第五章单元检测
- 格式:doc
- 大小:191.00 KB
- 文档页数:2
七年级数学(下)第五章《相交线与平行线》单元检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,A为垂足,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.(2013•安徽)如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°第3题图第4题图4.(2013•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°5.(2013•孝感)如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第5题图第6题图7.如图,点在的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第7题图第8题图8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个9. 下列条件中能得到平行线的是()①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.A.①②B.②③C.②D.③10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.(2013•镇江)如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= °.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.(2013•江西)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2= 度.三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图第22题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED ∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图第24题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.参考答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段的长度(垂线段最短),所以点P到直线l的距离等于4 cm,故选B.3. C 解析:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°.∵AB∥CD,∴∠C=∠EOB=75°,故选C.4. A 解析:∵CD∥AB,∴∠ABC+∠DCB=180°.∵∠BCD=70°,∴∠ABC=180°-70°=110°.∵BD平分∠ABC,∴∠ABD=55°.5. C 解析:如题图所示,∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=40°,∴∠5=40°,∴∠4=180°-∠5=180°-40°=140°,故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD (内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11. 144°解析:由题图得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 50 解析:∵∠BAC=80°,∴∠EAC=100°.∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°.∵AD∥BC,∴∠B=∠EAD=50°.故答案为50.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与直线a相交于点D,∵a∥b,∴∠ADC=∠DBE=50°. ∴∠ACB=∠ADC +28°=50°+28°=78°. 故应填78°.18. 120 解析:∵AB ∥CD ,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°. 理由:∵ PQ ∥CD,∴ ∠DCB+∠PQC=180°.∵ ∠DCB=120°,∴ ∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621 ×5×621 ×2×521 ×4×221 ×1.5×121×21 ×11=16. (2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP+∠APD = 180°,∴ AB ∥CD.∴ ∠BAP =∠APC.又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF.∴ AE ∥FP.∴ ∠E =∠F.22.证明:∵ ∠3 =∠4,∴ AC ∥BD.∴ ∠6+∠2+∠3 = 180°.∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°.∴ ED ∥FB.23. 解:∵ DE ∥BC ,∠AED=80°,∴ ∠EDC=∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°. 24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21 ∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.。
第五章 单元检测题一、选择题1、下列关于透镜的说法中,正确的是( )A 凸透镜只对平行光有会聚作用 B.凸透镜两个焦点之间的距离叫做焦距 C.平行光经过凸透镜折射后一定会聚于一点 D 凸透镜任何光束都有会聚作用 2.一束光在空气中经凸透镜折射后,下列说法中正确的是( )A .一定是平行光束B .一定是会聚光束C .折射光束比原光束会聚一些D .一定是发散光束3.光学器件在我们的生活、学习中有着广泛的应用。
下面的介绍有一项不切实际,它是( )A .近视眼镜利用了凹透镜对光线的发散作用B .照相时,被照者与相机的距离是在镜头的二倍焦距之外C .借助放大镜看地图时,地图到放大镜的距离应略大于一倍焦距D .阳光通过凸透镜可以点燃纸屑,这利用了凸透镜对光的会聚作用4.下图是“探究凸透镜成像的规律”实验装置示意图,凸透镜的焦距是20cm ,如图的情景,眼睛可能观察到烛焰经凸透镜折射所成的虚像.5.如右图所示是利用航空摄影拍摄到的铜仁市碧江区一角,如果拍摄时所用照像机的镜头焦距是50mm,则胶片到镜头的距离应( )A .大于100mmB .大于50mm 小于100mmC .小于50mmD .等于50mm6.小明同学在“探究凸透镜成像的规律”实验时,烛焰在光屏上成了一个清晰的像,如图所示。
下面给出的生活中常用物品工作时原理与此现象相同的是( )A.投影仪B.照相机C.放大镜D.近视镜7.在探究凸透镜成像规律的实验中,当烛焰、凸透镜、光屏位于如图所示的位置时,烛焰在光屏上呈现一个清晰放大的像。
要使烛焰在光屏上呈现一个清晰缩小的像,调节的方法是A.透镜不动,蜡烛远离透镜移动,光屏靠近透镜移动B.透镜不动,蜡烛远离透镜移动,光屏远离透镜移动C.透镜不动,蜡烛靠近透镜移动,光屏远离透镜移动D.透镜不动,蜡烛靠近透镜移动,光屏靠近透镜移动 8.(2012浙江绍兴)图中人手持的是一枚( )A .凹透镜,可以矫正近视B .凹透镜,可以矫正远视C .凸透镜,可以矫正近视D .凸透镜,可以矫正远视9.如图所示,画出了光通过透镜前后的方向,在图中O处应填的适当类型的透镜是( )A. 凸透镜B.凹透镜C.凸、凹透镜都有可能D.凸、凹透镜都不行10.如果在屏幕上想看到一个正常的“F ”投影片放置的情况应是( )11.(2012河北)透镜在我们的生活、学习中应用广泛。
第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
浙教版2022年八年级上册第5章《一次函数》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.在圆的面积公式S=πr2中,变量是()A.S,πB.S,r C.π,r D.只有r2.如图图象中,表示y是x的函数的是()A.B.C.D.3.下列y关于x的函数中,一次函数为()A.y=(a﹣2)x+b B.y=(1+k2)x+1C.D.y=2x2+14.小亮用100元钱去买单价是5元的笔记本,则他剩余的钱y(元)与他买这种笔记本的本数x之间的表达式是()A.y=5x B.y=100﹣5x C.y=5x﹣100D.y=5x+1005.若正比例函数y=kx的图象经过点(﹣2,2),则k的值是()A.﹣1B.1C.﹣4D.46.下列函数其图象经过一、二、四象限的是()A.y=﹣2x+1B.y=3x+5C.y=﹣x﹣3D.y=4x﹣37.在平面直角坐标系中,一次函数y=2x﹣1和y=x+1图象交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)8.周日,东东从家步行到图书馆查阅资料,查完资料后,东东立刻按原路回家.已知回家时的速度是去时速度的1.5倍,在整个过程中,东东离家的距离s(单位:m)与他所用的时间t(单位:min)之间的关系如图所示,则东东在图书馆查阅资料的时间为()A.55min B.40min C.30min D.25min9.点P1(x1,y1),点P2(x2,y2)是一次函数y=kx+b(k<0)图象上两点,x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.若m<﹣2,则一次函数y=(m+1)x﹣m+1的图象可能是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.函数y=﹣2x中的常量是.12.若函数y=(m﹣2)x+|m|﹣2是正比例函数,则m=.13.某工厂剩余煤量y吨与烧煤天数x天满足函数关系y=90﹣6x,则工厂每天烧煤量是吨.14.在一次函数y=(m﹣3)x+6中,y随x的增大而增大,则m的取值范围是.15.将正比例函数y=﹣7x的图象向下平移3个单位长度,则平移后所得到的一次函数的解析式为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(﹣1,2),则当y1<y2时,x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.18.(8分)已知一次函数y=kx+5的图象经过点A(2,﹣1).(1)求k的值;(2)在平面直角坐标系中画出这个函数的图象.19.(9分)如图,在平面直角坐标系中,点B(2,0)、点C(6,0),点A(x,y)是直线y=2x上的一点,设△ABC的面积为S,求:(1)当点A在第一象限时,S与x的函数关系式;(2)当S=8时,求A点的坐标.20.(9分)如图,正方形ABCD的边长为8cm,动点P、Q同时从点A出发,以2cm/s的速度分别沿A→B→C,和A→D→C的路径向点C移动.设运动时间为,由点P、B、D、Q确定的图形的面积为scm2,求s与t(0≤t ≤8)之间的函数关系式.21.(10分)李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(千米)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等候的时间及直线BC的解析式;(3)上午11点时,离目的地还有多少千米?22.(10分)如图,已知直线y=﹣x+2与x轴,y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过C(1,0),且把△AOB分成两部分.(1)若直线y=kx+b也经过点B,试说明△BOC与△ABC的面积相等;(2)若△AOB被分成的两部分面积比为1:5,求k和b的值.23.(12分)如图1,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a,b满足(a+b)2+(a﹣4)2=0.(1)如图1,若C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P,求点P的坐标;(2)如图2,连接OH,求证:∠AHO=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子S△BDM﹣S△ADN的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.浙教版2022年八年级上册第5章《一次函数》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:根据常量和变量的定义得S、R是变量,π是常量.故选:B.2.【解答】解:A、B、C中对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x 的函数;D选项中对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数.故选:D.3.【解答】解:A.当a=0时,y=(a﹣2)x+b不是一次函数,故本选项不符合题意;B.y=(1+k2)x+1是一次函数,故本选项符合题意;C.等式的右边是分式,不是整式,不是一次函数,故本选项不符合题意;D.y=2x2+1是二次函数,不是一次函数,故本选项不符合题意;故选:B.4.