2018版江苏省物理学业水平测试复习练习:必修2 第十八讲 动能 动能定理 Word版含答案
- 格式:doc
- 大小:139.00 KB
- 文档页数:3
江苏省2018年高中学业水平测试物理试卷一、单向选择题:每小题只有一个选项符合题意(本部分共23小题,每小题3分,共69分)1.下列单位中,不属于力学基本单位的是A.N B.kg C.m D.s2.第一次通过实验的方法比较准确地测出引力常量的物理学家是A.牛顿B.开普勒C.伽利略D.卡文迪许3.在游乐场中,一小孩从滑梯上由静止开始匀加速直线下滑,下面四个v-t图像可以表示他在滑梯上运动情况的是4.如图所示,在力F的作用下,使同一桌子沿粗糙的水平面运动,其中桌子所受摩擦力最小的是5.把一个薄板状物体悬挂起来,静止时如图所示,则对于此薄板状物体所受重力的理解,下列说法正确的是A.重力就是地球对物体的引力B.重力大小和物体运动状态有关C.重力的方向总是指向地心的D.薄板的重心一定在直线AB上6.如图所示,一个小球用两根细绳OA、OB拴住处于静止状态,绳OA水平,绳OB与竖直方向的夹角=60°,若OA 绳上的拉力为,OB 绳上的拉力为,小球所受的重力为G ,则下列判断正确的是A .B .C .D .7.某同学在探究小车速度随时间变化规律的实验中,所得纸带点间距过密,若利用该纸带分析小车运动情况,下列做法可行的是A .每隔4个点取一个计数点,计数点时间间隔为0.1sB .每隔4个点取一个计数点,计数点时间间隔为0.08sC .只研究纸带后端几个间距较大的点所在区域D .直接研究纸带上的点,无需取计数点8.如图,有一长为120m 的玻璃棒竖直放置,当红蜡烛从玻璃管的最下端开始匀速上升的同时,玻璃管水平向右匀速运动,经过30s ,红蜡块到达玻璃管的最上端,此过程玻璃管的水平位移为90cm ,不计红蜡块的大小,则红蜡块运动的合速度大小为A .3cm/sB .4cm/sC .5cm/sD .7cm/s 9.在实验“探究加速度与质量的关系”时,下列说法正确的是 A .应该改变拉力的大小B .为了直观判断二者间的关系,应作出图像C .每次改变小车质量时,必须重新平衡摩擦力D .只需测量一次,记录一组数据即可10.如图所示,小明正在荡秋千,关于绳上a 点和b 点的线速度和角速度,下列关系正确的是θA F BF A B F F >B A F F >BG F >A G F>1a m-A .B .C .D . 11.关于第一宇宙速度,下列说法正确的是 A .我们把11.2km./s 叫做第一宇宙速度 B .它是月球绕地球飞行的速度 C .它是地球同步卫星绕地球飞行的速度D .它是人造地球卫星在地面附近绕地球做匀速圆周运动的速度12.弹簧秤的秤钩上挂一个重2N 的物体,当弹簧秤与所挂物体一起匀加速竖直上升时弹簧秤示数可能出现下列哪个图所示情况13.如图所示,物体在力F 的作用下,在水平面上沿各自运动方向均发生了一段位移,计算这四种情形下力F 对物体做的功,可以写做14.质量为m 的物体从高h 处以的加速度由静止竖直下落到地面,下列说法正确的是 A .物体的机械能守恒 B .物体的重力势能减小C .物体的动能增加D .重力做功为-mgha b v v =a b v v >a b ωω=a b ωω<l cos W Fl θ=23g3mgh23mgh15.真空中两个相距较近的等量同号点电荷,它们保持静止状态,释放,且只在的库仑力作用下运动,则在运动过程中受到的库仑力A .不断减小B .不断增大C .始终保持不变D .先增大后减小 16.在以下的应用或现象中,属于静电防止的是A .静电复印B .静电喷涂C .静电除尘D .油罐车用铁链拖地运行 17.如图所示,线框平面与磁场方向垂直,现将线框沿垂直磁场方向拉进磁场的全过程中,穿过线圈磁通量的变化情况是A .变小B .变大C .不变D .先变小后变大18.在匀强磁场中某处,垂直于磁场方向放置一个长度L=20cm 、通电电流I=1A 的直导线,导线受到的安培力F=0.2N ,现将该通电导线从磁场中撤走,此时该处的磁感应强度大小为 A .0 B .0.1T C .0.4T D .1T19.下面四幅图表示了磁感应强度B ,电荷速度v 和洛伦兹力F 三者方向之间的关系,其中正确的是请阅读下列材料,回答第20~23小题随着徐州城市地铁项目正式开工,“地铁时代瞬间跃然眼前,地铁1号线:为东西向骨干线,路线贯穿城市东西发展主轴,联系了老城区,坝山片区和城东新区,衔接人民广场,淮海广场和彭城广场三大老城商业中心,快速联系铁路徐州站和京沪高铁徐州东站两大综合客运枢纽,全长约为29.1km ,最高时速80km/h ,其中彭城广场站因其复杂的周边环境和地质条件,基坑设计深度最深可达35.5m ,是目前徐州地铁施工领域第一大基坑,也是地铁线路的最深处…… 20.根据材料,文中的29.1kg 和80km/h 分别指 A .路程 瞬时速度 B .路程 平均速度 C .位移 瞬时速度 D .位移 平均速度21.某列地铁列车发动机的额定功率为2000kW ,它以额定功率在平直轨道上行驶的最大速度为20m/s ,12q q 、2q 2q 1q 2q那么该列车在以最大速度匀速行驶时所受的阻力是A .BC .D . 22.一列地铁列车在驶入彭城广场站的过程中,列车的动能和重力势能变化情况为 A .动能减小,势能增大 B .动能不变,势能减小 C .动能减小,势能减小 D .动能不变,势能增大23.为判断地铁列车的运动情况,小明将一个小球悬挂在列车的天花板上,小球相对于列车稳定时如图所示,由此可判断列车正在A .减速B .匀速C .加速D .静止 二、填空题、24-B .(本题供选修3-1的考生作答)如图所示,在同一条电场线上有A 、B 两点,将的正点电荷由A 移到B 点,电场力做功___J ,电势能_______(选填“增大”、“减小”或“不变”)25.在“探究力的平行四边形定则”实验中,某同学用两个弹簧测力计将橡皮筋的端点拉到点O 后,作出了这两个拉力的图示,再改用一个弹簧测力计将橡皮筋的端点拉到同一点O ,此时弹簧测力计的示数为=5.0N(1)关于本实验,下列说法错误的是_________410N 510N 7410N ⨯6410N ⨯6610C q -=⨯12F F 、3FA .弹簧测力计应在使用前校零B .在弹簧的弹性限度内,应使拉力适当大一些C .弹簧测力计拉力方向应与木板平面平行D .的夹角越大越准确(2)在下图中作出弹簧测力计拉力的图示(3)以两个共点力的线段为邻边作平行四边形,这两个邻边之间的对角线表示的力是,则在、和这四个力中该同学应该探究的是________这两个力的关系。
高中物理必修二动能和动能定理练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 一个运动物体它的速度是V时,其动能为E,那么,当这个物体的速度增加到3V时,其动能应当是()A.EB.3EC.6ED.9E2. 在足球赛场上,某运动员用力踢出质量为0.4kg的足球,使足球获得20m/s的速度,则此时足球的动能是()A.6JB.80JC.160JD.条件不足,无法确定3. 两个物体质量比为1:4,速度大小之比为2:1,则这两个物体的动能之比为()A.1:1B.1:4C.4:1D.2:14. 如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,A、B间接触面不光滑,以地面为参照物,A、B都向前移动一段距离且移动的距离不相等.在此过程中()A.外力F对B做的功等于B的动能的增量B.外力F做的功等于A和B动能的增量C.B对A的摩擦力所做的功等于A的动能增量D.A对B的摩擦力所做的功等于B对A的摩擦力所做的功5. 将质量为m的物体在高空中以速率υ水平向右抛出,由于风力作用,经过时间t后,物体下落一段高度,速率仍为υ,方向与初速度相反,如图所示.在这一运动过程中,下列关于风力做功的说法,正确的是()A.风力对物体不做功B.风力对物体做的功(绝对值)为mg2t22C.风力对物体做的功(绝对值)小于mg2t22D.由于风力方向未知,不能判断风力做功情况6. 将质量为m的小球以速度v0由地面竖直向上抛出.小球落回地面时,其速度大小为45v0,设小球在运动过程中所受空气阻力的大小不变,重力加速度为g,则空气阻力的大小等于()A.4 5mgB.425mg C.941mg D.1641mg7. 如图甲所示,光滑水平面MN与斜面NP在N点连接,为测量斜面倾角θ的大小,进行如下操作,每次用大小不同的水平恒力F将一物块(可视为质点)从水平面上的M点由静止开始拉动,当物块运动到N点时撤去恒力F,M、N间距为s,测量物块落在斜面上的不同水平射程x,作出的x−F图像如图乙所示,图中x0、F0为已知量.已知物块质量为m,重力加速度为g.下列关系式正确的是()A.tanθ=x0mgsF0B.sinθ=x0mg4sF0C.tanθ=x0mg4sF0D.sinθ=x0mgsF08. 如图所示,若x轴表示时间,y轴表示位置,则该图像反映了某质点做匀速直线运动时,位置与时间的关系,若令x轴和y轴分别表示其他物理量,则该图像又可以反映在某种情况下,相应的物理量之间的关系.下列说法中正确的是()A.若x轴表示时间,y轴表示动能,则该图像可以反映某物体受恒定合外力作用做直线运动过程中,物体动能与时间的关系B.若x轴表示频率,y轴表示动能,则该图像可以反映光电效应中,光电子最大初动能与入射光频率之间的关系C.若x轴表示时间,y轴表示动量,则该图像可以反映某物体在沿运动方向的恒定合外力作用下,物体动量与时间的关系D.若x轴表示时间,y轴表示感应电动势,则该图像可以反映静置于磁场中的某闭合回路,当磁感应强度随时间均匀增大时,闭合回路的感应电动势与时间的关系9. 在风洞实验室内的竖直粗糙墙面上放置一钢板,风垂直吹向钢板,在钢板由静止开始下落的过程中,作用在钢板上的风力恒定.用E k、E、v、P分别表示钢板下落过程中的动能、机械能、速度和重力的功率,关于它们随下落高度ℎ或下落时间t的变化规律,下列四个图像中正确的是()A. B.C. D.10. 质量m=1kg的物体静止放在粗糙水平地面上。
