22.1.2 二次函数y=ax2的图象和性质(一)
- 格式:pptx
- 大小:392.64 KB
- 文档页数:7
二次函数y=ax2的图像和性质教案篇一:22.1.2二次函数y=ax2图像与性质教案2123篇二:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,。
教 学 内 容一、探索新知:画二次函数y =x 2的图象. 列表:x … -3 -2 -1 0 1 2 3y =x 2…描点,并连线由图象可得二次函数y =x 2的性质:1.二次函数y =x 2是一条曲线,把这条曲线叫做______________. 2.二次函数y =x 2中,二次函数a =_______,抛物线y =x 2的图象开口______. 3.自变量x 的取值X 围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y 值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y =x 2与它的对称轴的交点( , )叫做抛物线y =x 2的______. 因此,抛物线与对称轴的交点叫做抛物线的_____________. 6.抛物线y =x 2有____________点(填“最高”或“最低”) . 二、例题分析例1 在同一直角坐标系中,画出函数y =12x 2,y =x 2,y =2x 2的图象.解:列表并填:x…-4 -3 -2 -112341.填表:开口方向顶点 对称轴有最高或最低点最值y =23 x 2当x =____时,y 有最_______值,是_y =-8x 22.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图,① y =ax 2② y =bx 2③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接.___________________________________七、目标检测1.函数y =37x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 X 围为___________.4.写出一个过点(1,2)的函数表达式_________________. 六、教学效果追忆:。
人教版2021年九年级上册:22.1.2:二次函数y=ax2的图像和性质课时练习一.选择题1.抛物线y=4x2与y=﹣2x2的图象,开口较大的是()A.y=﹣2x2B.y=4x2C.同样大D.无法确定2.在同一平面直角坐标系中,二次函数y=3x2,y=﹣3x2,y=﹣x2图象的共同点是()A.都关于x轴对称,抛物线开口向上B.都关于y轴对称,抛物线开口向下C.都关于y轴对称,顶点都是原点D.都关于原点对称,顶点都是原点3.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.4.在同一直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是()A.B.C.D.5.两个二次函数的图象如图所示,其中一个是y=x2,另一个是y=ax2,则a可能的取值为()A.1B.C.D.﹣6.已知函数y1=x2与函数y2=的图象大致如图.若y1<y2,则自变量x的取值范围是()A.<x<2B.x>2或x<C.﹣2<x<D.x<﹣2或x>二.填空题7.二次函数y=x2的图象开口方向是(填“向上”或“向下”).8.抛物线的对称轴为.9.已知抛物线的解析式为y=﹣2x2+1,则抛物线的顶点坐标为.10.抛物线y=﹣2x2沿着x轴正方向看,在y轴的左侧部分是.(填“上升”或“下降”)11.已知两个二次函数的图象如图所示,那么a1a2(填“>”、“=”或“<”).12.若函数y=﹣x2+9的函数值y>0,则自变量x的取值范围是.13.若函数y=3x2与直线y=kx+3的交点为(2,b),则k=,b=.14.二次函数y=x2的函数图象如图,点A0位于坐标原点,点A1,A2,A3…A10在y轴的正半轴上,点B1,B2,B3…B10在二次函数y=x2位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3…△A9B10A10都为等边三角形,则△A9B10A10的边长为.三.解答题15.在同一平面直角坐标系中,画出下列函数的图象.(1)y=2x2;(2)y=x2.16.不画图象,说出抛物线y=﹣x2的对称轴、顶点坐标、开口方向及最高(低)点坐标.17.已知二次函数y=ax2的图象经过点P(2,5),试确定它的开口方向和a的值.18.已知函数y=(m﹣3)是关于x的二次函数.(1)求满足条件的m的值;(2)当m为何值时,它的图象有最低点?此时当x为何值时,y随x的增大而增大?(3)当m为何值时,它的图象有最高点?此时当x为何值时,y随x的增大而减小?参考答案一.选择题1.解:抛物线y=4x2与y=﹣2x2的图象中|4|=4,|﹣2|=2,∵4>2,∴抛物线y=4x2的开口小于y=﹣2x2的开口,故选:A.2.解:A、都关于y轴对称,但开口方向有的向下,故错误;B、都关于y轴对称,但开口方向有的向上,故错误;C、都关于y轴对称,顶点都是原点,故正确;D、都关于y轴对称,故错误,故选:C.3.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.4.解:由y=x2+k可知抛物线的开口向上,故B不合题意;∵二次函数y=x2+k与y轴交于负半轴,则k<0,∴﹣k>0,∴一次函数y=﹣kx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.5.解:由图象知,二次函数y=ax2图象的开口向上,且小于二次函数y=x2的图象的开口,∴a>,故选:A.6.解:由y1=y2,即x2=,解得:x1=﹣2,x2=.由图象可知,若y1<y2,则自变量x的取值范围是﹣2<x<.故选:C.二.填空题7.解:由y=x2得:a>0,∴二次函数图象开口向上.故答案为:向上.8.解:∵a=,b=0,∴x=﹣=0,故答案为直线x=0或y轴.9.解:∵抛物线的解析式为y=﹣2x2+1,∴该抛物线的顶点坐标为(0,1),故答案为:(0,1).10.解:∵抛物线y=﹣2x2的开口向下,对称轴为y轴,∴在对称轴左侧y随x的增大而增大,∴抛物线y=﹣2x2在y轴左侧的部分是上升的,故答案为:上升.11.解:如图所示y=a1x2的开口大于y=a2x2的开口,开口向下,则a2<a1<0,故答案为:>.12.解:如图,∵函数y=﹣x2+9的函数值y>0,∴﹣x2+9>0,解得﹣3<x<3,故答案为﹣3<x<3.13.解:根据题意,把(2,b)代入y=3x2中,得b=12;再把交点(2,12)代入y=kx+3中,得k=4.5.14.解:∵△A0B1A1是等边三角形,∴∠A1A0B1=60°,∴A0B1的解析式为y=x,联立,解得,(为原点,舍去),∴点B1(,),∴等边△A0B1A1的边长为×2=1,同理,A1B2的解析式为y =x+1,联立,解得,(在第二象限,舍去),∴B2(,2),∴等边△A1B2A2的边长A1A2=2×(2﹣1)=2,同理可求出B3(,),所以,等边△A2B3A3的边长A2A3=2×(﹣1﹣2)=3,…,以此类推,系列等边三角形的边长为从1开始的连续自然数,△A9B10A10的边长A9A10=10.故答案为:10.三.解答题15.解:列表得:﹣2﹣101282028 y=2x2y =x2202描点、连线可得图象为:16.解:抛物线y=﹣x2的对称轴为y轴,顶点坐标为(0,0),开口方向下,最高点坐标(0,0);17.解:∵二次函数y=ax2的图象经过点P(2,5),∴4a=5,解得a=,∴开口方向向上.18.解:(1)根据题意得m﹣3≠0且m2﹣2m﹣6=2,解得m1=﹣2,m2=4.所以满足条件的m的值为﹣2或4;(2)∵当m﹣3>0时,图象有最低点,∴m=4,此时二次函数的解析式为y=x2,∴当x>0时,y随x的增大而增大;(3))∵当m﹣3<0时,图象有最高点,∴m=﹣2,此时二次函数的解析式为y=﹣5x2,∴当x>0时,y随x的增大而减小.。