【解答】解:∵小亮用100元钱去买单价是5元的笔记本,∴买这种笔记本的本数x花去的钱为:5x,∴剩余的钱为:100﹣5x,∴他剩余的钱(y元)与他买这种笔记本的本数x之间的函数关系式是:y=100﹣5x,故选:B.5.【解答】解:∵正比例函数y=kx的图象经过点(﹣2,2),∴2=﹣2k,解得:k=﹣1.故选:A.6.【解答】解:A选项,图象过第一、二、四象限,符合题意;B选项,图象过第一、二、三象限,不符合题意;C选项,图象过第二、三、四象限,不符合题意;D选项,图象过第一、三、四象限,不符合题意;故选:A.7.【解答】解:联立解得:,∴函数y=2x﹣1与y=x+1的图象的交点坐标为(2,3).故选:D.8.【解答】解:根据图象可知,东东从家步行到图书馆的速度为:=80(m/min),∵回家时的速度是去时速度的1.5倍,∴回家时的速度为:1.5×80=120(m/min),则回家所用的时间为:=10(m/min),∴东东在图书馆查阅资料的时间为:55﹣(15+10)=30(min),故选:C.9.【解答】解:∵一次函数y=kx+b(k<0),∴此函数中y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.10.【解答】解:∵m<﹣2,∴m+1<0,﹣m+1>0,∴一次函数y=(m+1)x﹣m+1的图象经过一二四象限.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:y=﹣2x中的常量是﹣2,故答案为:﹣2.12.【解答】解:由题意得:|m|﹣2=0且m﹣2≠0,∴m=±2且m≠2,∴m=﹣2,故答案为:﹣2.13.【解答】解:某工厂剩余煤量y吨与烧煤天数x天满足函数关系y=90﹣6x,则工厂每天烧煤量是6吨,故答案为:6.14.【解答】解:根据题意得:m﹣3>0,解得m>3.故答案为:m>3.15.【解答】解:将正比例函数y=﹣7x的图象向下平移3个单位长度,所得的函数解析式为y=﹣7x﹣3.故答案为:y=﹣7x﹣3.16.【解答】解:∵函数y1=﹣2x与y2=ax+3的图象相交于点A(﹣1,2),∴当y1<y2时,x的取值范围是x>﹣1.故答案为:x>﹣1.三.解答题(共7小题,满分66分)17.【解答】解(1)设y=kx(k≠0),把x=﹣1,y=3代入y=kx,得k=﹣3,所以y=﹣3x.(2)把x=2代入y=﹣3x,得y=﹣3×2=﹣6.18.【解答】解:(1)把点A(2,﹣1)代入一次函数y=kx+5,得﹣1=2k+5,解得k=﹣3.(2)当x=0时,y=5,可知直线与y轴交点为(0,5),作过B、C的直线可得如图所示直线,即为所求.19.【解答】解:(1)∵B(2,0)、C(6,0),∴BC=6﹣2=4,∵第一象限内的点A(x,y)是直线y=2x上一点,∴△P AO的面积为S=×4×2x=4x;(2)S=4x=8,解得x=2,∴y=2×2=4,∴A点的坐标(2,4).20.【解答】解:①0≤t≤4时,∵正方形的边长为8cm,∴y=S△ABD﹣S△APQ,=×8×8﹣•2t•2t,=﹣2t2+32,②4≤t≤8时,y=S△BCD﹣S△CPQ,=×8×8﹣•(16﹣2t)•(16﹣2t),=﹣2t2+32t﹣96.综上所述,S=.21.【解答】解:(1)由图象知,李老师从家到服务区时的速度为=60千米/小时,∴李老师出发半小时离家的距离为:60×0.5=30(千米),答:他们出发半小时时,离家30千米;(2)李老师一家从服务区B到C地所用时间为:(100﹣60)÷80=0.5(小时),∴李老师一家在服务区等了2﹣1﹣0.5=0.5(小时);设线段BC的函数表达式为y=kx+b,因为B(1.5,60),C(2,100)在BC上,∴,解得,∴直线BC的解析式为y=80x﹣60;(3)上午11点时,即x=3时,y=80×3﹣60=180,∴200﹣180=20(千米),答:上午11点时,离目的地还有20千米.22.【解答】解:(1)在y=﹣x+2中,令y=0,则﹣x+2=0,解得x=2,∴A(2,0),∴OA=2,∵C(1,0),∴OC=1,∴点C是线段OA的中点,∴△BOC与△ABC的面积相等;(2)∵S△AOB=×2×2=2,∵△AOB被分成的两部分面积比为1:5,那么直线y=kx+b(k≠0)与y轴或AB交点的纵坐标就应该是:2×2×=,①当y=kx+b(k≠0)与直线y=﹣x+2相交时,交点为D,如图(2)所示,当y=时,直线y=﹣x+2与y=kx+b(k≠0)的交点D的横坐标就应该是﹣x+2=,∴x=,即交点D的坐标为(,),又根据C点的坐标为(1,0),可得:∴,②当y=kx+b(k≠0)与y轴相交时,交点为E,如图(3)所示,∴交点E的坐标就应该是(0,),又有C点的坐标(1,0),可得:,∴,综上所述,k=2,b=﹣2或k=﹣,b=.23.【解答】解:(1)如图1,∵(a+b)2+(a﹣4)2=0.∴a+b=0,a﹣4=0,∴a=4,b=﹣4,则OA=OB=4.∵AH⊥BC即∠AHC=90°,∠COB=90°∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC.在△OAP与△OBC中,,∴△OAP≌△OBC(ASA),∴OP=OC=1,则P(0,﹣1);(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图2.在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠CHA=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于4.理由如下:连接OD,如图3.∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD,∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠MOD.∵MD⊥ND即∠MDN=90°,∴∠MDO=∠NDA=90°﹣∠MDA.在△ODM与△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,∴S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD=S△AOB=×AO•BO=××4×4=4.。
第五章曲线运动一、选择题:(每小题有1~2个选项正确,少选得3分,多选或错选不得分,每小题5分,共40分)1.关于质点做曲线运动,下列说法正确的是()A.曲线运动是一种变速运动B.变速运动一定是曲线运动C.质点做曲线运动,运动速度一定发生变化D.曲线运动一定不可能是匀变速2.如图5-8-3所示,汽车在—段丘陵地以恒定速率行驶时,所受支持力最大的地点可能是( )A.a点B.b点C.c点D.d点3.甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3:1,线速度之比2:3,那么下列说法中正确的是()A.它们的半径之比是2:9 B.它们的半径之比是1:2C.它们的周期之比是2:3 D.它们的周期之比是1:34.从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是()A.从飞机上看,物体静止B.从飞机上看,物体做自由落体运动C.从地面上看,物体做自由落体运动D.从地面上看,物体做平抛运动5.一轻杆一端固定一质量为m 的小球,以另一端O为圆心,使小球在竖直平面内做半径为R 的圆周运动,以下说法正确的是()A.小球过最高点时最小速度为gRB.小球过最高点时,杆所受的弹力可以为零C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反,也可以与球所受重力方向相同D.小球过最高点时,杆对球的作用力一定与小球所受重力方向相反6.如图在匀速转动的水平转盘上,有一个相对盘静止的物体,随盘一起转动,关于它的受力情况,下列说法中正确的是()A .只受到重力和盘面的支持力的作用B .只受到重力、支持力和静摩擦力的作用C .除受到重力和支持力外,还受到向心力的作用D .受到重力、支持力、静摩擦力和向心力的作用7.如图所示,在同一竖直平面内,小球a 、b 从高度不同的两点,分别以初速度V a 、V b 沿水平方向抛出,经过时间t a 和t b 后落到与抛出点水平距离相等的的P点,若不计空气阻力,下列关系式正确的是( )A .t a =t bB .t a >t bC .V a =V bD .V a <V b8.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开中向上,滑到最低点时速度大小为V ,若物体与球壳之间的动摩擦因数为u ,则物体在最低点时,下列说法正确的是( )A .受到向心力为R v m mg 2+B .受到向心力为Rv um 2C .受到的摩擦力为)(2Rv m mg u + D .受到的合力方向斜向左上方 二、实验题(每空4分,共28分)9.如图甲所示,竖直直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中以0.3m/s 的速度匀速上浮。
第五章相交线与平行线单元试卷检测(基础+提高,Word 版 含解析)一、选择题1.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450° 2.如图,AB CD ∥,154FGB ∠︒=,FG 平分EFD ∠,则AEF ∠的度数等于( ).A .26°B .52°C .54°D .77°3.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-4.已知AB CD ∥,点E F ,分别在直线AB CD ,上,点P 在AB CD ,之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则EPF ∠的度数为( )A .120︒B .135︒C .45︒或135︒D .60︒或120︒5.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个6.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°7.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定 8.下列命题中,属于真命题的是( ) A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b9.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°10.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm11.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm12.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .12二、填空题13.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________14.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.15.如图,已知AB ∥CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作∠ABE 和∠DCE 的平分线,交点为E 1,第二次操作,分别作∠ABE 1和∠DCE 1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…,第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n .若∠E n =1度,那∠BEC 等于________度16.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________17.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.18.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .19.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.20.如图,AB ∥CD ,∠β=130°,则∠α=_______°.三、解答题21.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P 点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).22.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.23.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .24.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.26.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.27.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由28.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG,中间有条分界小路(图中折线ABC),左边区域为王爷爷的,右边区域为李爷爷的。