1.(多选)在下列几种情况中,甲、乙两物体的动能相等的是( ) A .甲的速度是乙的2倍,甲的质量是乙的12B .甲的质量是乙的2倍,甲的速度是乙的12C .甲的质量是乙的4倍,甲的速度是乙的12D .质量相同,速度大小也相同,但甲向东运动,乙向西运动【解析】 由动能的表达式E k =12mv 2知,A 、B 错误,C 正确;因动能是标量,故D 正确.【答案】 CD2.(2016·漳州高一检测)改变汽车的质量和速度,都能使汽车的动能发生变化,在下面几种情况中,汽车的动能是原来的2倍的是( ) A .质量不变,速度变为原来的2倍 B .质量和速度都变为原来的2倍 C .质量变为原来的2倍,速度减半 D .质量减半,速度变为原来的2倍【答案】 D3.(2016·昆明高一检测)如图777所示,物体沿曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑的高度为5 m ,速度为6 m/s ,若物体的质量为1 kg.则下滑过程中物体克服阻力所做的功为( )图777A .50 JB .18 JC .32 JD .0 J【解析】 由动能定理得mgh -W f =12mv 2,故W f =mgh -12mv 2=1×10×5 J-12×1×62J =32 J ,C 正确.【答案】 C4.质量为m 的金属块,当初速度为v 0时,在水平面上滑行的最大距离为s ,如果将金属块质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .s B .2s C .4sD .8s【解析】 根据动能定理得μmgs =12mv 2μ2mgs ′=12·2m ·(2v 0)2由以上两式解得s ′=4s . 【答案】 C5.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.小球在水平力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图778所示,则力F 所做的功为( )图778A .mgl cos θB .Fl sin θC .mgl (l -cos θ)D .Fl cos θ【答案】 C6.(多选)用力F 拉着一个物体从空中的a 点运动到b 点的过程中,重力做功-3 J ,拉力F 做功8 J ,空气阻力做功-0.5 J ,则下列判断正确的是( ) A .物体的重力势能增加了3 J B .物体的重力势能减少了3 J C .物体的动能增加了4.5 J D .物体的动能增加了8 J【解析】 因为重力做功-3 J ,所以重力势能增加3 J ,A 对,B 错;根据动能定理W 合=ΔE k ,得ΔE k =-3 J +8 J -0.5 J =4.5 J ,C 对,D 错. 【答案】 AC7.如图779所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )图779A .mgh -12mv 2B.12mv 2-mgh C .-mghD .-(mgh +12mv 2)【解析】 由A 到C 的过程运用动能定理可得: -mgh +W =0-12mv 2所以W =mgh -12mv 2,所以A 正确.【答案】 A8.质量为m =50 kg 的滑雪运动员,以初速度v 0=4 m/s 从高度为h =10 m 的弯曲滑道顶端A 滑下,到达滑道底端B 时的速度v 1=10 m/s.求:滑雪运动员在这段滑行过程中克服阻力做的功.(g 取10 m/s 2)图7710【答案】 2 900 J9.在光滑的水平面上,质量为m 的小滑块停放在质量为M 、长度为L 的静止的长木板的最右端,滑块和木板之间的动摩擦因数为μ.现用一个大小为F 的恒力作用在M 上,当小滑块滑到木板的最左端时,滑块和木板的速度大小分别为v 1、v 2,滑块和木板相对于地面的位移大小分别为s 1、s 2,下列关系式错误的是( )图7711A .μmgs 1=12mv 21B .Fs 2-μmgs 2=12Mv 22C .μmgL =12mv 21D .Fs 2-μmgs 2+μmgs 1=12Mv 22+12mv 21【答案】 C10.(多选)在平直公路上,汽车由静止开始做匀加速运动,当速度达到v m 后立即关闭发动机直到停止,v t 图象如图7712所示.设汽车的牵引力为F ,摩擦力为f ,全过程中牵引力做功W 1,克服摩擦力做功W 2,则( )图7712A .F ∶f =1∶3B .F ∶f =4∶1C .W 1∶W 2=1∶1D .W 1∶W 2=1∶3【解析】 全过程初、末状态的动能都为零, 对全过程应用动能定理得W 1-W 2=0①即W 1=W 2,选项C 正确.设物体在0~1 s 内和1~4 s 内运动的位移大小分别为s 1、s 2,则W1=Fs1②W2=f(s1+s2)③在vt图象中,图象与时间轴包围的面积表示位移,由图象可知,s2=3s1④由②③④式解得F∶f=4∶1,选项B正确.【答案】BC11.如图7713甲所示,一质量为m=1 kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物块在受到按如图乙所示规律变化的水平力F作用下向右运动,第3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g取10 m/s2)求:(1)AB间的距离;(2)水平力F在5 s时间内对物块所做的功.甲乙图7713【答案】(1)4 m (2)24 J12.如图7714所示,粗糙水平轨道AB与半径为R的光滑半圆形轨道BC相切于B点,现有质量为m的小球(可看作质点)以初速度v0=6gR,从A点开始向右运动,并进入半圆形轨道,若小球恰好能到达半圆形轨道的最高点C,最终又落于水平轨道上的A处,重力加速度为g,求:图7714(1)小球落到水平轨道上的A点时速度的大小v A;(2)水平轨道与小球间的动摩擦因数μ.【答案】(1)5gR(2)0.25。
第十八讲动能动能定理1. (2018届镇江学业水平模拟)下列物理量属于矢量的是( )A. 路程B. 加速度C. 动能D. 电流2. 关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是( )A. 合外力为零,则合外力做功一定为零B. 合外力做功为零,则合外力一定为零C. 合外力做功越多,则动能一定越大D. 动能不变化,则物体合外力一定为零3. (2018届无锡学业水平模拟)甲、乙两物体质量之比1∶2,速度大小之比是2∶1,则甲与乙的动能之比是( )A. 1∶2B. 2∶1C. 1∶4D. 4∶14. 在离地面一定高度处,以相同大小的初速度,向各个方向抛出多个质量相同的小球,则这些小球到达地面时,有相同的( )A. 动能B. 速度C. 时间D. 位移5. (2016届连云港学业水平模拟)如图所示,从距地面高h=5m的A点以一定的初速度水平抛出一金属小球,抛出点与落地点的水平距离x=10m,g取10m/s2,小球所受空气阻力忽略不计.(1)求小球在空中的运动时间;(2)求小球的初速度大小;(3)现将一个质量为0.1kg的塑料球从A点以跟金属小球相同的初速度抛出,测得落地时的速度大小为12m/s,求该过程塑料球克服空气阻力所做的功.6. (2018届苏州学业水平模拟)为了让汽车平稳通过道路上的减速带,车速一般控制在20km/h以下.某人驾驶一辆小型客车以v0=10m/s的速度在平直道路上行驶,发现前方s=15m 处有减速带,立刻刹车匀减速前进,到达减速带时速度v=5.0m/s.已知客车和人的总质量m =2.0×103kg.求:(1)客车到达减速带时的动能E k;(2)客车从开始刹车直至到达减速带过程所用的时间t;(3)客车减速过程中受到的阻力大小F f.7. (2018届盐城学业水平模拟)如图所示,水平面与竖直面内半径为R的半圆形轨道在B点相切.一个质量为m的物体将弹簧压缩至离B点3R的A处由静止释放,物体沿水平面向右滑动,一段时间后脱离弹簧,经B点进入半圆轨道时对轨道的压力为8mg,之后沿圆形轨道通过最高点C时速度为gR.物体与水平面间的动摩擦因数为0.5,不计空气阻力.求:(1)经B点时物体的向心力大小;(2)离开C点后物体运动的位移;(3)弹簧的弹力对物体所做的功.8. (2018届扬州学业水平模拟)如图所示,AB 为固定在竖直平面内的14光滑圆弧轨道,其半径为R =0.8m.轨道的B 点与光滑水平地面相切,质量为m =0.2kg 的小球由A 点静止释放,g 取10m/s 2.求:(1) 小球滑到最低点B 时,小球速度v 的大小;(2) 小球通过L BC =1m 的水平面BC 滑上光滑固定曲面CD ,恰能到达最高点D ,D 到地面的高度为h =0.6m ,小球在水平面BC 上克服摩擦力所做的功W f ;(3) 小球最终所停位置距B 点的距离.。
