,2 ,P 4,6 ,设抛物线的方程为y ax2bx c 将A,P,D 三点的坐标代入抛物线方程.12解得抛物线方程为y 1 x2 2 x 2412(2)令y 4 ,则有x2 2x 2 44解得x1 4 2 2,x2 4 2 2x2 x1 4 2 2货车可以通过.1(3 )由(2 )可知x2 x1 2 2 222 1货车可以通过.第17 题如图,在矩形ABCD中,AB 2AD ,线段EF 10.在EF 上取一点M,分别以EM,MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN x,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?H N G E M F答案:解:矩形MFGN ∽矩形ABCD,MN MF.AD AB .AB 2AD,MN x ,MF 2x .EM EF MF 10 2x .S x(10 2 x)52252 x .22B 8,22x 2 10 x当x 25时,S有最大值为225.第18 题某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,则所获利润y A (万元)与投资金额x (万元)之间存在正比例函数关系:y A kx ,并且当投资 5 万元时,可获利润2万元.信息二:如果单独投资B种产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系:y B ax2bx ,并且当投资 2 万元时,可获利润 2.4 万元;当投资 4 万元时,可获利润 3.2 万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A,B两种产品共投资10 万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当x 5时,y1 2,2 5k,k 0.4 ,y A 0.4x ,当x 2时,y B 2.4 ;当x 4时,y B 3.2.2.4 4a 2b3.2 16a 4b解得a 0.2 b 1.62y B 0.2x 1.6x .(2)设投资B种商品x万元,则投资A种商品(10 x)万元,获得利润W 万元,根据题意可得W 0.2x21.6x 0.4(10 x) 0.2x21.2x 4W 0.2( x 3)25.8当投资B种商品3万元时,可以获得最大利润 5.8 万元,所以投资A种商品7万元,B种商品 3 万元,这样投资可以获得最大利润 5.8 万元.第19 题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3 50m , 5 根支柱A1B1,A2B2,A3B3,A4B4,A5B5 之间的距离均为15m,B1B5 ∥ A1A5 ,将抛物线放在图(2)所示的直角坐标系中.(1)直接写出图(2)中点B1,B3,B5 的坐标;2)求图(2)中抛物线的函数表达式;3)求图(1)中支柱A2B2,A4B4 的长度.答案:(1)B1( 30,0),B3(0,30),B5(30,0);2)设抛物线的表达式为y a(x 30)(x 30),把B3 (0,30) 代入得y a(0 30)(0 30) 30.1∴ a .301 ∵所求抛物线的表达式为:y (x 30)(x 30) .30( 3)∵ B4 点的横坐标为15,1 45∴ B4 的纵坐标y4 (15 30)(15 30) .4 4 30 2∵ A3B3 50 ,拱高为30,∴立柱A4B4 2045 854 42 2由对称性知:A2B2 A4B4 825(m) 。
第03讲 二次函数的图像与性质——一般式知识点01 二次函数的三种形式1. 二次函数的三种形式: (1)一般式:有定义可知,二次函数的一般式为 。
(2)顶点式:能直接看出二次函数的顶点的函数解析式叫二次函数的顶点式。
即。
由顶点式可知二次函数的顶点坐标为 。
(3)两点式(交点式):能直接得到二次函数与x 轴的交点坐标的二次函数解析式是二次函数的两点式,又叫做二次函数的交点式。
即 。
此时二次函数与x 轴的两个交点坐标分别为 与 。
二次函数的对称轴为 。
(4)二次函数的一般式转化为顶点式:利用配方法将一般形式转化为顶点式:过程如下: c bx ax y ++=2a b ac a b x a ca b a b x a c a ba b x a b x a cx a b x a 44242442222222222-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛-++=+⎪⎭⎫ ⎝⎛+=题型考点:①二次函数的形式转换。
【即学即练1】1.将二次函数y =x 2﹣2x ﹣1化成y =a (x ﹣h )2+k 的形式,正确的是( ) A .y =(x ﹣2)2+2 B .y =(x ﹣1)2﹣2 C .y =(x +1)2+2D .y =(x ﹣1)2+4【即学即练2】2.将二次函数y =x 2﹣4x +7化为y =(x ﹣a )2+b 的形式,那么a +b 的值为 .【即学即练3】3. 把抛物线y =(x ﹣1)2+1化成一般式是 .【即学即练4】4.把y =(2﹣3x )(6+x )变成y =ax 2+bx +c 的形式,二次项 ,一次项系数为 ,常数项为 .【即学即练5】5.对于二次函数y =4(x +1)(x ﹣3)下列说法正确的是( ) A .图象开口向下B .与x 轴交点坐标是(1,0)和(﹣3,0)C .x <1时,y 随x 的增大而减小D .图象的对称轴是直线x =﹣1知识点02 二次函数的图像与性质(一般式)1.二次函数的一般式的图像与性质:把二次函数的一般式化成顶点式可知一般式的性质如下:题型考点:①二次函数的性质。
二次函数图像与性质完整归纳二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2.2y ax c=+的性质:上加下减。
a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()00,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a的符号 开口方向 顶点坐标对称轴性质3.()2y a x h =-的性质:左加右减。
a > 向上()0c ,y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()0h ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.a < 向下()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.4.()2y a x h k=-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:a的符号 开口方向 顶点坐标对称轴性质 0a > 向上()h k ,X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .a < 向下()h k ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴cbx axy ++=2沿y 轴平移:向上(下)平移m 个单位,cbx ax y ++=2变成mc bx ax y +++=2(或mc bx axy -++=2) ⑵cbx axy ++=2沿轴平移:向左(右)平移m 个单位,cbx ax y ++=2变成cm x b m x a y ++++=)()(2(或cm x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y axbx c=++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y axbx c=++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a->,即抛物线的对称轴在y 轴右侧;当0b =时,02b a -=,即抛物线的对称轴就是y轴;当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴a b x 2-=在y 轴左边则>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=++关于x轴对称后,得到的解析式是y ax bx c2=---;y ax bx c()2y a x h k=-+关于x轴对称后,得到的解析式是()2=---;y a x h k2. 关于y轴对称2=++关于y轴对称后,得到的解析式是y ax bx c2y ax bx c=-+;()2=-+关于y轴对称后,得到的解析式是y a x h k()2=++;y a x h k3. 关于原点对称2=++关于原点对称后,得到的解析式是y ax bx c2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by axbx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:x …-7 -6-5-4-3-2 -1…y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x +2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2y (2)50 23--2 23- 0 25…【例2】求作函数342+--=x xy 的图象。