七下《第5章相交线与平行线》单元检测卷(1)一、选择题(本大题10小题,每题4分,共40分)1.(4分)如图,能够证明a∥b的是()A.∠1=∠2B.∠4=∠5C.∠4=∠3D.∠1=∠52.(4分)将一个含30°角的直角三角板ABC如图所示放置,∠B=90°,点E为AC延长线上的点,若射线CD与直角边BC垂直,则∠DCE的度数是()A.10°B.20°C.30°D.50°3.(4分)直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm 4.(4分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.5.(4分)如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为()A.40°B.50°C.60°D.70°6.(4分)如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④7.(4分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°8.(4分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°9.(4分)如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC 沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC =DF;②ED⊥DF;③四边形ABFD的周长是16;④AD:EC=2:3.其中结论正确的个数有()A.1个B.2个C.3个D.4个10.(4分)如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°二、填空题(本大题10小题,每题3分,共30分)11.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:.12.(3分)如图,若∠1+∠2=220°,则∠3=.13.(3分)如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由;.14.(3分)如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB,CD的关系是,依据是.15.(3分)如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移格,再向上平移格.16.(3分)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MON=.17.(3分)如图,∠A与是内错角,∠B的同位角是,直线AB和CE被直线BC所截得到的同旁内角是.18.(3分)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=°.19.(3分)一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=度.20.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若AB∥CD,HG=18cm,MG=6cm,MC=3cm,则阴影部分的面积是cm2.三、解答题(本大题6小题,共80分)21.(12分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.22.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.23.(14分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.24.(14分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM 交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.25.(12分)如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠C2FE的度数;(2)若∠DEF=α,请你用含α的式子表示图③中∠C2FE的度数.26.(16分)如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC 的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.。
北师大版八年级上册数学第五章 二元一次方程组 单元测试题一.单选题 1.若2123a b a b x y -+--=是关于x 、y 的二元一次方程,则2023(2)ab -的值为( )A .2023B .2023-C .1D .1-2. 如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程是( ) A .1254x y += B .2()6x y -= C .29x y += D .3416x y -=3.用代入消元法解二元一次方程组235311x y y x -=⎧⎨=-⎩①②时,将②代入①中,正确的是( ) A .()23115x x --= B .23115x x --= C .233115x x -⨯-= D .()233115x x -⨯-=4. 下列哪对x ,y 的值是二元一次方程26x y +=的解( )A .22x y =-⎧⎨=-⎩B .02x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .31x y =⎧⎨=⎩ 5.在平面直角坐标系中,若点()1A a b -+,与点(),3B a b -关于y 轴对称,则点(),C a b -落在( )A .第一象限B .第二象限C .第三象限D .第四象限6.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( )A .10009928999x y x y +=⎧⎨+=⎩B .999971000114x y x y +=⎧⎪⎨+=⎪⎩C .100011499997x y x y +=⎧⎪⎨+=⎪⎩ D . 100097999114x y x y +=⎧⎪⎨+=⎪⎩ 7.函数y kx b =+的图象如图所示,根据图象信息可求得关于x 的方程0kx b +=的解为( )A .1x =B .2x =-C .0x =D .3x =8.若5210a b a b +++-+=,则()2023b a -的值是( )二.填空题15.在画一次函数y kx b=+的图象时,琪琪同学列表部分如下,其中x L2-1-1y L53▲-16.一次函数 31y x =-与y x b =+的图象的交点为()12P ,,则b = . 17. 将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为 .18.在坐标平面内,已知正比例函数2y x =与一次函数1y x =-的图象交于点A ,则点A 的坐标为 .三、解答题 19.解方程:(1) 34165633x y x y +=⎧⎨-=⎩; (2) 527x y x y +=⎧⎨+=⎩.20.已知关于x 、y 的方程组4210323x y x y +=⎧⎨-=-⎩和48ax by ax by +=-⎧⎨-=⎩有相同的解,求22a b ab +的值.21. 已知31a +的算术平方根是2,23a b -+的立方根是3-,求8b a -的平方根.22.已知A 、B 、C 的坐标分别为()1,5A -、3,62B ⎛⎫- ⎪⎝⎭、()2,1C -,试判断A 、B 、C 三点是否在同一直线上,并说明理由.23. 对有理数x 、y 定义一种新运算“※”,规定:()21x y ax by =+-※,,这里等式右边是通常的四则运算,例如:()0102**1121a b b =*+-=-※,,已知:()114-=-※,,()4211=※, (1)求a 、b 的值;(2)求()25m m +※,的最小值.l的函数表达式;(1)求直线2△的面积;(2)求ADCl上是否存在点(3)在直线2。
高中数学选择性必修二《第五章 一元函数的导数及其应用》单元检测试卷(一)本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f(x)=sin α-cos x ,则f′(x)等于( )A .sin xB .cos xC .cos α+sin xD .2sin α+cos x 2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π) C.⎣⎢⎡⎦⎥⎤π4,3π4 D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎦⎥⎤π2,3π43.函数f(x)的定义域为开区间(a ,b),导函数f′(x)在(a ,b)内的图象如图所示,则函数f(x)在开区间(a ,b)内有极小值点( )A .1个B .2个C .3个D .4个 4.函数f(x)=x 2-ln x 的单调递减区间是( ) A. ⎝ ⎛⎦⎥⎤0,22 B.⎣⎢⎡⎭⎪⎫22,+∞ C. ⎝⎛⎦⎥⎤-∞,-22,⎝ ⎛⎭⎪⎫0, 22 D.⎣⎢⎡⎭⎪⎫-22, 0,⎝⎛⎦⎥⎤0, 22 5.函数f(x)=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12C .0D .-16.函数f(x)=x 3+ax 2+3x -9,已知f(x)在x =-3处取得极值,则a =( ) A .2 B .3 C .4 D .57.函数f(x)=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-310,67B.⎝ ⎛⎭⎪⎫-85,-316C.⎝ ⎛⎭⎪⎫-83,-116D.⎝ ⎛⎭⎪⎫-∞,-310∪⎝ ⎛⎭⎪⎫67,+∞8.已知定义在R 上的函数f(x),f(x)+xf′(x)<0,若a <b ,则一定有( )A .af(a)<bf(b)B .af(b)<bf(a)C .af(a)>bf(b)D .af(b)>bf(a)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列结论中不正确的是( ) A .若y =cos 1x ,则y′=-1x sin 1xB .若y =sin x 2,则y′=2xcos x 2C .若y =cos 5x ,则y′=-sin 5xD .若y =12xsin 2x ,则y′=xsin 2x10.下列函数中,存在极值点的是( )A .y =x -1xB .y =2|xC .y =-2x 3-x D .y =xln x11.定义在区间⎣⎢⎡⎦⎥⎤-12,4上的函数f(x)的导函数f′(x)图象如图所示,则下列结论正确的是( )A .函数f(x)在区间(0,4)上单调递增B .函数f(x)在区间⎝ ⎛⎭⎪⎫-12,0上单调递减 C .函数f(x)在x =1处取得极大值 D .函数f(x)在x =0处取得极小值12.已知函数f(x)=e x-ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是( ) A .a >e B .x 1+x 2>2C .x 1x 2>1D .f(x)有极小值点x 0,且x 1+x 2<2x 0第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若f(x)=13x 3-f′(1)x 2+x +5,则f′(1)=________.14.已知奇函数 f(x)=⎩⎪⎨⎪⎧e xx-1(x>0),h (x )(x<0),则函数h(x)的最大值为________.15.已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sin x ,设a=f(1),b =f(2),c =f(3),则a ,b ,c 的大小关系是________. 16.若函数f(x)=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=x 3+ax 2+bx +a 2在x =1处有极值4. (1)求实数a ,b 的值;(2)当a>0时,求曲线y =f(x)在点(-2,f(-2))处的切线方程. 18.(本小题满分12分)已知a ∈R ,函数f(x)=(-x 2+ax)e x. (1)当a =2时,求函数f(x)的单调区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a 的取值范围. 19.(本小题满分12分)已知函数f(x)=ax 3+bx 在x =22处取得极小值- 2. (1)求函数f(x)的解析式;(2)若过点M(1,m)的直线与曲线y =f(x)相切且这样的切线有三条,求实数m 的取值范围.20. (本小题满分12分)设函数f(x)=x22-kln x ,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1, e ]上仅有一个零点. 21.(本小题满分12分)已知函数f(x)=ln x +ax 2+(2a +1)x. (1)讨论f(x)的单调性;(2)当a <0时,证明f(x)≤-34a-2.22.(本小题满分12分)已知函数f(x)=ln x -ax .(1)若f(x)存在最小值且最小值为2,求a 的值;(2)设g(x)=ln x -a ,若g(x)<x 2在(0,e]上恒成立,求a 的取值范围. 答案解析第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f(x)=sin α-cos x ,则f′(x)等于( )A .sin xB .cos xC .cos α+sin xD .2sin α+cos x 解析:选A 函数是关于x 的函数,因此sin α是一个常数.2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π) C.