第18讲 动能 动能定理紧扣考纲 考情再现 测试内容 测试要求2018年2017年 2016年 2015年 2014年动能 A21 26 26 动能定理 C14、2627272828考点一 动能动能是物体由于________________________________.动能的表达式为E k =12mv 2,动能是________量.例1 (2017·无锡一中模拟)以下关于物体的动能的叙述中,正确的是( ) A .速度不变、运动物体的质量发生变化,它的动能不一定变化 B .质量不变、运动物体的速度大小发生变化,它的动能不一定会变化 C .速度减半,质量增大到原来的4倍,物体的动能是原来的2倍 D .质量减半,速度增大到原来的2倍,物体的动能是原来的2倍易错辨析 速度是矢量,有大小、有方向;动能是标量,只有大小没有方向. 考点二 动能定理动能定理:________________________等于物体动能的变化量.表达式为W =ΔE k 或者W =E k2-E k1.特别提醒 (1)动能定理中W 为合外力的功、计算功时要注意功的正、负. (2)ΔE k 为动能的变化,ΔE k =E k2-E k1=12mv 22-12mv 21.例2 (2018·江苏学测)如图1所示,左端固定的轻质弹簧被物块压缩,物块被释放后,由静止开始从A 点沿粗糙水平面向右运动,离开弹簧后,经过B 点的动能为E k ,该过程中,弹簧对物块做的功为W ,则物块克服摩擦力做的功W f 为( )图1A .W f =E kB .W f =E k +WC .W f +E k =WD .W f =W -E k例3 (2018·如皋学测模拟)如图2所示,摩托车做特技表演时,以某一速度冲向高台,然后从高台以v 0=10 m/s 的速度水平飞出.人和车的总质量m =1.5×102kg ,台高h =5 m ,g=10 m/s2.图2(1)求人和摩托车从高台飞出时的动能;(2)若不计空气阻力,求车落地前瞬间的速度;(3)若落地前瞬间的速度仍然是10 m/s,求从高台飞出到落地过程中空气阻力做的功.考点三动能定理的综合应用(1)动能定理的适用范围:适用于物体的________运动和________运动;适用于________和________做功;适用于各种性质的力,既可以分段作用,也可以同时作用.(2)应用动能定理解题的一般步骤①选取研究对象,明确物理过程;②分析研究对象的受力情况,求出总功;③明确物体在始末状态的动能;④列出动能定理方程及其他必要的辅助方程进行求解.例4如图3所示,粗糙的足够长的固定斜面CD与一个光滑的圆弧形轨道ABC相切,圆弧半径为R=1 m,圆弧BC对应的圆心角θ=37°,圆弧形轨道末端A点与圆心等高,质量m =5 kg的物块(可视为质点)从A点正上方下落,经过E点时速度v=4 m/s,已知E点距A 点高H=5.2 m,恰好从A点进入轨道,若物块与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:图3(1)物块第一次经过B点时对轨道的压力大小;(2)物块运动足够长的时间后在斜面上(除圆弧轨道外)总共能运动多长的路程?规律方法应用动能定理解题时,注意合外力做功等于物体动能的变化量.解题过程中首先分析有哪些力做功,做正功还是负功,求出总功.1.(2012·江苏学测)一只下落的苹果质量为m,当速度为v时,它的动能是( )A.12mv B.mv C.12mv2 D.mv22.(2011·江苏学测)质量不同而具有相同动能的两个物体,在动摩擦因数相同的水平面上滑行到停止,则( )A.质量大的滑行的距离大B.质量大的滑行的时间长C.质量大的滑行的加速度小D.它们克服阻力做的功一样多3.(2018·江苏学测)如图4所示,某科技兴趣小组试飞一架自制的无人机,该无人机的质量m=0.5 kg,由静止开始沿竖直方向匀加速上升,加速度a=2 m/s2,上升时间t=3 s,求:该过程中无人机图4(1)受到合力的大小F;(2)上升的高度h;(3)末动能E k.4.(2015·江苏学测)如图5所示,借助一长为L的粗糙斜面,将一质量为m的物体(视为质点)移上货车.第一次使物体以初速度v 从斜面底端沿斜面上滑,滑行的最大距离为35L ;第二次使物体以相同的初速度向上滑行的同时,施加沿斜面向上的恒定推力,作用一段距离后撤去该力,物体继续上滑,恰好到达斜面顶端.图5(1)求第一次上滑过程中物体的加速度大小a ; (2)定性说明第二次上滑过程中物体可能的运动情况; (3)求第二次上滑过程中推力对物体做的功W .答案精析 考点突破 考点一运动而具有的能量 标例1 D [动能是标量,E k =12mv 2,速度不变,质量发生变化,则动能发生改变,A 错.质量不变,速度大小发生变化,则物体动能改变,B 错.根据公式判断C 错,D 对.] 考点二 合外力做的功例2 D [由动能定理有W -W f =E k -0, 则W f =W -E k .] 例3 见解析解析 (1)从高台飞出时的动能:E k0=12mv 02=7.5×103 J(2)从高台飞出到落地,根据动能定理有mgh =12mv 2-12mv 02代入数据可得:v =10 2 m/s 落地时,竖直分速度:v y =2gh =2×10×5 m/s =10 m/s设落地前瞬间速度的方向与水平面的夹角为θ, 则sin θ=v y v =22θ=45°(3)从高台飞出到落地,根据动能定理有W G +W 阻=E k -E k0=0 计算得出:W 阻=-mgh =-7.5×103J. 考点三(1)直线 曲线 恒力 变力 例4 (1)750 N (2)17 m解析 (1)由E 点到B 点的过程,由动能定理得mg (H +R )=12mv B 2-12mv E 2 v E =v =4 m/s 在B 点有F N -mg =mv B 2R联立解得F N =750 N由牛顿第三定律知物块对轨道的压力大小F N ′=F N =750 N.(2)由能量守恒定律可得: 12mv 2+mg (H +R cos θ)=F f ·s F f =μmg cos θ=20 N解得s =17 m. 真题演练 1.C 2.D 3.见解析解析 (1)由牛顿第二定律得F =ma 代入数据得F =1 N(2)由匀加速直线运动规律有h =12at 2代入数据得h =9 m (3)末速度v =at 动能E k =12mv 2代入数据得E k =9 J. 4.见解析解析 (1)第一次上滑过程中,根据匀变速直线运动公式v 2-v 02=2ax 得 02-v 2=2a ×35L解得a =-5v26L.负号表示加速度方向沿斜面向下.(2)第二次上滑过程中物体可能的运动情况是: ①先匀加速上滑,撤去推力后匀减速上滑;②先匀速上滑,撤去推力后匀减速上滑;③先做加速度较小的匀减速上滑运动,撤去推力后再做加速度较大的匀减速上滑运动. (3)根据动能定理有,第一次上滑时 -mg sin θ×35L -F f ×35L =0-12mv 2第二次上滑时W -mg sin θ×L -F f L =0-12mv 2联立解得W =13mv 2.。
动能和动能定理练习与解析1、质量为m的滑块沿着高为h,长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到底端的过程中:()A、重力对滑块所做的功为mghB、滑块克服阻力所做的功等于mghC、合力对滑块所做的功为mghD、合力对滑块所做的功不能确定答案:AB解析:物体匀速运动,外力做功之和为零。
2、一个质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度是2m/s,则下列说法中错误的是(g取10m/s2)A、手对物体做功12JB、合外力对物体做功12JC、合外力对物体做功2JD、物体克服重力做功10J答案:B解析:直接用动能定理求解。