数 学 试 题说明:1.本试题分为Ⅰ卷和Ⅱ卷两部分.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.考试时间为120分钟,满分150分.2.答题前将密封线内的项目填写清楚.3.考试过程中允许考生进行剪、拼、折叠等实验.第Ⅰ卷注意事项:请考生将自己的姓名、准考证号、考试科目涂写在答题卡上.选择题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,不能答在本试题上.如要改动,必须先用橡皮擦干净,再选涂另一个答案.一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006 B .2007 C .2008 D .2009 5.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为1-点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A.2-B.1-左视图俯视图(第5题图)(第6题图)标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)C.2- D.17.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( )A .2x <-B .21x -<<-C .20x -<<D .10x -<< 9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种10.如图,等边ABC △的边长为3,P 为BC 上一点, 且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32 B .23 C .12 D .34 11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( ) 12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( ) A .73cm B .74cmD .76cm第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .14.设0ab >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .①②(第12题图)A DC PB (第10题图) 60°16.如果不等式组2223xax b⎧+⎪⎨⎪-<⎩≥的解集是01x<≤,那么a b+的值为.17.观察下表,回答问题:第个图形中“△”的个数是“○”的个数的5倍.ABC△与AEF△中,18.如图,AB AE BC EF B E AB==∠=∠,,,EF于D.给出下列结论:交①AFC C∠=∠;②DF CF=;③ADE FDB△∽△;④BFD CAF∠=∠.其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)2)20.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).(1(27(3(4(522.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1173.=).23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数AEDB F C(第18题图)27(第21题图)DCA表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠. 25.(本题满分14分) 如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且22CD ==,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE . (1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG ..求证:CD 垂直平分EG . (3)延长BE 交CD 于点P . 求证:P 是CD 的中点. 26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C ,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由; (4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).13.1414. 15.17 16.1 17.20 18.①,③,④ 三、解答题(本题共8个小题,满分78分) 19.(本题满分6分)(第24题图) A D G EC B (第25题图)2)++(11|1=+++. ···························································· 2分111=-+. ································································ 4分1= ··································································································· 6分20.(本题满分8分)解:(1)12··································································································· 1分(2)13········································································································ 3分(3)根据题意,画树状图:············································································· 6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==. ···································································· 8分或根据题意,画表格: ···················································································· 6分由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)41164==. ············································································· 8分21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a=-++++=.···································· 1分初一学生总数:2010%200÷=(人).····························································· 2分(2)活动时间为5天的学生数:20025%50⨯=(人).活动时间为7天的学生数:2005%10⨯=(人). ··············································· 3分频数分布直方图(如图)··················· 4分(3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ·························· 5分(4)众数是4天,中位数是4天.···································································· 7分(5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································ 8分22.(本题满分8分)解:过点C作CE AB⊥于E.906030903060D ACD∠=-︒=∠=-=°°,°°°,DA90CAD ∴∠=°.11052CD AC CD =∴==,. ·························· 3分在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==°, ················ 4分5cos 5cos3032CE AC ACE =∠==° ············· 5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ··············································· (6)分551) 6.822AB AE BE ∴=+=≈(米).所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分)解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ·········································································· 2分 (2)由题意,得22243200480025x x -++=. 整理,得2300200000x x -+=. ···································································· 4分 解这个方程,得12100200x x ==,. ······························································· 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ··························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ·········································································· 8分 150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. ········· 10分24.