⎣⎢⎡⎦⎥⎤π4,3π4 D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎦⎥⎤π2,3π4解析:选A y′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.3.函数f(x)的定义域为开区间(a ,b),导函数f′(x)在(a ,b)内的图象如图所示,则函数f(x)在开区间(a ,b)内有极小值点( )A .1个B .2个C .3个D .4个解析:选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f(x)在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b)上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点. 4.函数f(x)=x 2-ln x 的单调递减区间是( ) A. ⎝ ⎛⎦⎥⎤0,22 B.⎣⎢⎡⎭⎪⎫22,+∞ C. ⎝⎛⎦⎥⎤-∞,-22,⎝ ⎛⎭⎪⎫0, 22 D.⎣⎢⎡⎭⎪⎫-22, 0,⎝⎛⎦⎥⎤0, 22 解析:选A ∵f′(x)=2x -1x =2x 2-1x ,当0<x≤22时,f′(x)≤0,故f(x)的单调递减区间为⎝ ⎛⎦⎥⎤0,22. 5.函数f(x)=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12 C .0 D .-1解析:选A f′(x)=3-12x 2,令f′(x)=0, 则x =-12(舍去)或x =12,f(0)=0,f(1)=-1,f ⎝ ⎛⎭⎪⎫12=32-12=1,∴f(x)在[0,1]上的最大值为1.6.函数f(x)=x 3+ax 2+3x -9,已知f(x)在x =-3处取得极值,则a =( ) A .2 B .3 C .4 D .5 解析:选D f′(x)=3x 2+2ax +3,∵f′(-3)=0. ∴3×(-3)2+2a×(-3)+3=0,∴a =5.7.函数f(x)=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-310,67B.⎝ ⎛⎭⎪⎫-85,-316C.⎝ ⎛⎭⎪⎫-83,-116D.⎝ ⎛⎭⎪⎫-∞,-310∪⎝ ⎛⎭⎪⎫67,+∞解析:选D f′(x)=ax 2+ax -2a =a(x +2)(x -1),要使函数f(x)的图象经过四个象限,则f(-2)f(1)<0,即⎝ ⎛⎭⎪⎫103a +1⎝ ⎛⎭⎪⎫-76a +1<0,解得a<-310或a>67. 故选D.8.已知定义在R 上的函数f(x),f(x)+xf′(x)<0,若a <b ,则一定有( ) A .af(a)<bf(b) B .af(b)<bf(a) C .af(a)>bf(b) D .af(b)>bf(a)解析:选C 令y =xf(x),则y′=[xf(x)]′=x′f(x)+xf′(x)=f(x)+xf′(x)<0,∴函数y =xf(x)是R 上的减函数,∵a <b ,∴af(a)>bf(b).二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列结论中不正确的是( ) A .若y =cos 1x ,则y′=-1x sin 1xB .若y =sin x 2,则y′=2xcos x 2C .若y =cos 5x ,则y′=-sin 5xD .若y =12xsin 2x ,则y′=xsin 2x解析:选ACD 对于A ,y =cos 1x ,则y′=1x 2sin 1x ,故错误;对于B ,y =sin x 2,则y′=2xcos x 2,故正确;对于C ,y =cos 5x ,则y′=-5sin 5x ,故错误;对于D ,y =12xsin 2x ,则y′=12sin 2x +xcos 2x ,故错误.10.下列函数中,存在极值点的是( ) A .y =x -1x B .y =2|x|C .y =-2x 3-x D .y =xln x解析:选BD 由题意,函数y =x -1x ,则y′=1+1x 2>0,所以函数y =x -1x在(-∞,0),(0,+∞)内单调递增,没有极值点.函数y =2|x|=⎩⎪⎨⎪⎧2x,x≥0,2-x,x <0根据指数函数的图象与性质可得,当x <0时,函数y =2|x|单调递减,当x≥0时,函数y =2|x|单调递增,所以函数y =2|x|在x =0处取得极小值;函数y =-2x 3-x ,则y′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =xln x ,则y′=ln x +1,x >0,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,y′<0,函数单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,y′>0,函数单调递增,当x=1e时,函数取得极小值,故选B 、D. 11.定义在区间⎣⎢⎡⎦⎥⎤-12,4上的函数f(x)的导函数f′(x)图象如图所示,则下列结论正确的是( )A .函数f(x)在区间(0,4)上单调递增B .函数f(x)在区间⎝ ⎛⎭⎪⎫-12,0上单调递减 C .函数f(x)在x =1处取得极大值 D .函数f(x)在x =0处取得极小值解析:选ABD 根据导函数图象可知,f(x)在区间⎝ ⎛⎭⎪⎫-12,0上,f′(x)<0,f(x)单调递减,在区间(0,4)上,f′(x)>0,f(x)单调递增.所以f(x)在x =0处取得极小值,没有极大值,所以A 、B 、D 选项正确,C 选项错误.故选A 、B 、D.12.已知函数f(x)=e x-ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是( ) A .a >e B .x 1+x 2>2C .x 1x 2>1D .f(x)有极小值点x 0,且x 1+x 2<2x 0解析:选ABD 由题意,函数f(x)=e x-ax ,则f′(x)=e x-a ,当a≤0时,f′(x)=e x-a >0在R 上恒成立,所以函数f(x)单调递增,不符合题意;当a >0时,令f′(x)=e x-a >0,解得x >ln a ,令f′(x)=e x-a <0,解得x <ln a ,所以函数f(x)在(-∞,ln a)上单调递减,在(ln a ,+∞)上单调递增,因为函数f(x)=e x-ax 有两个零点x 1,x 2且x 1<x 2,则f(ln a)=eln a-aln a =a -aln a =a(1-ln a)<0,且a >0,所以1-ln a <0,解得a >e ,所以A 项正确;又由x 1+x 2=ln(a 2x 1x 2)=2ln a +ln(x 1x 2)>2+ln(x 1x 2),取a =e 22,则f(2)=e 2-2a =0,x 2=2,f(0)=1>0,所以0<x 1<1,所以x 1+x 2>2,所以B 正确;由f(0)=1>0,则0<x 1<1,但x 1x 2>1不能确定,所以C 不正确;由函数f(x)在(-∞,ln a)上单调递减,在(ln a ,+∞)上单调递增,所以函数的极小值点为x 0=ln a ,且x 1+x 2<2x 0=2ln a ,所以D 正确.故选A 、B 、D. 第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若f(x)=13x 3-f′(1)x 2+x +5,则f′(1)=________.解析:f′(x)=x 2-2f′(1)x+1,令x =1,得f′(1)=23.答案:2314.已知奇函数 f(x)=⎩⎪⎨⎪⎧e xx-1(x>0),h (x )(x<0),则函数h(x)的最大值为________.解析:先求出x>0时,f(x)=e xx -1的最小值.当x>0时, f′(x)=e x(x -1)x 2,∴x ∈(0,1)时,f′(x)<0,函数单调递减,x ∈(1,+∞)时,f′(x) >0,函数单调递增,∴x =1时,函数取得极小值即最小值,为e -1,∴由已知条件得h(x)的最大值为1-e. 答案:1-e15.已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sin x ,设a=f(1),b =f(2),c =f(3),则a ,b ,c 的大小关系是________. 解析:f(2)=f(π-2),f(3)=f(π-3), 因为f′(x)=1+cos x≥0,故f(x)在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, ∵π2>π-2>1>π-3>0, ∴f(π-2)>f(1)>f(π-3),即c<a<b. 答案:c<a<b 16.若函数f(x)=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.解析:f′(x)=4-4x2(x 2+1)2,令f′(x)>0,得-1<x <1,即函数f(x)的增区间为(-1,1). 又因为f(x)在(m,2m +1)上单调递增, 所以⎩⎪⎨⎪⎧m≥-1,m <2m +1,2m +1≤1.解得-1<m≤0.答案:(-1,0]四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=x 3+ax 2+bx +a 2在x =1处有极值4. (1)求实数a ,b的值;(2)当a>0时,求曲线y =f(x)在点(-2,f(-2))处的切线方程. 解:(1)∵f(x)=x 3+ax 2+bx +a 2, ∴f′(x)=3x 2+2ax +b.∵f(1)=1+a +b +a 2=4,f′(1)=3+2a +b =0,∴⎩⎪⎨⎪⎧a =3,b =-9或⎩⎪⎨⎪⎧a =-2,b =1.经检验都符合题意.(2)当a>0时,由(1)得f(x)=x 3+3x 2-9x +9, ∴f′(x)=3x 2+6x -9. ∴f(-2)=31,f′(-2)=-9.∴所求的切线方程为y -31=-9(x +2),即9x +y -13=0. 18.(本小题满分12分)已知a ∈R ,函数f(x)=(-x 2+ax)e x. (1)当a =2时,求函数f(x)的单调区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a 的取值范围.解:(1)当a =2时,f(x)=(-x 2+2x)e x,f′(x)=(-x 2+2)e x.令f′(x)>0,即(-x 2+2)e x>0,注意到e x>0,所以-x 2+2>0,解得-2<x< 2.所以,函数f(x)的单调递增区间为(-2,2).同理可得,函数f(x)的单调递减区间为(-∞,-2)和(2,+∞).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0在(-1,1)上恒成立. 又因为f′(x)=[-x 2+(a -2)x +a]e x,所以[-x 2+(a -2)x +a]e x≥0,注意到e x>0,因此-x 2+(a -2)x +a≥0在(-1,1)上恒成立,也就是a≥x 2+2x x +1=x +1-1x +1在(-1,1)上恒成立.设y =x +1-1x +1,则y′=1+1(x +1)2>0,即y =x +1-1x +1在(-1,1)上单调递增,则y<1+1-11+1=32,故a≥32.即实数a 的取值范围为⎣⎢⎡⎭⎪⎫32,+∞. 19.(本小题满分12分)已知函数f(x)=ax 3+bx 在x =22处取得极小值- 2. (1)求函数f(x)的解析式;(2)若过点M(1,m)的直线与曲线y =f(x)相切且这样的切线有三条,求实数m 的取值范围.解:(1)由题意得,f′(x)=3ax 2+b.∵函数f(x)=ax 3+bx 在x =22处取得极小值-2, ∴⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫22=-2,f ′⎝ ⎛⎭⎪⎫22=0,即⎩⎪⎨⎪⎧a +2b =-4,32a +b =0,解得⎩⎪⎨⎪⎧a =2,b =-3,经检验满足条件,则函数f(x)的解析式为f(x)=2x 3-3x.(2)设切点坐标为(x 0,2x 30-3x 0),则曲线y =f(x)的切线的斜率k =f′(x 0)=6x 20-3, 切线方程为y -(2x 30-3x 0)=(6x 20-3)(x -x 0), 代入点M(1,m),得m =-4x 30+6x 20-3,依题意,方程m =-4x 30+6x 20-3有三个不同的实根. 令g(x)=-4x 3+6x 2-3,则g′(x)=-12x 2+12x =-12x(x -1), ∴当x ∈(-∞,0)时,g′(x)<0; 当x ∈(0,1)时,g′(x)>0; 当x ∈(1,+∞)时,g′(x)<0.故g(x)=-4x 3+6x 2-3在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,+∞)上单调递减.∴g(x)极小值=g(0)=-3,g(x)极大值=g(1)=-1.∴当-3<m<-1时,g(x)=-4x 3+6x 2-3的图象与直线y =m 有三个不同的交点, ∴-3<m<-1时,存在这样的三条切线. 故实数m 的取值范围是(-3,-1).20. (本小题满分12分)设函数f(x)=x22-kln x ,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1, e ]上仅有一个零点.解:(1)由f(x)=x22-kln x(k>0),得x>0且f′(x)=x -k x =x 2-kx .由f′(x)=0,解得x =k(负值舍去). f(x)与f′(x)在区间(0,+∞)上的情况如下:所以,f(x)在x =k 处取得极小值f(k)=k (1-ln k )2,无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f(k)=k (1-ln k )2.