3、质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能A.与它通过的位移s成正比B.与它通过的位移的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比答案:AD4、不同质量的两个物体由同一地点以相同的动能竖直向上抛出,不计空气阻力,则这两个物体()A.所能达到的最大高度和最大重力势能都相同B.所能达到的最大高度不同,但最大重力势能相同C.所能达到的最大高度和最大重力势能均不同D.所能达到的最大高度相同,但最大重力势能不同答案:B5、某人在距地面25m高处,斜向上抛出一个质量为100g的小球,出手速度为10m/s,落到地面速度为16m/s,试求:(g取10m/s2)(1)人抛出小球的过程中对小球做的功;(2)小球在飞行过程中克服阻力做的功。
答案:5J ,17.2J6、质量为M的木块放在光滑的水平面上,质量为m的子弹以速度v0沿水平方向射中木块并最终留在木块中与木块一起以速度v运动.当子弹进入木块的深度为s时相对木块静止,这时木块前进的距离为L.若木块对子弹的阻力大小F视为恒定,下列关系正确的是A.FL=M v2/2B.Fs=mv2/2C.Fs=mv02/2-(m+M)v2/2D.F(L+s)=mv02/2-mv2/2摩擦力对木块做功:0212-==Mv FL W (1) 摩擦力对子弹做功:2022121)(mv mv s L F W F -=+-= (2) 由(1)(2)可知:A 、C 、D 正确。
2018年江苏省普通高中学业水平测试(必修科目)试卷物理一、单项选择题:每小题只有一个选项符合题意(本部分23小题,每小题3分,共69分)1.在一段网络视频中,一枚硬币稳稳地立在飞驰高铁的窗台上,保持一段时间不倒,认为视频中硬币处于静止状态所选择的参考系是A.远处的高山B.经过的站台C.车窗外的树木D.立硬币的窗台2.冰壶比赛的冰道表面覆盖着特制的微小颗粒.如图所示,比赛时运动员常在冰壶滑行的前方用冰刷快速擦刷冰面,使冰壶滑得更远.设冰壶与冰面间的动摩擦因数为μ,受到的滑动摩擦力为f,则冰道被擦刷后A.μ和f都增大B.μ和f都减小C.μ增大,f减小D.μ减小,f增大3.2017年12月,我国大飞机三剑客之一的“鲲龙”AG600成功首飞.若该飞机在起飞过程中做匀加速直线运动,下列能反映该运动过程的图象是4.高空坠物会对人身和财产安全造成严重危害,如果一只花盆从45m高处的阳台意外坠落,忽略空气阻力,取重力加速度为10 m/s2,则花盆落到地面所需时间为A.1s B.3 s C.5 s D.7 s5.如图所示,在与水平方向成θ角的恒力F作用下,行李箱沿水平方向移动了一段距离x.该过程中,力F对行李箱做的功是A.Fx B.Fx sinθC.Fx cosθD.Fx tanθ6.宋代诗人苏轼的名句“会挽雕弓如满月,西北望,射天狼”中蕴含了一些物理知识.关于拉弓过程,下列说法正确的是A.人对弓的作用力大于弓对人的作用力B.人对弓的作用力小于弓对人的作用力C.弓的弹性形变越大,弹性势能就越大D.弓的弹性形变越大,弹性势能就越小7.如图所示是“探究匀变速直线运动速度随时间的变化规律”实验中打出的一条纸带,相邻计数点间的时间间隔为T,则C点的速度可表示为A.T SS212-B.TSS12-C.TSS221+D.TSS21+xtOCvtOD xtOAvtOB注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷包含选择题(第1题~第23题,共23题69分)、非选择题(第24题~第28题,共5题31分)共两部分。
高考物理动能与动能定理答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/sv=的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A,由传送带传送至最高点B后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。
2018年江苏省普通高中学业水平测试(必修科目)试卷(模拟)一、选择题1.关于质点,下列说法正确的是()A. 如果物体的形状和大小对所研究的问题属于次要因素时,可把物体看做质点B. 只有体积很小的物体才能看做质点C. 凡轻小的物体,皆可看做质点D. 质点是理想化模型,实际上并不存在,所以引入质点概念没有多大意义【答案】A【解析】【详解】A. 如果物体的形状和大小对所研究的问题属于次要因素时,可把物体看做质点,所以A正确;B. 体积很小的物体,不一定能看成质点,如原子的体积很小,在研究原子内部结构的时候是不能看成质点的,所以B错误;C. 能看成质点的物体是可以忽略自身大小,不是以质量的大小来区分的,所以C错误;D. 质点是理想化模型,实际上并不存在,但引入质点方便于研究问题,所以D错误。
故选:A2.如图所示,小明同学把一个篮球从离地面高H处自由释放,篮球经多次竖直弹跳,最后停在地面上.在此过程中,篮球的位移大小为()A. HB. 2HC. 0D. 因篮球弹跳的次数不知道,故无法判断【答案】A【解析】解:无论球上下运动多少次,最终是要停在地面上,所以球的初位置是离地面高H处,末位置是在地面上,位移是指从初位置到末位置的有向线段,所以位移的大小就是H,所以A 正确.故选A.【点评】本题就是考查学生对位移的理解,题目比较简单.3.下面关于加速度的描述中正确的是()A. 加速度描述了物体速度变化的多少B. 加速度方向与速度方向相反时物体做减速运动C. 加速度在数值上等于单位时间里速度大小的变化D. 加速度减小时物体一定做减速运动【答案】B【解析】【详解】A. 加速度描述速度变化的快慢,故A错误;B、当加速度与速度同向,则做加速运动,当加速度与速度反向,则做减速运动;故B正确;C、加速度的定义是单位时间内速度的变化量,不是速度大小的变化量,因为速度的变化是一个矢量的变化,故C错误;D、当速度与加速度同向时,加速度减小,速度仍然增大。
学业分层测评(十八)(建议用时:45分钟)[学业达标]1.改变汽车的质量和速度,都能使汽车的动能发生变化,在下面几种情况中,汽车的动能是原来的2倍的是( )【导学号:50152127】A .质量不变,速度变为原来的2倍B .质量和速度都变为原来的2倍C .质量变为原来的2倍,速度减半D .质量减半,速度变为原来的2倍【解析】 由E k =12m v 2知,m 不变,v 变为原来的2倍,E k 变为原来的4倍.同理,m 和v 都变为原来的2倍时,E k 变为原来的8倍;m 变为2倍,速度减半时,E k 变为原来的一半;m 减半,v 变为2倍时,E k 变为原来的2倍,故选项D 正确.【答案】 D2.人在距地面h 高处抛出一个质量为m 的小球,落地时小球的速度为v ,不计空气阻力,人对小球做功是( )【导学号:50152128】A.12m v 2B .mgh +12m v 2C .mgh -12m v 2 D.12m v 2-mgh【解析】 对全过程运用动能定理得:mgh +W =12m v 2-0,解得:W =12m v 2-mgh ,故D 正确,A 、B 、C 错误.故选D.【答案】 D3.如图7-7-7所示,物体沿曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑的高度为5 m ,速度为6 m/s ,若物体的质量为1 kg.则下滑过程中物体克服阻力所做的功为( )图7-7-7A .50 JB .18 JC .32 JD .0 J【解析】 由动能定理得mgh -W f =12m v 2,故W f =mgh -12m v 2=1×10×5 J-12×1×62 J =32 J ,C 正确. 【答案】 C4.如图7-7-8甲所示,静置于光滑水平面上坐标原点O 处的小物块,在水平拉力F 的作用下沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆,则小物块运动到x 0处时的动能为( )【导学号:50152129】甲 乙图7-7-8A .F m x 0B.12F m x 0C.π4F m x 0D.π4x 20【解析】 F -x 图象的“面积”等于拉力做功的大小,则得到拉力做功W =12π⎝ ⎛⎭⎪⎫x 022=π8x 20,由图看出,F m =x 02,得到W =π4F m x 0.根据动能定理得:小物块运动到x 0处时的动能为π4F m x 0,故选项C 正确.【答案】 C5.一质量为m 的小球,用长为l 的轻绳悬挂于O 点.小球在水平力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图7-7-9所示,则力F 所做的功为( )图7-7-9A .mgl cos θB .Fl sin θC .mgl (l -cos θ)D .Fl cos θ【解析】 小球的运动过程是缓慢的,因而任一时刻都可看作是平衡状态,因此F 的大小不断变大,F 做的功是变力功.