(本题满分10分)(1)证明:连接OC , HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ··········· 2分 12OB OC =∴∠=∠,, ······································ 3分 3HGC ∠=∠,2390∴∠+∠=°. ······················ 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径,(第24题图)∴BD BE =. ······························································································ 6分 BED BME ∴∠=∠. ····················································································· 7分四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ··········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ····························· 9分 HMD MHE MEH ∴∠=∠+∠. ····································································· 10分25.(本题满分14分) 证明:(1)延长DE 交BC 于F . AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ···························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································ 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠.由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················· 6分由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ···································· 8分C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ····································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠. AB DE ∥.32∴∠=∠.13∴∠=∠. ························································ 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ····························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ········································ 13分12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································· 14分28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,·············· 2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········ 3分 (2)存在.在223y x x =--中,令0x =,得3y =-. 令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.A DG E C B (第25题图)FP(第26题图)又2(1)4y x =--,∴顶点(14)M -,. ······························································ 5分 容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2AN ∴=. ··············································································· 6分 在223y x x =--中,令3y =-,得1202x x ==,.2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ···························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,. OD OB ∴=,45OBD ∴∠=°. ······································································ 9分又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ············································ 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ···································· 11分 90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ····························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ························ 14分。
二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。
二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。
3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。
顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。
三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。
2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。
3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。
4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。
四、应用二次函数在几何、物理、经济等领域有着广泛的应用。
例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。
结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。
希望本文的介绍能帮助读者更好地掌握二次函数的知识。
铜川市同官高级中学 2013--2014学年度第一学期 数学科必修一导学案 编号11 班级:高一( )班 小组: 姓名: 学生编号: 组内评价: 教师评价:
点 化 · 润 泽 每 一 个 生 命
课题:二次函数的图像
编制人:田孝奇 审核人:徐海军 领导签字:马生科
【学习目标】1:(1)掌握二次函数的图像规律,明确a,h,k 对二次函数的图像的影响;
(2)能将二次函数的图像与解析式进行转换。
2:让学生体会解剖式研究问题的方式,体会线由点定;体会从特殊到一般的认知规律 3: 培养学生的观察能力、分析问题的能力及探索精神,增强自主学习的信心,享受成
功的乐趣
重 点:二次函数的图像,求二次函数的解析式。
难 点:二次函数图像及其应用。
【课前预习】
1、思考:(1)在同一直角坐标系中画出函数222,2,2y x y x y x ===-的图象,思考如何将函数2
y x =的图象变换为函数()2
0y ax
a =≠的图象;
(2)在同一直角坐标系中画出函数()()2
2
2
2,211,211y x y x y x ==++=--的图象,思考如何将函数()
2
0y ax
a =≠的图象变换为函数()()2
0y a x h k a =++≠的图象;(3)如何将)
0(2
≠++=a c bx ax y 化为()()2
0y a x h k a =++≠(4)在)0()(2
≠++=a k h x a y 中a,h,k 如何影响二次函
数的图像。
2、预习新知:
(1)二次函数)0(2≠=a ax y 的图像可由2
x y =的图像各点的纵坐标变为原来的a 倍得到,且a 决定了二次函数图像开口的方向和在同一直角坐标系中的开口大小。
(2)一般的,二次函数)0()(2
≠++=a k h x a y ,a 决定了二次函数图像开口的方向,h 决定了二次函数图像的左右平移,而且“h 正_________,h 负__________”,k 决定了二次函数图像的上下平移,而且“k 为正_______,k 为负________”;
(3)一般的,二次函数)0(2
≠++=a c bx ax y ,通过配方可以得到它的恒等形式
a
b a
c a b x a y 44)2(2
2-++=()0a ≠,
其图像可以由)0(2≠=a ax y 的图像经过平移得到,图像的定点坐标为)44,2(2
a b ac a b --
,对称抽为a
b x 2-=; (4)一般的,抛物线k h x a y ++=2)(与)0(2≠=a ax y 的形状相同,只是位置不同。
3、基础自测:课本14页练习题1、2、3.
【课内探究】
例1.(1)如何将函数2y x =的图象变换为函数2
2
1x y =的图象; (2)如何将函数2
2
1x y =
的图象变换为函数22y x =的图象;
例2.由2
2x y =的图像经过变化得到函数1422
++=x x y 的图像,该如何变换?
例3.若二次函数)(x f 的图像经过)0,0(点,且1)()1(++=+x x f x f ,求)(x f 的解析式。
【当堂检测】
1、课本47页习题A 1(2)、2(2)、3(4).4(2)。