因为f(x)存在零点,所以k (1-ln k )2≤0,从而k≥e.当k =e 时,f(x)在区间(1,e)上单调递减,且f(e)=0, 所以x =e 是f(x)在区间(1, e ]上的唯一零点.当k>e 时,f(x)在区间(1, e ]上单调递减,且f(1)=12>0,f(e)=e -k2<0,所以f(x)在区间(1, e ]上仅有一个零点.综上可知,若f(x)存在零点,则f(x)在区间(1, e ]上仅有一个零点. 21.(本小题满分12分)已知函数f(x)=ln x +ax 2+(2a +1)x. (1)讨论f(x)的单调性;(2)当a <0时,证明f(x)≤-34a -2.解:(1)f(x)的定义域为(0,+∞), f′(x)=1x +2ax +2a +1=(x +1)(2ax +1)x .若a≥0,则当x ∈(0,+∞)时,f′(x)>0, 故f(x)在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎪⎫0,-12a 时,f′(x)>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f′(x)<0.故f(x)在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f(x)在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a .所以f(x)≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0.设g(x)=ln x -x +1,则g′(x)=1x-1.当x ∈(0,1)时,g′(x)>0;当x ∈(1,+∞)时,g′(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g(x)取得极大值且为最大值,最大值为g(1)=0. 所以当x >0时,g(x)≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,即f(x)≤-34a-2.22.(本小题满分12分)已知函数f(x)=ln x -ax .(1)若f(x)存在最小值且最小值为2,求a 的值;(2)设g(x)=ln x -a ,若g(x)<x 2在(0,e]上恒成立,求a 的取值范围. 解:(1)f′(x)=1x +a x 2=x +ax2(x>0),当a≥0时,f′(x)>0,f(x)在(0,+∞)上是增函数, f(x)不存在最小值;当a<0时,由f′(x)=0得x =-a , 且0<x<-a 时,f′(x)<0, x>-a 时,f′(x)>0.∴x =-a 时,f(x)取得最小值, f(-a)=ln(-a)+1=2,解得a =-e. (2)g(x)<x 2即ln x -a<x 2,即a>ln x -x 2,故g(x)<x 2在(0,e]上恒成立,也就是a>ln x -x 2在(0,e]上恒成立. 设h(x)=ln x -x 2,则h′(x)=1x -2x =1-2x2x,由h′(x)=0及0<x≤e 得x =22.当0<x<22时,h′(x)>0,当22<x≤e 时,h′(x)<0,即h(x)在⎝⎛⎭⎪⎫0,22上为增函数,在⎝ ⎛⎦⎥⎤22,e 上为减函数, 所以当x =22时h(x)取得最大值为h ⎝ ⎛⎭⎪⎫22=ln 22-12. 所以g(x)<x 2在(0,e]上恒成立时,a 的取值范围为⎝ ⎛⎭⎪⎫ln 22-12,+∞.高中数学选择性必修二《第五章 一元函数的导数及其应用》单元检测试卷(二)本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 3=2,a 5=7,则a 7=( ) A .10 B .20 C .16 D .122.在数列{a n }中,a 1=13,a n =(-1)n·2a n -1(n≥2),则a 5等于( )A .-163 D .163 C .-83 D .833.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3 4.在等比数列{a n }中,已知前n 项和S n =5n +1+a ,则a 的值为( )A .-1B .1C .5D .-55.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则254是该数列的( )A .第8项B .第10项C .第12项D .第14项 6.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2=( )A .2 D .12 C .3 D .137.如果数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为13的等比数列,那么a n =( )A.32⎝ ⎛⎭⎪⎫1-13n D .32⎝ ⎛⎭⎪⎫1-13n -1 C.23⎝ ⎛⎭⎪⎫1-13n D .23⎝ ⎛⎭⎪⎫1-13n -18.若有穷数列a 1,a 2,…,a n (n 是正整数),满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n-i +1(i 是正整数,且1≤i≤n),就称该数列为“对称数列”.已知数列{b n }是项数不超过2m(m >1,m ∈N *)的对称数列,且1,2,4,…,2m -1是数列{b n }的前m 项,则当m >1 200时,数列{b n }的前2 019项和S 2 019的值不可能为( ) A .2m-2m -2 009B .22 019-1C .2m +1-22m -2 019-1 D .3·2m -1-22m -2 020-1二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1010.等差数列{a n }的前n 项和为S n ,若a 1>0,公差d≠0,则下列命题正确的是( ) A .若S 5=S 9,则必有S 14=0B .若S 5=S 9,则必有S 7是S n 中最大的项C .若S 6>S 7,则必有S 7>S 8D .若S 6>S 7,则必有S 5>S611.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第三天走了四十八里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍12.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln n n +1第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知数列{a n }的通项公式为a n =2 020-3n ,则使a n >0成立的最大正整数n 的值为________.14.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则a n =________,S 10=________.15.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.16.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=3xx +3,数列{x n }的通项由x n =f(x n -1)(n≥2且x ∈N *)确定.(1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;(2)当x 1=12时,求x 2 020.18.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132.(1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n .19.(本小题满分12分)在等差数列{a n }中,S n 为其前n 项和(n ∈N *),且a 2=3,S 4=16. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .20.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N *),求数列{b n }的前n 项和T n . 21.(本小题满分12分)在①a n +1=a n 3a n +1,②⎩⎨⎧⎭⎬⎫1a n 为等差数列,其中1a 2,1a 3+1,1a 6成等比数列,③1a 1+1a 2+1a 3+…+1a n =3n 2-n2这三个条件中任选一个,补充到下面的问题中,然后解答补充完整的题目.已知数列{a n }中,a 1=1,________.(1)求数列{a n }的通项公式;(2)设b n =a n a n +1,T n 为数列{b n }的前n 项和,求证:T n <13.注:如果选择多个条件分别解答,则按第一个解答计分.22.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式; (2)设b n =a n a n +1,是否存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列?若存在,请说明理由. 答案解析第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 3=2,a 5=7,则a 7=( ) A .10 B .20 C .16 D .12 解析:选D ∵{a n }是等差数列, ∴d =a 5-a 35-3=52,∴a 7=2+4×52=12.2.在数列{a n }中,a 1=13,a n =(-1)n·2a n -1(n≥2),则a 5等于( )A .-163 D .163 C .-83 D .83解析:选B ∵a 1=13,a n =(-1)n·2a n -1,∴a 2=(-1)2×2×13=23,a 3=(-1)3×2×23=-43,a 4=(-1)4×2×⎝ ⎛⎭⎪⎫-43=-83,a 5=(-1)5×2×⎝ ⎛⎭⎪⎫-83=163.3.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3解析:选A 在等比数列{a n }中,S 5,S 10-S 5,S 15-S 10,…成等比数列,因为S 10∶S 5=1∶2,所以S 5=2S 10,S 15=34S 5,得S 15∶S 5=3∶4,故选A.4.在等比数列{a n }中,已知前n 项和S n =5n +1+a ,则a 的值为( )A .-1B .1C .5D .-5 解析:选D 因为S n =5n +1+a =5×5n+a ,由等比数列的前n 项和S n =a 1(1-q n)1-q =a 11-q-a 11-q·q n ,可知其常数项与q n的系数互为相反数,所以a =-5. 5.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则254是该数列的( )A .第8项B .第10项C .第12项D .第14项 解析:选D 当n 为正奇数时,a n +1=2a n ,则a 2=2a 1=2,当n 为正偶数时,a n +1=a n +1,得a 3=3,依次类推得a 4=6,a 5=7,a 6=14,a 7=15,…,归纳可得数列{a n }的通项公式a n=⎩⎪⎨⎪⎧2n +12-1,n 为正奇数,2n2+1-2,n 为正偶数,则2n2+1-2=254,n =14,故选D.6.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2=( )A .2 D .12 C .3 D .13解析:选C ∵S 1=a 1,S 3=3a 2,S 5=5a 3,∴1a 1a 2+1a 2a 3+1a 1a 3=35.∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,∴a 2=3.故选C. 7.如果数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为13的等比数列,那么a n =( )A.32⎝ ⎛⎭⎪⎫1-13n D .32⎝ ⎛⎭⎪⎫1-13n -1 C.23⎝ ⎛⎭⎪⎫1-13n D .23⎝ ⎛⎭⎪⎫1-13n -1解析:选A 由题知a 1=1,q =13,则a n -a n -1=1×⎝ ⎛⎭⎪⎫13n -1.设数列a 1,a 2-a 1,…,a n -a n -1的前n 项和为S n , ∴S n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n .又∵S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝⎛⎭⎪⎫1-13n ,∴a n =32⎝⎛⎭⎪⎫1-13n .8.若有穷数列a 1,a 2,…,a n (n 是正整数),满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n-i +1(i 是正整数,且1≤i≤n),就称该数列为“对称数列”.已知数列{b n }是项数不超过2m(m >1,m ∈N *)的对称数列,且1,2,4,…,2m -1是数列{b n }的前m 项,则当m >1 200时,数列{b n }的前2 019项和S 2 019的值不可能为( ) A .2m-2m -2 009B .22 019-1C .2m +1-22m -2 019-1 D .3·2m -1-22m -2 020-1解析:选A 若数列{b n }的项数为偶数,则数列可设为1,21,22,…,2m -1,2m -1, (22)2,1,当m≥2 019时, S 2 019=1×(1-22 019)1-2=22 019-1,故B 可能.