小球上升过程只有重力mg 和F 这两个力做功,由动能定理得W F -mgl (1-cos θ)=0.所以W F =mgl (1-cos θ).【答案】 C6.(多选)用力F 拉着一个物体从空中的a 点运动到b 点的过程中,重力做功-3 J ,拉力F 做功8 J ,空气阻力做功-0.5 J ,则下列判断正确的是( )【导学号:50152130】A .物体的重力势能增加了3 JB .物体的重力势能减少了3 JC .物体的动能增加了4.5 JD .物体的动能增加了8 J【解析】 因为重力做功-3 J ,所以重力势能增加3 J ,A 对,B 错;根据动能定理W 合=ΔE k ,得ΔE k =-3 J +8 J -0.5 J =4.5 J ,C 对,D 错.【答案】 AC7.如图7-7-10所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )图7-7-10A .mgh -12m v 2 B.12m v 2-mghC.-mgh D.-(mgh+12m v2)【解析】由A到C的过程运用动能定理可得:-mgh+W=0-12m v2所以W=mgh-12m v2,所以A正确.【答案】 A8.质量为m=50 kg的滑雪运动员,以初速度v0=4 m/s从高度为h=10 m 的弯曲滑道顶端A滑下,到达滑道底端B时的速度v1=10 m/s.求:滑雪运动员在这段滑行过程中克服阻力做的功.(g取10 m/s2)图7-7-11【解析】从A运动到B,物体所受摩擦力随之变化,所以克服摩擦力所做的功不能直接由功的公式求得,此时要根据动能定理求解.设摩擦力做的功为W,根据动能定理mgh-W=12m v21-12m v2代入数值得:W=2 900 J.【答案】 2 900 J[能力提升]9.在光滑的水平面上,质量为m的小滑块停放在质量为M、长度为L的静止的长木板的最右端,滑块和木板之间的动摩擦因数为μ.现用一个大小为F的恒力作用在M上,当小滑块滑到木板的最左端时,滑块和木板的速度大小分别为v1、v2,滑块和木板相对于地面的位移大小分别为s1、s2,下列关系式错误的是()【导学号:50152131】图7-7-12A .μmgs 1=12m v 21B .Fs 2-μmgs 2=12M v 22C .μmgL =12m v 21D .Fs 2-μmgs 2+μmgs 1=12M v 22+12m v 21【解析】 滑块在摩擦力作用下前进的距离为s 1,故对于滑块μmgs 1=12m v 21,A 对,C 错;木板前进的距离为s 2,对于木板Fs 2-μmgs 2=12M v 22,B 对;由以上两式得Fs 2-μmgs 2+μmgs 1=12M v 22+12m v 21,D 对.故应选C.【答案】 C10.(多选)在平直公路上,汽车由静止开始做匀加速运动,当速度达到v m 后立即关闭发动机直到停止,v -t 图象如图7-7-13所示.设汽车的牵引力为F ,摩擦力为f ,全过程中牵引力做功W 1,克服摩擦力做功W 2,则( )图7-7-13A .F ∶f =1∶3B .F ∶f =4∶1C .W 1∶W 2=1∶1D .W 1∶W 2=1∶3【解析】 全过程初、末状态的动能都为零,对全过程应用动能定理得W 1-W 2=0①即W 1=W 2,选项C 正确.设物体在0~1 s 内和1~4 s 内运动的位移大小分别为s 1、s 2,则W 1=Fs 1② W 2=f (s 1+s 2) ③ 在v -t 图象中,图象与时间轴包围的面积表示位移,由图象可知,s 2=3s 1④由②③④式解得 F ∶f =4∶1,选项B 正确.【答案】 BC11.如图7-7-14所示,粗糙水平轨道AB 与半径为R 的光滑半圆形轨道BC 相切于B 点,现有质量为m 的小球(可看作质点)以初速度v 0=6gR ,从A 点开始向右运动,并进入半圆形轨道,若小球恰好能到达半圆形轨道的最高点C ,最终又落于水平轨道上的A 处,重力加速度为g ,求:【导学号:50152132】图7-7-14(1)小球落到水平轨道上的A 点时速度的大小v A ;(2)水平轨道与小球间的动摩擦因数μ.【解析】 (1)mg =m v 2C R ,得v C =gR ,从C 到A 由动能定理得:mg 2R =12m v 2A -12m v 2C ,得v A =5gR . (2)AB 的距离为x AB =v C t =gR ×2×2Rg =2R从A 出发回到A 由动能定理得:-μmgx AB =12m v 2A -12m v 20,得μ=0.25. 【答案】 (1)5gR (2)0.2512.如图7-7-15所示,从高台边A 点以某速度水平飞出的小物块(可看做质点),恰能从固定在某位置的光滑圆弧轨道CDM 的左端C 点沿圆弧切线方向进入轨道.圆弧轨道CDM 的半径R =0.5 m ,O 为圆弧的圆心,D 为圆弧最低点,C 、M 在同一水平高度,OC 与CM 夹角为37°,斜面MN 与圆弧轨道CDM 相切于M 点,MN 与CM 夹角53°,斜面MN 足够长,已知小物块的质量m =3 kg ,第一次到达D 点时对轨道的压力大小为78 N ,与斜面MN 之间的动摩擦因数μ=13,小球第一次通过C 点后立刻装一与C 点相切且与斜面MN 关于OD 对称的固定光滑斜面,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不考虑小物块运动过程中的转动,求:(1)小物块平抛运动到C 点时的速度大小;(2)A 点到C 点的竖直距离;(3)小物块在斜面MN 上滑行的总路程.【导学号:50152133】图7-7-15【解析】 (1)在D 点,支持力和重力的合力提供向心力,则有:F D -mg =m v 2D R解得v 2D =8(m/s)2从C 点到D 点由动能定理得:mgR (1-sin 37°)=12m v 2D -12m v 2C解得v C =2 m/s.(2)平抛运动C 点的竖直分速度v Cy =v C cos 37°A 点到C 点的竖直距离y =v 2Cy 2g解得y =0.128 m.(3)最后物体在CM 之间来回滑动,且到达M 点时速度为零,对从D 到M 过程运用动能定理得:-mgR (1-sin 37°)-μmg cos 53°·s 总=-12m v 2D代入数据并解得:s 总=1 m.【答案】 (1)2 m/s (2)0.128 m (3)1 m。
江苏省2019版高中物理学业水平测试复习第七章机械能守恒定律第18讲动能动能定理训练二动能定理的综合应用对点练必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2019版高中物理学业水平测试复习第七章机械能守恒定律第18讲动能动能定理训练二动能定理的综合应用对点练必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2019版高中物理学业水平测试复习第七章机械能守恒定律第18讲动能动能定理训练二动能定理的综合应用对点练必修2的全部内容。
训练二动能定理的综合应用1.(2016·连云港学测模拟)如图1所示,从距地面高h=5 m的A点以一定的初速度水平抛出一金属小球,抛出点与落地点的水平距离x=10 m,g取10 m/s2,金属小球所受空气阻力忽略不计.图1(1)求小球在空中的运动时间;(2)求小球的初速度大小;(3)现将一个质量为0。
1 kg的塑料球从A点以跟金属小球相同的初速度抛出,测得落地时的速度大小为12 m/s,求该过程塑料球克服空气阻力所做的功.2.(2017·江苏学测)地铁车站的轨道往往建得高些.如图2所示,列车从A到O的进站过程中,在平直轨道的A处关闭发动机,“冲”到站台的O处停下来.进站上坡过程中,列车的一部分动能转化为重力势能.列车开启发动机从O到B的出站过程中,重力势能可转化为列车的动能被再次利用,从而达到节约能源的目的.设坡高为h,列车的质量为m,经过A、B时的速度大小均为v0,不计空气阻力,重力加速度为g。
图2(1)求列车经过A时的动能E k;(2)求列车进站过程中损失的机械能ΔE;(3)通过计算求与没有坡的情形相比,列车从A到B的过程中牵引力少做的功ΔW。