当1 200<m <2 019时,S 2 019=2×1×(1-2m)1-2-1×(1-22m -2 019)1-2=2m +1-22m -2 019-1,故C 可能.若数列为奇数项,则数列可设为1,21,22,…,2m -2,2m -1,2m -2, (22)2,1,当m≥2 019时,S 2 019=1×(1-22 019)1-2=22 019-1.当1 200<m <2 019时,S 2 019=2×1×(1-2m -1)1-2-1×(1-22m -1-2 019)1-2+2m -1=3·2m -1-22m -2 020-1,故D 可能.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10 解析:选AD ∵等比数列{a n }的公比q =-23,∴a 9和a 10异号,∴a 9a 10=a 29⎝ ⎛⎭⎪⎫-23<0,故A 正确; 但不能确定a 9和a 10的大小关系,故B 不正确; ∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数,又∵b 1=12>0,∴d<0,∴b 9>b 10,故D 正确;∴b 10一定是负数,即b 10<0,故C 不正确.故选A 、D.10.等差数列{a n }的前n 项和为S n ,若a 1>0,公差d≠0,则下列命题正确的是( ) A .若S 5=S 9,则必有S 14=0B .若S 5=S 9,则必有S 7是S n 中最大的项C .若S 6>S 7,则必有S 7>S 8D .若S 6>S 7,则必有S 5>S 6解析:选ABC ∵等差数列{a n }的前n 项和公式S n =na 1+n (n -1)d2,若S 5=S 9,则5a 1+10d =9a 1+36d ,∴2a 1+13d =0, ∴a 1=-13d2,∵a 1>0,∴d <0,∴a 1+a 14=0,∴S 14=7(a 1+a 14)=0,A 对;又∵S n =na 1+n (n -1)d 2=-13nd 2+n (n -1)d 2=d[(n -7)2-49]2,由二次函数的性质知S 7是S n中最大的项,B 对;若S 6>S 7,则a 7=a 1+6d <0,∴a 1<-6d , ∵a 1>0,∴d <0,∴a 6=a 1+5d <-6d +5d =-d ,a 8=a 7+d <a 7<0, S 7>S 8=S 7+a 8,C 对;由a 6<-d 不能确定a 6的符号,所以S 5>S 6不一定成立,D 错.故选A 、B 、C.11.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第三天走了四十八里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍解析:选ABD 设此人第n 天走a n 里路,则{a n }是首项为a 1,公比为q =12的等比数列.所以S 6=a 1(1-q 6)1-q =a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1261-12=378,解得a 1=192.a 3=a 1q 2=192×14=48,所以A 正确,由a 1=192,则S 6-a 1=378-192=186,又192-186=6,所以B 正确. a 2=a 1q =192×12=96,而14S 6=94.5<96,所以C 不正确.a 1+a 2+a 3=a 1(1+q +q 2)=192×⎝ ⎛⎭⎪⎫1+12+14=336,则后3天走的路程为378-336=42而且42×8=336,所以D 正确. 故选A 、B 、D.12.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln nn +1解析:选CD 对A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }为递增数列,故B 错误;对C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故C 正确; 对D ,若a n =lnn n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n ,由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)递减,所以数列{a n +1-a n }为递减数列,故D 正确. 故选C 、D.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知数列{a n }的通项公式为a n =2 020-3n ,则使a n >0成立的最大正整数n 的值为________.解析:由a n =2 020-3n>0,得n<2 0203=67313,又∵n ∈N *,∴n 的最大值为673. 答案:67314.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则a n =________,S 10=________.解析:设{a n }的首项,公差分别是a 1,d ,则 ⎩⎪⎨⎪⎧a 1+2d =16,20a 1+20×(20-1)2×d=20,解得a 1=20,d =-2,∴a n =a 1+(n -1)d =20-2(n -1)=22-2n .S 10=10×20+10×92×(-2)=110.答案:22-2n 11015.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.解析:因为数列1,a 1,a 2,9是等差数列,所以a 1+a 2=1+9=10.因为数列1,b 1,b 2,b 3,9是等比数列,所以b 22=1×9=9,又b 2=1×q 2>0(q 为等比数列的公比),所以b 2=3,则b 2a 1+a 2=310. 答案:31016.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=________.解析:设{a n }的公比为q ,q>0,且a 23=1, ∴a 3=1.∵S 3=7,∴a 1+a 2+a 3=1q 2+1q +1=7,即6q 2-q -1=0,解得q =12或q =-13(舍去),a 1=1q2=4. ∴S 5=4×⎝ ⎛⎭⎪⎫1-1251-12=8×⎝ ⎛⎭⎪⎫1-125=314.答案:314四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=3xx +3,数列{x n }的通项由x n =f(x n -1)(n≥2且x ∈N *)确定.(1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;(2)当x 1=12时,求x 2 020.解:(1)证明:∵x n =f(x n -1)=3x n -1x n -1+3(n≥2且n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n≥2且n ∈N *), ∴⎩⎨⎧⎭⎬⎫1x n 是公差为13的等差数列.(2)由(1)知1x n =1x 1+(n -1)×13=2+n -13=n +53.∴1x 2 020=2 020+53=675. ∴x 2 020=1675.18.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132.(1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n .解:(1)由S 10S 5=3132,a 1=-1,知公比q≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.(2)由(1),得a n =(-1)×⎝ ⎛⎭⎪⎫-12n -1,所以a 2n =⎝ ⎛⎭⎪⎫14n -1,所以数列{a 2n }是首项为1,公比为14的等比数列,故a 21+a 22+…+a 2n =1×⎝ ⎛⎭⎪⎫1-14n 1-14=43⎝ ⎛⎭⎪⎫1-14n .19.(本小题满分12分)在等差数列{a n }中,S n 为其前n 项和(n ∈N *),且a 2=3,S 4=16. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差是d ,由已知条件得⎩⎪⎨⎪⎧a 1+d =3,4a 1+6d =16,解得a 1=1,d =2,∴a n =2n -1. (2)由(1)知,a n =2n -1, ∴b n =1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 20.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N *),求数列{b n }的前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由a n <a n +1,得q>1,又a 1=1,则a 2=q ,a 3=q 2, 因为S 3=2S 2+1,所以a 1+a 2+a 3=2(a 1+a 2)+1,则1+q +q 2=2(1+q)+1,即q 2-q -2=0,解得q =2或q =-1(舍去), 所以数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)知,b n =(2n -1)·a n =(2n -1)·2n -1(n ∈N *), 则T n =1×20+3×21+5×22+…+(2n -1)×2n -1,2T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,两式相减,得-T n =1+2×21+2×22+…+2×2n -1-(2n -1)×2n,即-T n =1+22+23+24+ (2)-(2n -1)×2n, 化简得T n =(2n -3)×2n+3. 21.(本小题满分12分)在①a n +1=a n 3a n +1,②⎩⎨⎧⎭⎬⎫1a n 为等差数列,其中1a 2,1a 3+1,1a 6成等比数列,③1a 1+1a 2+1a 3+…+1a n =3n 2-n2这三个条件中任选一个,补充到下面的问题中,然后解答补充完整的题目.已知数列{a n }中,a 1=1,________. (1)求数列{a n }的通项公式;(2)设b n =a n a n +1,T n 为数列{b n }的前n 项和,求证:T n <13.注:如果选择多个条件分别解答,则按第一个解答计分. 解:若选条件①:(1)易知a n ≠0,∵a n +1=a n 3a n +1,∴1a n +1-1a n =3.又1a 1=1, ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,3为公差的等差数列,∴1a n =3n -2,∴a n =13n -2. (2)证明:由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13, 故T n <13.若选条件②:(1)设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,则1a 2=1+d ,1a 3+1=2+2d ,1a 6=1+5d ,∵1a 2,1a 3+1,1a 6成等比数列, ∴(2+2d)2=(1+d)(1+5d),解得d =3或d =-1.当d =-1时,1a 2=1+d =0,此时1a 2,1a 3+1,1a 6不能构成等比数列,∴d =3,∴1a n =1+3(n -1)=3n -2, ∴a n =13n -2. (2)由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13, 故T n <13.若选条件③:(1)由1a 1+1a 2+1a 3+…+1a n =3n 2-n 2知,当n≥2时,1a 1+1a 2+1a 3+…+1a n -1=3(n -1)2-(n -1)2,两式相减,得1a n =3n 2-n 2-3(n -1)2-(n -1)2=3n -2,∴a n =13n -2(n≥2),当n =1时,a 1=1也适合上式, ∴a n =13n -2. (2)由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13, 故T n <13.22.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式; (2)设b n =a n a n +1,是否存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列?若存在,请说明理由.解:(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2 d.由已知,得⎩⎪⎨⎪⎧10a 1+10×92d =55,20a 1+20×192d =210,即⎩⎪⎨⎪⎧2a 1+9d =11,2a 1+19d =21,解得⎩⎪⎨⎪⎧a 1=1,d =1.所以a n =a 1+(n -1)d =n(n ∈N *).(2)假设存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列,则b 2m =b 1b k . 因为b n =a n a n +1=nn +1,所以b 1=12,b m =m m +1,b k =kk +1,所以⎝⎛⎭⎪⎫m m +12=12×k k +1.整理,得k =2m2-m 2+2m +1.以下给出求m ,k 的方法: 因为k>0,所以-m 2+2m +1>0, 解得1-2<m<1+ 2. 因为m≥2,m ∈N *, 所以m =2,此时k =8.