课时作业(十八) 动能 动能定理及其应用1.质量为10kg 的物体,在变力F 作用下沿x 轴做直线运动,力随坐标x 的变化情况如图所示.物体在x =0处,速度为1m/s ,一切摩擦不计,则物体运动到x =16m 处时,速度大小为( )第1题图A .22m/sB .3m/sC .4m/s D.17 m/s2.质量为2kg 的物体,以1m/s 的速度在光滑水平长直轨道上滑行.从某时刻起对该物体施加一个沿轨道的水平力,经过一段时间后,滑块的速度改变量的大小为2m/s ,则在此过程中水平力做的功可能为 ( )A. 0 B .3J C .4J D .8J3.用长为l 的细线,一端固定在O 点,另一端系一质量为m 的小球,小球可在竖直平面内做圆周运动,如图所示,MD 为竖直方向上的直径,OB 为水平半径,A 点位于M 、B 之间的圆弧上,C 点位于B 、D 之间的圆弧上,开始时,小球处于圆周的最低点M ,现给小球某一初速度,下述说法正确的是( )第3题图A .若小球通过A 点的速度大于5gl ,则小球必能通过D 点B .若小球通过B 点时,绳的拉力大于3mg ,则小球必能通过D 点C .若小球通过C 点的速度大于2gl ,则小球必能通过D 点D .小球通过D 点的速度可能会小于gl24.某电动汽车在平直公路上从静止开始加速,测得发动机功率随时间变化的图象和其速度随时间变化的图象分别如图甲、乙所示,若电动汽车所受阻力恒定,则下列说法正确的是( )甲乙第4题图A.测试时该电动汽车所受阻力为1.0×103NB.该电动汽车的质量为1.2×103kgC.在0~110s内该电动汽车的牵引力做功为4.4×106JD.在0~110s内该电动汽车克服阻力做的功2.44×106J5.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC为水平的,其距离d=0.50m,盆边缘的高度为h=0.30m.在A处放一个质量为m的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的.而盆底BC面与小物块间的动摩擦因数μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B距离为()第5题图A.0.50m B.0.25m C.0.10m D.06.如图所示,a、b的质量均为m,a从倾角为45°的光滑固定斜面顶端无初速地下滑,b从斜面顶端以初速度v0平抛,对二者的运动过程以下说法正确的是()第6题图A.都做匀变速运动B.落地前的瞬间速率相同C.整个运动过程重力对二者做功的平均功率相同D.整个运动过程重力势能的变化相同7.如图所示,A、B两小球由绕过轻质定滑轮的细线相连,B、C两小球在固定的光滑斜面上通过劲度系数为k的轻质弹簧相连,C球放在垂直于斜面的光滑挡板上.现用手控制住A,使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线、弹簧均与斜面始终平行.已知A、B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A竖直向下运动至速度最大时C恰好离开挡板.下列说法正确的是()第7题图A.斜面倾角α=30°B.斜面倾角α=60°C.A获得最大速度为g m kD.A获得最大速度为g m 2k8.如图所示,放在光滑水平面上的矩形滑块是由不同材料的上下两层粘在一起组成的.质量为m的子弹以速度v水平射向滑块,若击中上层,则子弹刚好不穿出,如图(a)所示;若击中下层,则子弹嵌入其中,如图(b)所示,比较上述两种情况,以下说法不正确的是()(a)(b)第8题图A.两种情况下子弹和滑块的最终速度相同B.两次子弹对滑块做的功一样多C.两次系统产生的热量一样多D.两次滑块对子弹的阻力一样大9.如图所示,质量为m的小球,从离地面H高处从静止开始释放,落到地面后继续陷入泥中h深度而停止,设小球受到空气阻力为f,则下列说法正确的是()第9题图A.小球落地时动能等于mgHB.小球陷入泥中的过程中克服泥土阻力所做的功小于刚落到地面时的动能C.整个过程中小球克服阻力做的功等于mg(H+h)D.小球在泥土中受到的平均阻力为mg(1+H/h)10.如图所示,质量为m的滑块以一定初速度滑上倾角为θ的固定斜面,同时施加一沿斜面向上的恒力F=mg sinθ;已知滑块与斜面问的动摩擦因数μ=tanθ,取出发点为参考点,能正确描述滑块运动到最高点过程中产生的热量Q,滑块动能E k、势能E p、机械能E 随时间t、位移s关系的是()第10题图ABCD11.如图甲所示,长为4m的水平轨道AB与倾角为37°的足够长斜面BC在B处连接,有一质量为2kg的滑块,从A处由静止开始受水平向右的力F作用,F按图乙所示规律变化,滑块与AB和BC间的动摩擦因数均为0.25,重力加速度g取10m/s2.求:(1)滑块到达B处时的速度大小;(2)不计滑块在B处的速率变化,滑块冲上斜面,滑块最终静止的位置与B点的距离.甲乙第11题图12.一滑块(可视为质点)经水平轨道AB进入竖直平面内的四分之一圆弧形轨道BC.已知滑块的质量m=0.50kg,滑块经过A点时的速度v A=5.0m/s,AB长x=4.5m,滑块与水平轨道间的动摩擦因数μ=0.10,圆弧轨道的半径R=0.50m,滑块离开C点后竖直上升的最大高度h=0.10m.取g=10m/s.求:(1)滑块第一次经过B点时速度的大小;(2)滑块刚刚滑上圆弧轨道时,对轨道上B点压力的大小;(3)滑块在从B运动到C的过程中克服摩擦力所做的功.第12题图13.如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB轨道上通过的路程;(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力.第13题图14.在一次国际城市运动会中,要求运动员从高为H的平台上A点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B点后水平滑出,最后落在水池中.设滑道的水平距离为L,B点的高度h可由运动员自由调节(取g=10m/s2).求:第14题图(1)运动员到达B点的速度与高度h的关系.(2)运动员要达到最大水平运动距离,B点的高度h应调为多大?对应的最大水平距离s max为多少?(3)若图中H=4m,L=5m,动摩擦因数μ=0.2,则水平运动距离要达到7m,h值应为多少?15.如图所示,某货场需将质量为m1=100kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物由轨道顶端无初速滑下,轨道半径R=1.8m.地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=2m,质量均为m2=100kg,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ2=0.2.(最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)第15题图(1)求货物到达圆轨道末端时对轨道的压力.(2)若货物滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求μ1应满足的条件.(3)若μ1=0.5,求货物滑到木板A末端时的速度和在木板A上运动的时间.课时作业(十八) 动能 动能定理及其应用1.B 【解析】 由动能定理可得,12mv 2-12mv 20=Fs ,Fs =10×4+12×10×4-12×10×4=40(J),v =2Fsm+v 20=3m/s.故选B. 2.AD 【解析】 根据动能定理可知W =12mv 22-12mv 21代入数值(滑块速度可能增加可能减小)当增加时W =8J ,当减小时W =0J ,故选AD.3.AB 【解析】 若小球恰好能通过D 点,则在D 点时,m v 2t2=mg ,即v t =gl ,由动能定理知,在M 点时,12mv 2=12mv 2t +mg2l ;v =5gl ,A 对;在B 点时,12mv 2=12mv 2B+mgl ,mv 2Bl=3mg ,即拉力F =3mg ,v B =3gl ,C 在BD 之间,当v c >2gl 时,小球未必能一定通过D 点,故B 对,C 错;小球通过D 点的速度若小于gl 则无法做圆周运动,D 错;故选AB.4.ABD 【解析】 t =50s 时,电动汽车的加速度0.5m/s 2,此时电动汽车功率40kW.由Pv -f =ma ,4×10425-f =0.5m ; t =110s 时,电动汽车的加速度0m/s 2,此时电动汽车功率40kW , 由Pv-f =ma′.f =4×10440=1.0×103N ,m =1.2×103kg ,AB 对;在0~110s 内,牵引力做功W F =12×50×40×103+60×40×103=4.2×106J ,C 错;W F -W f =12mv 2-0;W f =4.2×106-6×102×16×102=2.44×106J.D 对,故选ABD.5.D 【解析】 分析小物块的运动过程,可知由于克服摩擦力做功,物块的机械能不断减少.根据动能定理可得mgh -μmgx =0,物块在BC 之间滑行的总路程x =mgh μmg =h μ=0.300.10m =3m.小物块正好停在B 点,所以D 选项正确.6.AD 【解析】 物体a 受重力和支持力,F 合=mgsin45°,根据牛顿第二定律,a =22g.物体b 做平抛运动,加速度为g ,知两物体的加速度不变,所以两物体都做匀变速运动,A 对.