故存在m =2,k =8使得b 1,b m ,b k 成等高中数学选择性必修二《第五章 一元函数的导数及其应用》单元检测试卷(三)一、单选题1.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2 2.设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象为( )A .B .C .D .3.函数2cos y x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是( )A .13π+ B .4π+.6π+.2π4.若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞ 5.曲线2yx x 在点(1,0)处的切线方程是( )A .210x y --=B .210x y +-=C .10x y --=D .10x y +-=6.已知函数()f x 的导函数()()()1f x a x x a '=+-,若()f x 在x a =处取得极大值,则实数a 的取值范围是( )A .()1,0-B .()2,+∞C .()0,1D .(),3-∞- 7.已知函数()cos xf x e x =+,设()10.3a f -=,()0.32b f -=,()2log0.2c f =,则( )A .c b a <<B .c a b <<C .b a c <<D .b c a << 8.已知偶函数()y f x =对于任意的[0,)2x π∈满足'()cos ()sin 0f x x f x x +>(其中'()f x 是函数()f x 的导函数),则下列不等式中成立的是( )A ()()34f ππ-< B ()()34f ππ-<-C .(0)()4f π>-D .()()63f ππ<二、多选题9.已知定义在R 上的函数()f x 满足()()f x f x '>-,则下列式子成立的是( ) A .()()20192020f ef < B .()()20192020ef f >C .()f x 是R 上的增函数D .若0t >,则有()()tf x e f x t <+10.若直线12y x b =+是函数()f x 图像的一条切线,则函数()f x 可以是( ) A .1()f x x=B .4()f x x =C .()sin f x x =D .()x f x e = 11.已知函数()y f x =的导函数的图象如图所示,下列结论中正确的是( )A .1-是函数()f x 的极小值点B .3-是函数()f x 的极小值点C .函数()f x 在区间()3,1-上单调递增 D .函数()f x 在0x =处切线的斜率小于零 12.已知函数()f x 是定义在R 上的奇函数,当0x >时,()1xx f x e -=.则下列结论正确的是( ).A .当0x <时,()()1xf x e x =-+B .函数()f x 在R 上有且仅有三个零点C .若关于x 的方程()f x m =有解,则实数m 的取值范围是()()22f m f -≤≤D .12,x x ∀∈R ,()()212f x f x -<三、填空题13.已知函数()f x 的导函数为()f x ',且满足关系式()()321xf x x f x e '=-++,则()1f '的值等于__________.14.生活经验告诉我们,当水注进容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图像,A 对应________;B 对应________;。
一、选择题(每小题2分,共40分)1.中国新民主主义革命胜利的标志是()A.解放南京,推翻国民政府B.中华人民共和国成立C.除台湾和沿海岛屿外,中国领土全部解放D.三大改造完成解析:选B。
革命就是夺权,推翻旧政权只是过程,建立新政权才说明了胜利。
A只是推翻旧政权,B建立新政权才标志着革命取得了胜利。
2.历史巨片《开国大典》的成功拍摄,再现了当年中国人民“站起来”的那永恒的记忆。
这里“站起来”是指()A.彻底完成了新民主主义革命任务B.建立了社会主义制度C.结束了半殖民地半封建社会性质,从此中国人民走向了民族独立D.完成了祖国的统一解析:选C。
本题主要考查学生对新中国诞生的历史意义的识记和理解能力。
建国后,还有民主革命的遗留任务,1956年才建立社会主义制度,直到今天还没有完成祖国的统一大业。
3.在西方世界日益关注中国的过程中,《时代》周刊是最典型的代表。
右图是1949年毛泽东成为《时代》周刊封面人物的图片,毛泽东能够成为备受关注的《时代》周刊人物的原因主要是()A.领导中国人民走向新民主主义革命胜利,引发中国社会巨变B.领导中国人民取得抗日战争的伟大胜利,中华民族由衰落走向振兴C.开创中国特色革命道路,揭开了无产阶级革命新时代D.提出“和平共处五项原则”,中国以新的形象出现在世界舞台解析:选A。
此题考查了一定的辨析能力。
根据题干中的1949年这一时间可知A项符合题意。
4.新中国成立初期,面临严峻的经济形势,其原因是()①国民党反动派长期内战②国民政府和官僚资本的搜刮③帝国主义的长期掠夺④人民生活十分困苦A.①②④B.③④C.①②③D.①②③④解析:选C。
本题主要考查学生再认再现史实和分析历史问题的能力。
④是经济严峻的表现,不是原因。
5.新中国成立之初,继续完成的民主革命任务有()①没收国民政府的财产和官僚资本②稳定物价,统一财经③合理调整工商业④开展土地改革运动A.①②B.①④C.③④D.②③解析:选B。
第五章《相交线与平行线》单元检测题题号 一 二 三总分 19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.如图的四个图中,∠1与∠2是同位角的有( )A .②③B .①②③C .①D .①②④2.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b,b ∥c,那么a ∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种. A .3个 B .2个 C .1个 D .0个3.如图,,于F ,,则的度数是( )A .B .C .D .4.如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC=5.EC=3,那么平移的距离为( )A .2B .3C .5D .75.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为16cm ,//AB CD PF CD ⊥40AEP ∠=︒EPF ∠120︒130︒140︒150︒则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20B.24C.25D.2610.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共24分)11.如图,在△ABC,AD⊥BC,垂足为点D,那么点B到直线AD的距离是线段的长度.12.如图所示,平移线段AB到CD的位置,则AB=,CD∥,BD=.13.如图,直线AB与CD相交于点O,若∠AOD=150°,则∠BOC=度.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,直线a,b都垂直于直线c,直线d与a,b相交.若∠1=135°,则∠2=°.18.如图,在直角三角形ABC中,∠A=90°,AB=3,AC=4,BC=5,DE∥BC,点A到DE的距离是1,则DE与BC的距离是.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.完成下面的证明:已知:如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1().∵BE平分∠ABD(已知),∴∠ABD=(角平分线的定义).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)().∵∠1+∠2=90°(已知),∴∠BDC+∠ABD=().∴AB∥CD().20.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,∠1=∠C,∠2+∠D=90°,BE⊥FD于G.试证明:AB∥CD.24.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:∠E+∠F=90°.参考答案一、选择题:题号12345678910答案D B B A C D A D D D二、填空题:11.解:∵AD⊥BD于D,∴点B到直线AD的距离是线段BD的长,故答案为:BD.12.解:平移线段AB到CD的位置,则AB=CD,CD∥AB,BD=AC.故答案为:CD,AB,AC.13.解:因为直线AB与CD相交于点O,所以∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,因为∠AOD=150°,所以∠BOC=150°,故答案为:150.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.45.18.三.解答题:19.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的定义).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角平分线的定义).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠BDC+∠ABD=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).故答案为:角平分线的定义;2∠2;等量代换;180°;等量代换;同旁内角互补,两直线平行.20.解:(1)∵∠ACB=90°,∠1=26°,∴∠2=180°﹣∠1﹣∠ACB,=180°﹣90°﹣26°,=64°;(2)结论:n∥m.理由如下:∵∠3=19°,∠A=45°,∴∠4=45°+19°=64°,∵∠2=64°,∴∠2=∠4,∴n∥m.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 证明:∵BE⊥FD于G,∴∠1+∠D=90°,∵∠1=∠C,∴∠C+∠D=90°,∵∠2+∠D=90°,∴∠C=∠2,∴AB∥CD.24.解:(1)AD∥BC,理由是:∵∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,∴∠ADF=∠BCF,∴AD∥BC;(2)AB∥EF,理由是:∵BE平分∠ABC,∴∠ABC=2∠ABE,∵∠ABC=2∠E,∴∠ABE=∠E,∴AB∥EF;(3)∵AD∥BC,∴∠DAB+∠ABC=180°,∵BE平分∠ABC,AF平分∠BAD,∴∠ABE=ABC,∠BAF=∠BAD,∴∠ABE+∠BAF=90°,∴∠AOB=180°﹣90°=90°=∠EOF,∴∠E+∠F=180°﹣∠EOF=90°.。
新人教版四年级上册《第5章除数是两位数的除法》单元检测训练卷(一)一、小小填空知识多,快来动手做一做.(每空1分,共20分)1. 计算“374÷42”时,把除数42看作________来试商,商是________位数。
2. 18的________倍是468,714是42的________倍。
3. 商和余数都是13,除数是24,被除数是________.4. ________÷35=18…________,余数最大是________;当余数最大时,被除数是________.5. 在一道被除数和除数都不为0的除法算式里,被除数乘10,除数不变,商________.6. 在下面________里,最大能填几?40×________<352________×50<310________×60<42730×________<260.7. 要使687÷□5的商是两位数,□里最大填________,要使□76÷27的商是两位数,□里最小填________.8. 在“○”里填上适当的运算符号,在“________”里填上适当的数。
80÷16=(80○________)÷(16÷4)200÷40=(200÷20)÷(40○________)180÷15=(180×3)÷(15○________)二、我来当包公.(对的打“√”,错的打“×”)(5分)0除以任何数都得0.________.(判断对错)要使□08÷62的商是一位数,□里最大填5.________.因为7÷2=3...1,所以70÷20=3...1.________.如果被除数的末尾有0,商的末尾也一定有0.________.(判断对错)140人乘坐大客车去参观烈士陵园,每辆大客车限乘40人,至少需要4辆这样的大客车。
单元检测(五)一、选择题(本大题共24小题,每小题2分,共48分.在每题所列出的四个选项中,只有一项是最符合题目要求的。
)“银杏黄时秋意浓",每至暮秋,银杏树便“尽换黄金甲”,当秋风袭来,遍地碎金,如梦如幻的浪漫景色吸引大量游人前去观赏.下图为我国主要银杏观赏地分布(左图)及丹东某银杏大道景观(右图)。
据此完成1~2题。
1.丹东的地带性植被属于()A.常绿阔叶林B.针阔叶混交林C.落叶阔叶林D.针叶林2.与湖州相比,丹东的银杏()A.生长缓慢B.枝叶繁茂C.冬季落叶D.树干高大读图,回答3~4题。
3. 从①、②、③三地可能看到的典型植被依次对应的顺序是()A.草原、森林、荒漠B.森林、荒漠、草原C.草原、荒漠、森林D.森林、草原、荒漠4.造成图中三地植被差异的主要因素是()A.热量B.水分C.地形D.土壤红树林(右图)指生长在热带、亚热带海岸潮间带上部,受周期性潮水浸淹,以红树植物为主体的常绿灌木或乔木组成的潮滩湿地木本生物群落,组成的物种包括草本、藤本红树.据此完成5~6题。