对a 运用动能定理,mgh =12mv 2a -0,对b 运用动能定理,有mgh =12mv 2b -12mv 20,知落地瞬间b 球的速率大于a 球的速率.故B 错.对于a 、b ,整个运动过程重力做的功相等,重力势能的变化相同,但是a 球做匀加速直线运动,2h =12at 2a ,a =22g ,则运动的时间t a =4h g .b 球做平抛运动,根据h =12gt 2b得,t b =2hg.知两个时间不等,故C 错D 对. 7.AD 【解析】 当A 速度最大时,C 球离开挡板,则mg -mgsin α=mgsin α,即sin α=12,α=30°,A 正确,B 错误;当A 加速度为零时,速度达到最大,对A 、B ,由动能定理可得mg(mgsin30°k +mg -mgsin30°k )-mg(mgsin30°k +mg -mgsin30°k)·sin30°=12mv 2A +12mv 2B ,因为v A =v B ,解得v A =g m2k.故C 错误,D 正确;故选AD. 8.D 【解析】 光滑地面、利用动量定理得,最终速度为v 1,木块质量为m ,mv =(m +M)v 1射入子弹后三者速度相同.两次子弹对滑块做的功W =12Mv 21两次系统产生的热量都是Q =12mv 2-12(m +M)v 21fd =Q =12mv 2-12(m +M)v 21,由于前一次d 大于后一次的d′,所以前一次的摩擦力小于后一次的摩擦力,故D 不正确,故选D.9.C 【解析】 小球受到空气阻力为f ,故小球落地时动能为mgH -fH ,A 错;小球陷入泥中克服泥土阻力做功应大于刚落地时的动能,B 错;由能量守恒,知整个过程中小球克服阻力做功为mg(H +h),C 对;由能量守恒知mg(H +h)=fH +f′h ,泥土中受到的平均阻力为mg(1+H/h)-fH/h ,D 错;故答案选C.第10题图10.CD 【解析】 对滑块受力分析:合力大小:F 合=μmg cos θ=mgsin θ,方向沿斜面向下由牛顿第二定律F 合=ma ,a =-gsin θ,物体做匀减速直线运动,斜面长度L =v 0t -12gsin θ t 2,Q =f·L =mgsin θ(v 0t -12gsin θ t 2),A 错;E K =E K0-12m(v 0-gsin θt)2,B 错;E p =mgssin θ,C 对;F =f ,则物体上滑机械能守恒,D 对;故选CD.11.(1)10m/s (2)1m 【解析】 (1)由图得:0~2m :F 1=20N Δx 1=2m; 2~3m :F 2=0 Δx 2=1m; 3~4m :F 3=10N ,Δx 3=1m.A 至B 由动能定理:F 1×Δx 1-F 3×Δx 3-μmg(Δx 1+Δx 2+Δx 3)=12mv 2B .20×2-10×1-0.25×2×10×(2+1+1)=12×2×v 2B 得v B =10m/s. (2)因为mgsin37°>μmg cos37°,滑块将滑回水平面.设滑块由B 点上滑的最大距离为L ,由动能定理-μmgL cos37°-mgLsin37°=0-12mv 2B.解得:L =58m.从最高点滑回水平面,设停止在与B 点相距s 处,mgLsin37°-μmgL cos37°-μmgs =0-0.解得:s =sin37°-μcos37°μL=0.6-0.25×0.80.25×58=1m.12.(1)4.0m/s (2)21N (3)1.0J 【解析】 (1)滑块从A 到B 做匀减速直线运动,摩擦力f =μmg 由牛顿第二定律可知,滑块的加速度大小a =f m,由运动学公式v 2B -v 2A =-2ax 解得滑块经过B 点时速度的大小v B =4.0m/s.(2)在B 点,滑块开始做圆周运动,由牛顿第二定律可知F N -mg =m v 2BR解得轨道对滑块的支持力F N =21N根据牛顿第三定律可知,滑块对轨道上B 点压力的大小也为21N. (3)从B 到滑块经过C 上升到最高点的过程中,由动能定理 -mg(R +h)-W f =0-12mv 2B解得滑块克服摩擦力做功W f =1.0J.13.(1)Rμ (2)(3-2cos θ)mg 【解析】(1)因为摩擦力始终对物体做负功,所以物体最终在圆心角为2θ的圆弧上往复运动.对整个过程由动能定理得: mgR·cos θ-μmg cos θ·s =0,所以总路程为s =R μ.(2)对B →E 过程mgR(1-cos θ)=12mv 2EF N -mg =mv 2ER解得:F N =(3-2cos θ)mg.由牛顿第三定律得物体对圆弧轨道的压力为(3-2cos θ)mg. 14.(1)v 0=2g (H -h -μL )(2)h =12(H -μL) s max =L +H -μL(3)2.62m 0.38m【解析】 (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得 mg(H -h)-μmgL 1cos α=12mv 20即mg(H -h)=μmgL +12mv 20v 0=2g (H -h -μL )(2)根据平抛运动公式x =v 0t h =12gt 2由③~⑤式得x =2(H -μL -h )h由⑥式可得,当h =12(H -μL)s max =L +H -μL(3)在⑥式中令x =2m ,H =4m ,L =5m ,μ=0.2,则可得到: -h 2+3h -1=0求出h 1=3+52=2.62m h 2=3-52=0.38m.15.(1)3000N ,方向竖直向下 (2)0.4<μ1≤0.6 (3)4m/s 0.4s 【解析】 (1)设货物滑到圆轨道末端时的速度为v 0,对货物的下滑过程,根据机械能守恒定律得m 1gR =12m 1v 20 设货物在轨道末端所受支持力的大小为F N ,根据牛顿第二定律得F N -m 1g =m 1v 20R联立①②式,代入数据得F N =3000N根据牛顿第三定律,货物对轨道的压力大小为3000N ,方向竖直向下. (2)若滑上木板A 时,木板不动,由受力分析得μ1m 1g ≤μ2(m 1+2m 2)g若滑上木板B 时,木板B 开始滑动,由受力分析得μ1m 1g >μ2(m 1+m 2)g代入数据得0.4<μ1≤0.6(3)μ1=0.5,由⑥式可知,货物在木板A 上滑动时,木板不动.设货物在木板A 上做减速运动时的加速度大小为a 1,由牛顿第二定律得μ1m 1g =m 1a 1设货物滑到木板A 末端时的速度为v 1,由运动学公式得v 21-v 20=-2a 1l代入数据得v 1=4m/s设在木板A 上运动的时间为t ,由运动学公式得v 1=v 0-a 1t代入数据得 t =0.4s。
小高考冲刺卷(二)物理本试卷包含选择题(第1题~第23题,共23题69分)、非选择题(第24题~第28题,共5题31分)共两部分.本次考试时间为75分钟.选项符合题意(本部分23小一、单项选择题:每小题只有一个....题,每小题3分,共69分)。
1。
下列事例中,能将物体或人可以看成质点的是( )①研究跳水运动员在比赛中的空中姿态②观看参加马拉松比赛的121号运动员③分析一列火车通过某路口所用的时间④跟踪我国科学考察船去南极途中A。
①③ B. ②③ C. ①④ D. ②④2。
梁朝傅翕非常有名的偈语:“空手把锄头,步行骑水牛;人从桥上过,桥流水不流”.试判定“桥流水不流”句所对应的参考系是()A。
岸 B. 水C。
树 D. 牛3. 关于质点的位移和路程,下列说法正确的是( )A。
位移是矢量,位移的方向就是质点运动的方向B. 路程是标量,也是位移的大小C。
质点做直线运动时,路程等于其位移的大小D. 位移的数值一定不会比路程大4。
做匀加速直线运动的物体,加速度是2m/s2,它意味着( )A. 物体在任1s末的速度是该秒初的两倍B。
物体在任1s末的速度比该秒初的速度大2m/sC. 物体在第1s末的速度为2m/sD。
物体在任1s的初速度比前1s的末速度大2m/s5. 如图所示,甲、乙分别表示两个运动物体的vt图象.若它们的加速度分别为a甲、a乙,则它们的大小关系是( )A。
a甲<a乙B。
a甲=a乙C。
a甲>a乙D。
不能确定6。
在轻质弹簧下端悬挂一质量为0。
1kg的物体,当物体静止后,弹簧伸长了0。
01m,取g=10m/s2。
该弹簧的劲度系数为( ) A。
1N/m B。
10N/m C. 100N/m D. 1 000N/m7。
如图所示在水平力F的作用下,重为G的物体沿竖直墙壁匀速下滑,物体与墙之间的动摩擦因数为μ,物体所受摩擦力大小为()A. μGB。
μ(F+G)C。
μ(F-G)D. G8. 关于惯性的有关概念,下列说法中正确的是( )A. 从枪膛中飞出的子弹,在惯力作用下飞行B。