5.红树林()①多分布在我国渤海与黄海沿岸②根系短小不发达③多分布在潮间带的淤泥质海岸④以喜盐植物为主A.①② B.②③C.③④ D.①④6.红树林的主要功能是()A.保护海岸,保护生物的多样性B.降低风速,为船舶提供避风场所C.绿化美化沿海环境,吸烟滞尘D.涵养水源,保持水土,美化环境第三届联合国环境大会上,中国表现抢眼。
塞罕坝林场建设者获得2017年联合国环保最高荣誉—-“地球卫士奖"。
下图为塞罕坝林场位置示意图.据此完成7~8题.7.从1962年至今,塞罕坝林场培育出112万亩(约746。
7平方千米)人工林,成为“生态文明建设范例"。
下列关于该林场表述正确的是()A.选择常绿硬叶林为主要营林品种B.对东北地区生态安全的意义重大C.春季防火等级最高D.经过50多年的营林,成为重要的木材基地8.下列关于塞罕坝林场产生的影响,描述正确的是() A.为东北林区的开发提供了借鉴意义B.保护华北地区生态环境,防风固沙C.减少黄土高原水土流失D.防止内蒙古中部草原退化挪威领土南北狭长,海岸线漫长曲折,沿海岛屿很多。
9第五章原子与原子核 单元检测1(解析版)第I 卷(选择题)一、选择题(共48分)1.关于汤姆孙发现电子的下列说法中正确的是( )A .戈德斯坦是第一个测出阴极射线比荷的人B .汤姆孙直接测出了阴极射线的质量C .汤姆孙发现,用不同材料的阴极和不同的气体做实验,阴极射线的比荷是不同的D .汤姆孙由实验得到的阴极射线粒子的比荷是氢离子比荷的近两千倍2.下列说法正确的是( )A .采用物理或化学方法可以有效地改变放射性元素的半衰期B .由玻尔理论知道氢原子从激发态跃迁到基态时会发出光子C .卢瑟福发现了中子,并预言了质子的存在D .原子核所含核子单独存在时的总质量小于该原子核的质量3.关于α、β、γ三种射线的性质,下列说法中正确的是( )A .α射线是带正电的高速粒子流,它的电离作用最弱B .β射线是高速电子流,它的穿透能力最弱C .γ射线是电磁波,它在真空中的传播速度等于光速D .以上说法都不正确4.下列说法正确的是( )A .卢瑟福的原子核式结构模型无法解释原子光谱的分立特征B .黑体辐射电磁波的强度按波长的分布与黑体温度无关C .比结合能越大的原子核越不稳定D .可以通过升高温度来增大放射性元素的半衰期5.以下叙述正确的是( )A .卢瑟福的α粒子散射实验,证实了原子核还可以再分B .牛顿通过扭秤实验比较精确地测量出了万有引力恒量C .牛顿最早通过理想斜面实验得出力不是维持物体运动的必然结果D .感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果6.关于原子和原子核,下列说法正确的是( )A .结合能越大,原子核越稳定B .在核反应423211H H He X +−−→+中,X 为中子C .核爆炸的能量来自于原子核反应中的质量亏损,遵循规律E mc ∆=∆D .氡的半衰期为3.8天,1g 氡原子核在经过7.6天后只剩下0.2g 氡原子核7.2020年12月4日14时02分,新一代“人造太阳”装置——中国环流器二号M 装置(HL-2M )在成都建成并实现首次放电,一个D (氘)核和T (氚)核发生聚变反应会产生一个中子,下列说法正确的是( )A .该核反应方程式为23311120H +H He +n →B .该核反应能够吸收大量能量C .该反应能够在常温下进行D .反应前平均核子质量比反应后大8.一静止的铝原子核2713AI 俘获一速度为1.0×107m/s 的质子P 后,变为处于激发态的硅原子核2814Si 。
人教版七年级上册数学第五章一元一次方程单元检测题一.选择题1.已知x=1是方程x+m=3的解,则m的值是()A.1B.2C.−2D.32.下列方程中,解为x=3的方程是()A.y−3=0B.x+2=1C.2x−2=3D.2x=x+33.下列变形符合方程的变形规则的是()A.若2x−3=7,则2x=7−3B.若3x−2=x+1,则3x−x=1−2 C.若−3x=5,则x=5+3D.若−14x=1,则x=−44.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.8天B.5天C.3天D.2天5.琪琪同学在做作业时,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A.4B.3C.2D.16.如图,一个正方形先剪去宽为 2.4的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.10B.12C.14D.167.在中央电视台“开心辞典”节目中,某期的一道题目是:如图,两个天平都平衡,则1个苹果的重量是1个香蕉重量的()A.23倍B.43倍C.32倍D.2倍8.阿阳中学初三二班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费送老师一张(由学生出钱),每个学生交0.6元刚好,相片上共有多少人()A.13个B.12个C.11个D.无法确定二.填空题9.若(m−2)x|m|−1−2=5是关于x的一元一次方程,则m的值是.10.已知4x+2y=3,用含x的式子表示y=.11.在长方形ABCD中,放入6个形状大小相同的小长方形(空白部分),其中AB=9cm,BC=13cm,则阴影部分图形的总面积是cm2.12.某商场将一件商品在进价的基础上加价50%标价,再打八折出售,售价为120元,则这件商品获利元.13.程大位《直指算法统宗》中记载了这样一个问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个大小和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.则大和尚为人.三.计算题14.解方程(1)x−13−x+26=1(2)3=1−2(4+x)四.解答题15.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每3人共乘1辆车,最终剩余2辆车;若每2人共乘1辆车,最终剩余9个人无车可乘,问共有多少人,多少辆车?16.以下是琪琪解方程x+13−x−32=1的解答过程.解:去分母,得2(x+1)−3(x−3)=1.去括号,得2x+2−3x−6=1.移项,合并同类项,得x=5.琪琪的解答过程是否有错误?如果有错误,写出正确的解答过程.17.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球x盒时,两种优惠办法付款一样?(2)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?18.某商场从厂家购进甲、乙两种文具,甲种文具的每件进价比乙种文具的每件进价少20元.若购进甲种文具7件,乙种文具2件,则需要760元.(1)求甲、乙两种文具的每件进价分别是多少元?(2)该商场从厂家购进甲、乙两种文具共50件,所用资金恰好为4400元.在销售时,每件甲种文具的售价为100元,要使得这50件文具销售利润率为30%,每件乙种文具的售价为多少元?19.杨师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(−3x2+5x−7)=−2x2+3x−6.(1)求所捂的多项式;(2)若x是14x=−12x+3的解,求所捂多项式的值;(3)若所捂多项式的值为144,请求写出x的取值.。
第五章单元检测
(时间:90分钟 满分:100分)
一、选择题(每小题4分,共40分) 1.关于曲线运动,下列说法正确的是( )
A .做曲线运动的物体速度方向时刻改变,所以曲线运动是变速运动
B .做曲线运动的物体,受到的合外力方向在不断改变
C .只要物体做圆周运动,它所受的合外力一定指向圆心
D .物体只要受到垂直于初速度方向的恒力作用,就一定能做匀速圆周运动
2.关于向心力的下列说法中正确的是( )
A .向心力不改变做圆周运动物体速度的大小
B .做匀速圆周运动的物体,其向心力是不变的
C .做圆周运动的物体,所受合力一定等于向心力
D .做匀速圆周运动的物体,所受的合力为零
3.雨滴由高层建筑的屋檐边自由下落,遇到水平方向吹来的风.关于雨滴的运动,下列判断正确的是( )
A .风速越大,雨滴下落的时间越长
B .无论风速多大,雨滴下落的时间不变
C .风速越大,雨滴落地时的速度越小
D .无论风速多大,雨滴落地时的速度都不变 4.某人在距地面某一高度处以初速度v 0水平抛出一物体,落地速度大小为2v 0,则它在空中的飞行时间及抛出点距地面的高度为( )
A.3v 02g ,9v 204g
B.3v 02g ,3v 204g
C.3v 0g ,3v 202g
D.v 0g ,v 202g
5.如图所示,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为v 1和v 2,则下面说法正确的是( )
A .物体做匀速运动,且v 2=v 1
B .物体做加速运动,且v 2>v 1
C .物体做加速运动,且v 2<v 1
D .物体做减速运动,且v 2<v 1
6.在抗洪抢险中,战士驾驶摩托艇救人.假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d .如果战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( )
A.d v 2v 22-v 12 B .0 C.d v 1v 2 D.d v 2
v 1
7.有一种玩具的结构如图所示,
竖直放置的光滑圆铁环的半径为R =20cm ,环上有一个穿孔的小球m ,仅能沿环做无摩擦滑动.如果圆环绕着通过环心的竖直轴O 1O 2以10rad/s 的角速度旋转(g 取10 m/s 2),则小球相对环静止时和环心O 的连线与O 1O 2的夹角θ可能是( )
A .30°
B .45°
C .60°
D .75°
8.如图3所示,高为h =1.25m 的平台上,覆盖着一层薄冰.现有一质量为60kg 的滑雪爱好者,以一定的初速度v 向平台边缘滑去,着地时的速度方向与水平地面
的夹角为45°(重力加速度g 取
10m/s 2
).由此可知以下判断错误..
的是( ) A .滑雪者离开平台边缘时的速度大小是5.0m/s
B .滑雪者着地点到平台边缘的水平距离是2.5m
C .滑雪者在空中运动的时间为0.5s
D .着地时滑雪者的瞬时速度为5m/s 9.如图4所示,从倾角为θ的斜面上的A 点以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点所用的时间为
A.2v 0sin θg
B.2v 0tan θg
C.v 0sin θg
D.v 0tan θg
10.质量不计的轻质弹性杆P 插入桌面上的弹簧小孔中,杆的另一端套有一个质量为m 的小球.今使小球在水平面内做半径为R 的匀速圆周运动,且角速度为ω,如图5所示.则
杆的上端受到球对其作用力的大小为( )
A .mω2R
B .m g 2-ω4R 2
C .m g 2+ω4R 2
D .不能确定
二、填空题(本题共2个小题,每小题8分,共16分)
11.利用单摆验证小球平抛运动的规律,设计方案如图6所示,在悬点O 正下方有水平放置的炽热的电热丝P ,当悬线摆至电热丝处时能轻易被烧断;MN 为水平木板,已知悬线长为L ,悬点到木板的距离OO ′=h (h >L ).
(1)电热丝P 必须放在悬点正下
方的理由是:_____________________________
____________________________________________. (2)将小球向左拉起后自由释放,最后小球落到木板上的C 点,O ′C =x ,则小球做平抛运动的初速度为v 0为________.
12.在“探究平抛运动规律”的实验中,
可以描绘出小球平抛运动的轨迹,实验简要步
骤如下:
A
.让小球多次从斜槽上的
________
位置滚下,在一
张印有小方格的纸上记下小球碰到铅笔笔尖的一系列位
置,如图
7中所示的
a 、
b 、
c 、
d .
B .按图8所示安装好器材,注意斜槽末端____________,记下平抛初位置O 点和过O 点的竖直线.
C .取下白纸以O 为原点,以竖直线为y 轴建立平面直角坐标系,用平滑曲线画出小球做平抛运动的轨迹.
(1)完成上述步骤,将正确的答案填在横线上.
(2)上述实验步骤的合理顺序是____________.
(3)已知图中小方格的边长l=2.5cm,则小球平抛的
初速度为v0=______m/s,小球在b点的速率为
______m/s.(取g=10m/s2)
三、计算题(本题共4个小题,共44分)
13.(10分)如图9所示,光滑水平
桌面上的O处有一光滑的圆孔,一根轻
绳一端系质量为m的小球,另一端穿过
小孔拴一质量为M的木块.当m以某一
角速度在桌面上做匀速圆周运动时,木
块M恰能静止不动,这时小球做圆周运
动的半径为r,求此时小球做匀速圆周运动的角速度.
14.(11分)2010年1月,新疆
遭遇了特大雪灾,有的灾区救援物
资只能靠飞机空投.如图所示,一
架装载救援物资的飞机,在距水平
地面h=500m的高处以v=100m/s
的水平速度飞行.地面上A、B两点间的距离x=100 m,飞机在离A点的水平距离x0=950 m时投放救援物资,不计空气阻力(g取10 m/s2).求:
(1)救援物资从离开飞机到落到地面所经历的时间.
(2)通过计算说明,救援物资能否落在A、B区域内?
15.(11分)如图11所示,一辆质量为4t的汽车匀速经过一半径为50m的凸形桥.(g=10m/s2)
(1)汽车若能安全驶过此桥,它的速度范围为多少?
(2)若汽车经最高点时对桥的压力等于它重力的一半,求此时汽车的速度多大?
16.(12分)如图12所示,已知绳长为L=20cm,水平杆L′=0.1m,小球质量m=0.3kg,整个装置可绕竖直轴转动,问:
(1)要使绳子与竖直方向成45°
角,该装置必须以多大的角速度转动
才行?
(2)此时绳子的张力为多少?。