课时作业(十六) 动能和动能定理一、单项选择题1.关于对功和动能等关系的理解正确的是( )A.所有外力做功的代数和为负值,物体的动能就减少B.物体的动能保持不变,则该物体所受合力一定为零C.如果一个物体所受的合力不为零,则合力对物体必做功,物体的动能一定要变化D.只要物体克服阻力做功,它的动能就减少解析:合力做负功,则动能的变化为负值,物体的动能就减少,A正确;物体的动能保持不变,说明合力对物体所做的功为零,但合外力不一定为零,B错误;由功的公式W=Fl cosα知,合力不为零,但若α=90°,合力的功也为零,C错误;物体动能的变化量取决于合外力对物体做的总功,有动力对物体做功或物体克服阻力做功时,合外力做的总功的正负不能确定,所以动能的增减无法确定,D错误.答案:A2.(2017·漳洲高一检测)下列关于运动物体的合外力做功和动能、速度变化的关系,正确的是( )A.物体做变速运动,合外力一定不为零,动能一定变化B.若合外力对物体做功为零,则合外力一定为零C.物体的合外力做功,它的速度大小一定发生变化D.物体的动能不变,所受的合外力必定为零解析:力是改变物体速度的原因,物体做变速运动时,合外力一定不为零,但合外力不为零时,做功可能为零,动能可能不变,A、B错误.物体合外力做功,它的动能一定变化,速度大小也一定变化,C正确.物体的动能不变,所受合外力做功一定为零,但合外力不一定为零,D错误.答案:C3.(2017·株洲高一检测)放在光滑水平面上的物体,仅在两个同向水平力的共同作用下开始运动,若这两个力分别做了6 J和8 J的功,则该物体的动能增加了( )A.48 J B.14 JC.10 J D.2 J解析:由动能定理得:ΔE k=W合=6 J+8 J=14 J,所以该物体的动能增加了14 J,故选项B正确.答案:B4.一质量为m的滑块,以速度v在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v(方向与原来相反),在整段时间内,水平力所做的功为( )则小球在N点的动能大小为,合外力对小球做的功W=mgh ,根据动能定理得小球在B点的动能二、多项选择题7.一物体做变速运动时,下列说法正确的有( )A.合外力一定对物体做功,使物体动能改变B.物体所受合外力一定不为零C.合外力一定对物体做功,但物体动能可能不变D.物体加速度一定不为零解析:物体的速度发生了变化,则合外力一定不为零,加速度也一定不为零,B、D正确;物体的速度变化,可能是大小不变,方向变化,故动能不一定变化,合外力不一定做功,A、C错误.答案:BD8.一质量为0.1 kg的小球,以5 m/s的速度在光滑水平面上匀速运动,与竖直墙壁碰撞后以原速率反弹,若以弹回的速度方向为正方向,则小球碰墙过程中的速度变化和动能变化分别是( )A.Δv=10 m/s B.Δv=0C.ΔE k=1 J D.ΔE k=0解析:速度是矢量,故Δv=v2-v1=5 m/s-(-5 m/s)=10 m/s.而动能是标量,初末两态的速度大小相等,故动能相等,因此ΔE k=0.选A、D.答案:AD9.(多选)甲、乙两个质量相同的物体,用大小相等的力F分别拉它们在水平面上从静止开始运动相同的距离s.如图所示,甲在光滑面上,乙在粗糙面上,则下列关于力F对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是( )A.力F对甲物体做功多B.力F对甲、乙两个物体做的功一样多C.甲物体获得的动能比乙大D.甲、乙两个物体获得的动能相同解析:由功的公式W=Fl cosα=F·x可知,两种情况下力F对甲、乙两个物体做的功一样多,A错误、B正确;根据动能定理,对甲有Fx=E k1,对乙有Fx-F f x=E k2,可知E k1>E k2,即甲物体获得的动能比乙大,C正确、D错误.答案:BC10.如图所示,质量为M的木块静止在光滑的水平面上,质量为m的子弹以速度v0沿水平方向射中木块并最终留在木块中与木块一起以速度v运动.已知当子弹相对木块静止时,木块前进距离L,子弹进入木块的深度为L′,若木块对子弹的阻力F视为恒力,则下列关系式中正确的是( ).求:;max运动员水平推冰壶做的功W是多少?点冰壶有最大速度,设为滑块的速度大小;过程中克服摩擦力做的功.的作用下由A点运动到撤去力。
2018年江苏省普通高中学业水平测试(必修科目)试卷物 理一、单项选择题:每小题只有一个选项符合题意(本部分23小题,每小题3分,共69分)1.在一段网络视频中,一枚硬币稳稳地立在飞驰高铁的窗台上,保持一段时间不倒,认为视频中硬币处于静止状态所选择的参考系是 A .远处的高山 B .经过的站台 C .车窗外的树木 D .立硬币的窗台2.冰壶比赛的冰道表面覆盖着特制的微小颗粒.如图所示,比赛时运动员常在冰壶滑行的前方用冰刷快速擦刷冰面,使冰壶滑得更远.设冰壶与冰面间的动摩擦因数为μ,受到的滑动摩擦力为f ,则冰道被擦刷后 A .μ和f 都增大 B .μ和f 都减小 C .μ增大,f 减小 D .μ减小,f 增大3.2017年12月,我国大飞机三剑客之一的“鲲龙”AG600成功首飞.若该飞机在起飞过程中做匀加速直线运动,下列能反映该运动过程的图象是4.高空坠物会对人身和财产安全造成严重危害,如果一只花盆从45m 高处的阳台意外坠落,忽略空气阻力,取重力加速度为10 m/s 2,则花盆落到地面所需时间为 A . 1s B . 3 s C .5 s D .7 s5.如图所示,在与水平方向成θ角的恒力F 作用下,行李箱沿水平方向移动了一段距离x .该过程中,力F 对行李箱做的功是A .FxB .Fx sin θC .Fx cos θD .Fx tan θ注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷包含选择题(第1题~第23题,共23题69分)、非选择题(第24题~第28题,共5题31分)共两部分。
考生答题全部答在答题卡上,答在本试卷上无效。
本次考试时间为75分钟。
考试结束后,请将本试卷和答题卡一并放在桌面,等待监考员收回。
2.答题前,请务必将自己的姓名、准考证号用书写黑色字迹的0.5毫米签字笔填写在本试卷及答题卡上。
3.请认真核对监考员在答题卡右上角所粘贴条形码上的姓名、准考证号是否与本人的相符合。
第十八讲动能动能定理
1. (2018届镇江学业水平模拟)下列物理量属于矢量的是( )
A. 路程
B. 加速度
C. 动能
D. 电流
2. 关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是( )
A. 合外力为零,则合外力做功一定为零
B. 合外力做功为零,则合外力一定为零
C. 合外力做功越多,则动能一定越大
D. 动能不变化,则物体合外力一定为零
3. (2018届无锡学业水平模拟)甲、乙两物体质量之比1∶2,速度大小之比是2∶1,则甲与乙的动能之比是( )
A. 1∶2
B. 2∶1
C. 1∶4
D. 4∶1
4. 在离地面一定高度处,以相同大小的初速度,向各个方向抛出多个质量相同的小球,则这些小球到达地面时,有相同的( )
A. 动能
B. 速度
C. 时间
D. 位移
5. (2016届连云港学业水平模拟)如图所示,从距地面高h=5m的A点以一定的初速度水平抛出一金属小球,抛出点与落地点的水平距离x=10m,g取10m/s2,小球所受空气阻力忽略不计.
(1)求小球在空中的运动时间;
(2)求小球的初速度大小;
(3)现将一个质量为0.1kg的塑料球从A点以跟金属小球相同的初速度抛出,测得落地时的速度大小为12m/s,求该过程塑料球克服空气阻力所做的功.
6. (2018届苏州学业水平模拟)为了让汽车平稳通过道路上的减速带,车速一般控制在20km/h以下.某人驾驶一辆小型客车以v0=10m/s的速度在平直道路上行驶,发现前方s=15m 处有减速带,立刻刹车匀减速前进,到达减速带时速度v=5.0m/s.已知客车和人的总质量m =2.0×103kg.求:
(1)客车到达减速带时的动能E k;
(2)客车从开始刹车直至到达减速带过程所用的时间t;
(3)客车减速过程中受到的阻力大小F f.
7. (2018届盐城学业水平模拟)如图所示,水平面与竖直面内半径为R的半圆形轨道在B点相切.一个质量为m的物体将弹簧压缩至离B点3R的A处由静止释放,物体沿水平面向右滑动,一段时间后脱离弹簧,经B点进入半圆轨道时对轨道的压力为8mg,之后沿圆形轨道通过最高点C时速度为gR.物体与水平面间的动摩擦因数为0.5,不计空气阻力.求:
(1)经B点时物体的向心力大小;
(2)离开C点后物体运动的位移;
(3)弹簧的弹力对物体所做的功.
8. (2018届扬州学业水平模拟)如图所示,AB 为固定在竖直平面内的14
光滑圆弧轨道,其半径为R =0.8m.轨道的B 点与光滑水平地面相切,质量为m =0.2kg 的小球由A 点静止释放,g 取10m/s 2
.求:
(1) 小球滑到最低点B 时,小球速度v 的大小;
(2) 小球通过L BC =1m 的水平面BC 滑上光滑固定曲面CD ,恰能到达最高点D ,D 到地面的高度为h =0.6m ,小球在水平面BC 上克服摩擦力所做的功W f ;
(3) 小球最终所停位置距B 点的距离.。